Table of Contents

Introduction
Legal Notice
Administrator’s Guide
Installation Guide
Dockerize Teiid
Deploying VDBs
Deploying VDB Dependencies
Accumulo Data Sources
Amazon SimpleDB Data Sources
Cassandra Data Sources
Couchbase Data Sources
File Data Sources
Ftp/Ftps Data Sources
Google Spreadsheet Data Sources
HDFS Data Sources
Infinispan HotRod Data Sources
JDBC Data Sources
LDAP Data Sources
MongoDB Data Sources
Phoenix Data Sources
OSISoft PI Data Sources
S3 Data Sources
Salesforce Data Sources
Solr Data Sources
Web Service Data Sources
Kerberos with REST based Services
OAuth Authentication With REST Based Services
VDB Versioning
Logging
Clustering in Teiid
Monitoring
Performance Tuning
Memory Management
Threading
Cache Tuning
Socket Transports

LOBs

1.1

1.2

1.3

1.3.1
1.3.1.1
1.3.2
1.3.2.1
1.3.2.1.1
1.3.2.1.2
1.3.2.1.3
13214
1.3.2.1.5
1.3.2.1.6
1.3.2.1.7
1.3.2.1.8
1.3.2.1.9
1.3.2.1.10
1.3.2.1.11
1.3.2.1.12
1.3.2.1.13
1.3.2.1.14
1.3.2.1.15
1.3.2.1.16
1.3.2.1.17
1.3.2.1.18
1.3.2.1.18.1
1.3.2.1.18.2
1.3.2.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.6.1
1.3.6.2
1.3.6.3
1.3.6.4

1.3.6.5

Other Considerations 1.3.6.6

Teiid Console 1.3.7
System Properties 1.3.8
Teiid Management CLI 1.3.9
Diagnosing Issues 1.3.10
Migration Guide From Teiid 14.x 1.3.11
Migration Guide From Teiid 13.x 1.3.12
Migration Guide From Teiid 12.x 1.3.13
Migration Guide From Teiid 11.x 1.3.14
Migration Guide From Teiid 10.x 1.3.15
Migration Guide From Teiid 9.x 1.3.16
Migration Guide From Teiid 8.x 1.3.17
Caching Guide 1.4
Results Caching 1.4.1
Materialized Views 1.4.2
External Materialization 1.4.2.1
Internal Materialization 1.4.2.2
Code Table Caching 1.4.3
Translator Results Caching 144
Hints and Options 1.4.5
Programmatic Control 1.4.6
Client Developer’s Guide 1.5
JDBC Support 1.51
Connecting to a Teiid Server 1.5.1.1
Driver Connection 1.5.1.1.1
DataSource Connection 1.5.1.1.2
Standalone Application 1.5.1.1.3

WildFly DataSource 1.5.1.14

Using Multiple Hosts 1.5.1.1.5

SSL Client Connections 1.5.1.1.6
Additional Socket Client Settings 1.5.1.1.7

Prepared Statements 1.5.1.2
ResultSet Limitations 1.5.1.3
JDBC Extensions 1.5.14
Statement Extensions 1.5.14.1

Partial Results Mode 1.5.1.4.2
Non-blocking Statement Execution 1.5.1.4.3
ResultSet Extensions 1.5.1.4.4
Connection Extensions 1.5.1.4.5
Unsupported JDBC Methods 1.5.1.5

Unsupported Classes and Methods in "java.sql" 1.5.1.5.1

Unsupported Classes and Methods in "javax.sql" 1.5.1.5.2

ODBC Support 1.5.2
Installing the ODBC Driver Client 1.5.2.1
Configuring the Data Source Name (DSN) 1.5.2.2
DSN Less Connection 1.5.2.3
ODBC Connection Properties 1.5.2.4
OData Support 1.5.3
OData Version 4.0 Support 1.5.3.1
Using Teiid with Hibernate 1.5.4
Using Teiid with EclipseLink 1.5.5
GeoServer Integration 1.5.6
QGIS Integration 1.5.7
SQLAIlchemy Integration 1.5.8
Node.js Integration 1.5.9
ADO.NET Integration 1.5.10
Reauthentication 1.5.11
Execution Properties 1.5.12
SET Statement 1.5.13
SHOW Statement 1.5.14
Transactions 1.5.15
Local Transactions 1.5.15.1
Request Level Transactions 1.5.15.2
Using Global Transactions 1.5.15.3
Restrictions 1.5.154
Developer’s Guide 1.6
Developing JEE Connectors 1.6.1
Archetype Template Connector Project 1.6.1.1
Implementing the Teiid Framework 1.6.1.2
ra.xml file Template 1.6.1.2.1
Packaging the Adapter 1.6.1.3
Adding Dependent Libraries 1.6.1.3.1
Deploying the Adapter 1.6.14
Translator Development 1.6.2
Environment Setup 1.6.2.1
Setting up the build environment 1.6.2.1.1
Archetype Template Translator Project 1.6.2.1.2
Implementing the Framework 1.6.2.2
Caching API 1.6.2.2.1
Command Language 1.6.2.2.2

Connections to Source
Dependent Join Pushdown
Executing Commands
Extending the ExecutionFactory Class
Large Objects
Translator Capabilities
Translator Properties
Extending The JDBC Translator
Delegating Translator
Packaging
Adding Dependent Modules
Deployment
User Defined Functions
Source Supported Functions
Support for User-Defined Functions(Non-Pushdown)
Archetype Template UDF Project
AdminAPI
Custom Logging
Runtime Updates
Custom Metadata Repository
PreParser
Archetype Template PreParser Project
Embedded Guide
Logging in Teiid Embedded
Secure Embedded with PicketBox
Reference Guide
Release Notes
Data Sources
Virtual databases
Developing a Virtual Database
DDL VDB
Using XML & DDL
VDB Properties
Schema object DDL
Domain DDL
MultiSource Models
Metadata Repositories
REST Service Through VDB
VDB Reuse

SQL Support

1.6.2.2.3
1.6.2.2.4
1.6.2.2.5
1.6.2.2.6
1.6.2.2.7
1.6.2.2.8
1.6.2.2.9
1.6.2.3
1.6.2.4
1.6.2.5
1.6.2.5.1
1.6.2.6
1.6.3
1.6.3.1
1.6.3.2
1.6.3.2.1
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.8.1
1.7

1.7.1
1.7.2

1.8

1.8.1
1.8.2
1.8.3
1.8.3.1
1.8.3.2
1.8.3.3
1.8.34
1.8.3.5
1.8.3.6
1.8.3.7
1.8.3.8
1.8.3.9
1.8.3.10

1.8.4

Identifiers
Operator Precedence
Expressions
Column identifiers
Literals
Aggregate functions
Window functions
Case and searched case expressions
Scalar subqueries
Parameter references
Arrays
Criteria
Scalar functions
Numeric functions
String functions
Date_Time functions
Type conversion functions
Choice functions
Decode functions
Lookup function
System functions
XML functions
JSON functions
Security functions
Spatial functions
Miscellaneous functions
Nondeterministic function handling
DML commands
Set operations
SELECT command
VALUES command
Update commands
INSERT command
UPDATE command
DELETE
UPSERT/MERGE command
EXECUTE command
Procedural relational command
Anonymous procedure block

Subqueries

1.8.4.1
1.8.4.2
1.8.4.3
1.8.4.3.1
1.8.4.3.2
1.8.43.3
1.8.4.3.4
1.8.4.3.5
1.8.4.3.6
1.8.4.3.7
1.8.4.3.8
1.8.4.4
1.8.4.5
1.8.4.5.1
1.8.4.5.2
1.8.4.5.3
1.8.4.5.4
1.8.4.5.5
1.8.4.5.6
1.8.4.5.7
1.8.4.5.8
1.8.4.5.9
1.8.4.5.10
1.8.4.5.11
1.8.4.5.12
1.8.4.5.13
1.8.4.5.14
1.8.4.6
1.8.4.6.1
1.8.4.6.2
1.8.4.6.3
1.8.4.6.4
1.8.4.6.4.1
1.8.4.6.4.2
1.8.4.6.4.3
1.8.4.6.4.4
1.8.4.6.4.5
1.8.4.6.4.6
1.8.4.6.4.7

1.8.4.6.5

WITH clause 1.8.4.6.6

SELECT clause 1.8.4.6.7
FROM clause 1.8.4.6.8
Nested tables 1.8.4.6.8.1
XMLTABLE 1.8.4.6.8.2
ARRAYTABLE 1.8.4.6.8.3
OBJECTTABLE 1.8.4.6.8.4
TEXTTABLE 1.8.4.6.8.5
JSONTABLE 1.8.4.6.8.6
WHERE clause 1.8.4.6.9
GROUP BY clause 1.8.4.6.10
HAVING clause 1.8.4.6.11
ORDER BY clause 1.8.4.6.12
LIMIT clause 1.8.4.6.13
INTO clause 1.8.4.6.14
OPTION clause 1.8.4.6.15
DDL commands 1.8.4.7
Temporary tables 1.8.4.7.1
Local temporary tables 1.8.4.7.2
Global temporary tables 1.8.4.7.3
Global and local temporary table features 1.8.4.7.4
Foreign temporary tables 1.8.4.7.5
Alter view 1.8.4.7.6
Alter procedure 1.8.4.7.7
Alter trigger 1.8.4.7.8
Procedures 1.8.4.8
Procedure language 1.8.4.8.1
Command statement 1.84.8.1.1
Dynamic SQL command 1.8.4.8.1.2
Declaration statement 1.8.4.8.1.3
Assignment statement 1.8.4.8.1.4
Special variables 1.8.4.8.1.5
Compound statement 1.8.4.8.1.6

IF statement 1.8.4.8.1.7
LOQP statement 1.8.4.8.1.8
WHILE statement 1.8.4.8.1.9
CONTINUE statement 1.8.4.8.1.10
BREAK statement 1.8.4.8.1.11
LEAVE statement 1.8.4.8.1.12
RETURN statement 1.8.4.8.1.13

ERROR statement
RAISE statement
Exception-expression
Virtual procedures
Update procedures (Triggers)
Comments
Explain statement
Datatypes
Supported types
Type conversions
Special conversion cases
Escaped literal syntax
Updatable views
Key-preserved tables
Transaction Support
AutoCommitTxn execution property
Updating model count
JDBC and transactions
Transactional behavior with JBoss data source types
Limitations and workarounds
Data roles
Permissions
Role mapping
XML definition
Customizing
System schema
SYS schema
SYSADMIN schema
Translators
Amazon S3 translator
Amazon SimpleDB translator
Apache Accumulo translator
Apache SOLR translator
Cassandra translator
Couchbase translator
Delegator translators
Extending the delegator translator
File translator
Google spreadsheet translator

Infinispan translator

1.8.4.8.1.14
1.8.4.8.1.15
1.8.4.8.1.16
1.8.4.8.2
1.8.4.8.3
1.8.49
1.8.4.10
1.8.5
1.8.5.1
1.8.5.2
1.8.5.3
1.8.54
1.8.6
1.8.6.1
1.8.7
1.8.7.1
1.8.7.2
1.8.7.3
1.8.7.4
1.8.7.5
1.8.8
1.8.8.1
1.8.8.2
1.8.8.3
1.8.8.4
1.8.9
1.8.9.1
1.8.9.2
1.8.10
1.8.10.1
1.8.10.2
1.8.10.3
1.8.10.4
1.8.10.5
1.8.10.6
1.8.10.7
1.8.10.7.1
1.8.10.8
1.8.10.9

1.8.10.10

JDBC translators

Actian vector translator

Amazon Athena translator
Apache Phoenix translator

Cloudera Impala translator

Db2 translator
Derby translator
Exasol translator
Greenplum translator
H2 translator

Hive translator
HSQL translator
Informix translator

Ingres translators

Intersystems Cache translator

JDBC ANSI translator
JDBC Simple translator

MetaMatrix translator

Microsoft Access translators

Microsoft SQL Server translator

ModeShape translator
MySQL translators
Netezza translator
Oracle translator
OSISoft PI translator
PostgreSQL translator
PrestoDB translator
Redshift translator
SAP HANA translator
SAP IQ translator
Sybase translator
Teiid translator
Teradata translator
Vertica translator

JPA translator

LDAP translator

Loopback translator

Microsoft Excel translator

MongoDB translator

OData translator

1.8.10.11
1.8.10.11.1
1.8.10.11.2
1.8.10.11.3
1.8.10.11.4
1.8.10.11.5
1.8.10.11.6
1.8.10.11.7
1.8.10.11.8
1.8.10.11.9
1.8.10.11.10
1.8.10.11.11
1.8.10.11.12
1.8.10.11.13
1.8.10.11.14
1.8.10.11.15
1.8.10.11.16
1.8.10.11.17
1.8.10.11.18
1.8.10.11.19
1.8.10.11.20
1.8.10.11.21
1.8.10.11.22
1.8.10.11.23
1.8.10.11.24
1.8.10.11.25
1.8.10.11.26
1.8.10.11.27
1.8.10.11.28
1.8.10.11.29
1.8.10.11.30
1.8.10.11.31
1.8.10.11.32
1.8.10.11.33
1.8.10.12
1.8.10.13
1.8.10.14
1.8.10.15
1.8.10.16

1.8.10.17

OData V4 translator
Swagger translator
OpenAPI translator
OLAP translator
Salesforce translators
SAP Gateway translator
Web Services translator
Federated planning
Planning overview
Query planner
Query plans
Federated optimizations
Subquery optimization
XQuery optimization
Federated failure modes
Conformed tables
Architecture
Terminology
Data management
Query termination
Processing
BNF for SQL grammar
Security Guide
LoginModules
Teiid Server Transport Security
JDBC/ODBC SSL connection using self-signed SSL certificates
Data Source Security
Kerberos support through GSSAPI
Custom Authorization Validator
SAML Based Security For OData
OAuth2 Based Security For OData Using KeyCloak

SAML Based Security For OData Using KeyCloak

1.8.10.18
1.8.10.19
1.8.10.20
1.8.10.21
1.8.10.22
1.8.10.23
1.8.10.24
1.8.11
1.8.11.1
1.8.11.2
1.8.11.3
1.8.11.4
1.8.11.5
1.8.11.6
1.8.11.7
1.8.11.8
1.8.12
1.8.12.1
1.8.12.2
1.8.12.3
1.8.12.4
1.8.13
1.9

19.1
1.9.2
1.9.3
1.9.4
1.9.5
1.9.6
1.9.7
1.9.8

1.9.9

Legal Notice

Teiid 15.0 Documentation

Contribute

The documentation project is hosted on GitHub at (teiid/teiid-documents).

It is published on GitHub Pages at (teiid.github.io/teiid-documents/master/content) ("'master' can be substituted with any

maintained branch e.g. '10.3.x").

For simple changes you can just use the online editing capabilities of GitHub by navigating to the appropriate source file and

selecting fork/edit.
For larger changes follow these 3 steps:

Step.1 clone the sources

git clone git@github.com:teiid/teiid-documents.git

Step.2 do edit
Use any text editor to edit the adoc files, AsciiDoc Syntax Quick Reference can help you in AsciiDoc Syntax.
Step.3 submit your change

Once the pull request is committed the published content will be updated automatically.

Test locally

You may need test locally, to make sure the changes are correct, to do this install gitbook, then execute the following commands

from the checkout location:

$ cd wildfly
$ gitbook install

https://github.com/teiid/teiid-documents
http://teiid.github.io/teiid-documents/master/content
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://github.com/GitbookIO/gitbook

$ gitbook serve -w

Once above commands execute successfully (may take a few minutes), you should see the "Serving book at ..." message and the

http format document can be tested locally via http://localhost:4000/ .

Generate html/pdf/epub/mobi

You may locally create rendered forms of the documentation. To do this install gitbook and ebook-convert, then execute the

following commands from the checkout location:

$ gitbook build ./ teiid-documents

$ gitbook pdf ./ teiid-documents.pdf

$ gitbook epub ./ teiid-documents.epub
$ gitbook mobi ./ teiid-documents.mobi

Once above commands executes successfully, the teiid-documents folder, teiid-documents.pdf , teiid-documents.epub ,

and teiid-documents.mobi will be generated.

CI Build

The .travis.yaml file allows for continuous integration of doc changes on multiple branches to be published to a single gh-pages

branch. When you setup the travis build job you must create the gh-pages branch if it does not already exist:

git checkout --orphan gh-pages

git rm -rf

git commit --allow-empty -m "initializing gh-pages"
git push origin gh-pages

You will need to add an appropriate user and git api key with repo access as the environment properties GITHUB_USER and
GITHUB_API_KEY respectively in the travis build settings.

https://github.com/GitbookIO/gitbook
https://download.calibre-ebook.com

Legal Notice
1801 Varsity Drive Raleigh, NC27606-2072USA Phone: +1 919 754 3700 Phone: 888 733 4281 Fax: +1 919 754 3701 PO Box
13588 Research Triangle Park, NC27709USA

Copyright © 2005 - 2019 by Red Hat, Inc. This copyrighted material is made available to anyone wishing to use, modify, copy, or

redistribute it subject to the terms and conditions of the Apache Software License, Version 2.0.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other countries.
All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 2086 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

mailto:security@redhat.com

Administrator’s Guide

This guide is intended for any user who assumes role of a developer/administrator of a Teiid instance.

This guide guides user through installation of Teiid, configuration of different services and deployment of Teiid artifacts such as
VDBs.

Before one can delve into Teiid it is very important to learn few basic constructs of Teiid, like what is VDB? what is Model? etc.

For that please read the short introduction.

http://teiid.io/about/basics/

Installation Guide

Teiid needs to be installed into an existing WildFly 19.1.0 installation.

Teiid provides an embedded kit, however it should be considered a tech preview as its APIs will likely evolve and

Note . .
there is sparse documentation.

Steps to install Teiid

e Download the WildFly application server. Install the server by unzipping into a known location. Ex: /apps/jboss-install

You may also choose to use an existing AS installation. However if a previous version of Teiid was already

Note . S i
installed, you must remove the old Teiid distribution artifacts before installing the new version.

e Download Teiid. Unzip the downloaded artifact inside the WildFly installation. Teiid 15.0 directory structure matches
WildFly directly - it is just an overlay. This will add necessary modules and configuration files to install Teiid in WildFly
19.1.0 in both Standalone and Domain modes. Teiid provides separate configuration files for both standalone mode and
domain mode. Based on mode type you selected to run WildFly 19.1.0 , you may have to run a CLI script to complete the

Teiid installation.

The "Domain" mode recommended in a clustered environment to take advantage of clustered caching and cluster safe distribution
of events. Teiid’s default configuration for Domain mode through CLI script configured for high availability and clustered

caching.
Standalone Mode
if you want to start the "standalone" profile, execute the following command

<jboss-install>/bin/standalone.sh -c=standalone-teiid.xml

Installing Teiid using CLI script

The above is starting WildFly in a separate Teiid specific configuration that is based standalone.xml. However, if you already
working with a predefined configuration for example default standalone.xml and would like to install Teiid into that configuration,

then you can execute the following JBoss CLI script. First, start the server

<jboss-install>/bin/standalone.sh

then in a separate console window execute

<jboss-install>/bin/jboss-cli.sh --file=bin/scripts/teiid-standalone-mode-
install.cli

this will install Teiid subsystem into the running configuration of the WildFly 19.1.0 in standalone mode.

Note: If you are using standalone ha or standalone full-ha, you should use the teiid-standalone-ha-mode-install.cli script instead.

Domain Mode

http://wildfly.org/downloads/
http://teiid.io/teiid_runtimes/teiid_wildfly/downloads/

To start the server in "Domain" mode, install WildFly 19.1.0 and Teiid 15.0 on all the servers that are going to be part of the
cluster. Select one of the servers as the "master" domain controller, the rest of the servers will be slaves that connect to the
"master" domain controller for all the administrative operations. Please refer to WildFly 19.1.0 provided WildFly
19.1.0Admin_Guide.html#Domain_Setup[documentation] for full details.

Once you configured all the servers, start the "master" node with following command

<jboss-install>/bin/domain.sh

and on "slave" nodes

<jboss-install>/bin/domain.sh

The slave nodes fetch their domain configuration from the "master" node.

Once all the servers are up, complete the installation to run in domain mode by executing the following command against the
"master" node. Note that this only needs to be run once per domain (i.e. cluster) install. This script will install Teiid in the ha and
full-ha profiles. It will also re-configure main-server-group to start the ha profile. Once in domain mode, you can not statically
deploy resources by dropping them in the domain/deployments folder, so this script will deploy the default resources (file, ldap,

salesforce and ws connectors) using the CLI interface.

<jboss-install>/bin/jboss-cli.sh --file=bin/scripts/teiid-domain-mode-install.cli

Thats it!. WildFly and Teiid are now installed and running. See below instructions to customize various other settings.

Once VDBs have been deployed, users can now connect their JDBC applications to Teiid. If you need help on connecting your

application to Teiid using JDBC check out the Client Developer’s Guide.

Directory Structure Explained

This shows the contents of the Teiid 15.0 deployment. The directory structure is exactly the same under any JBoss profile.
Directory Structure

/bin
/scripts
/docs
/teiid
/datsources
/schema
/examples
/domain
/configuration
/modules
/system
/layers
/base
/org/jboss/teiid/*
/standalone
/configuration
standalone-teiid.xml

Name

bin/scripts

docs/teiid

/standalone/configuration

/domain/configuration/

/modules/system/layers/base/org/jboss/teiid/*

/modules/system/layers/base/org/jboss/teiid/client

{standalone or domain}/tmp/teiid

{standalone or domain}/data/teiid-data

Description

Contains installation and utility CLI scripts for setting up
Teiid in different configurations.

Contains documents, examples, sample data source XML
fragments and schema files.

standalone-teiid.xml - Master configuration file for the
Teiid system. This file contains the Teiid subsystem, in
addition to the standard WildFly web profile subsystems

This directory contains the Teiid modules for WildFly
19.1.0 system

This directory contains Teiid client libraries. It has the
Teiid JDBC driver jar, "teiid-15.0.0-jdbc.jar", and also
contains "teiid-hibernate-dialect-15.0.0.jar" that contains
Teiid’s Hibernate dialect.

This directory under standalone or

domain, contains temporary files created by Teiid. These
are mostly created by the buffer manager. These files are
not needed across a VM restart. Creation of Teiid lob
values(for example through SQL/XML) will typically
create one file per lob once it exceeds the allowable in
memory size of 8KB. In heavy usage scenarios, consider
pointing the buffer directory at a partition that is routinely
defragmented.

This directory under standalone or domain, contains
cached vdb metadata files. Do not edit them manually.

Dockerize Teiid
Running Teiid as a Docker container is straight-forward, but since the runtime by itself is not a turn-key environment you must
consider how you will configure/use the server from there.

The following is a basic Dockerfile that can be used to create a base image. Just create a Dockerfile with these contents and run
"docker build ." from that directory.

FROM jboss/wildfly:19.1.0.Final
ENV JBOSS_HOME /opt/jboss/wildfly

Set the TEIID_VERSION env variable
ENV TEIID_VERSION 15.0.0

Download and unzip Teiid server
RUN cd $JBOSS_HOME \

&& curl -0
https://0ss.sonatype.org/service/local/repositories/releases/content/org/teiid/teii
d/$TEIID_VERSION/teiid-wildfly-$TEIID_VERSION-dist.zip \

&& bsdtar -xf teiid-wildfly-$TEIID_VERSION-dist.zip \

&& chmod +x $JBOSS_HOME/bin/*.sh \

&& rm teiid-wildfly-$TEIID_VERSION-dist.zip

VOLUME ["$JBOSS_HOME/standalone", "$JBOSS_HOME/domain"]
USER jboss
ENV LAUNCH_JBOSS_IN_BACKGROUND true

Expose Teiid server ports
EXPOSE 8080 9990 31000 35432

Run Teiid server and bind to all interface

CMD ["/bin/sh", "-c", "$JBOSS_HOME/bin/standalone.sh -c standalone-teiid.xml -b
0.0.0.0 -bmanagement 0.0.0.0"]

Pre-built images can be found at Docker Hub.

If you are just using the Teiid Docker environment for more than just testing you will likely want to extend the base image or base

Dockerfile to overlay the necessary modules, vdbs, and other artifacts as well as run any necessary cli to create your data sources.

Mutable Container

See the Teiid Docker Quickstart that shows starting the Teiid container and performing mutative operations after it is started.

Immutable Container

https://hub.docker.com/r/jboss/teiid/
https://developer.jboss.org/wiki/QuickstartExampleWithDockerizedTeiid

See the WildFly with MySQL example that shows extending the WildFly image to include a MySQL source. Note that this is
based upon also having the database containerized and thus exposing the container linking variables. If that is not the case for

your environment, you will have to provide the host/port information in a different way.

OpenShift

OpensShift is the Red Hat enterprise offering of Kubernetes which also utilizes Docker. While you may usually be able to use your

existing Docker containers on OpenShift, there are additional considerations and features.
See JDV on OpensShift for an overview of how the productized version of Teiid can be run on OpenShift.

A simplified form of immutable containers, but with additional OpenShift features such as health checks and better JVM
constraints, can be seen at OpenShift Teiid Server Docker. Note however that many of the resource concerns have been addressed
by later java versions which automatically detect memory constraints in vm sizing and report an appropriate number of available

processors.

See link:http://teiid.io/tools/beetle_studio/ for tooling that provides a turn-key experience for creating containerized
virtualizations. Under the covers it uses fabric8 and Thorntail to create images. See Teiid Thorntail Examples for direct usage of

the build logic.

http://blog.arungupta.me/docker-container-linking-across-multiple-hosts-techtip69/
https://dzone.com/articles/red-hat-jboss-data-virtualization-on-openshift-part-1-getting-started
https://github.com/shawkins/teiid-openshift-templates/tree/master/server-docker
https://github.com/teiid/thorntail-teiid-examples

Deploying VDBs
A VDB is the primary means to define a Virtual Database in Teiid. See the Reference Guide to create a VDB.
Once you have a "VDB" built it can be deployed/undeployed in Teiid runtime in different ways.

If VDB versioning is not used to give distinct version numbers, overwriting a VDB of the same name will
Warning terminate all connections to the old VDB. It is recommended that VDB versioning be used for production
systems.

Removing an existing VDB will immediately clean up VDB file resources, and will automatically terminate

Caution L. .
existing sessions.

The runtime names of deployed VDB artifacts must either be *.vdb for a zip file or *-vdb.xml for an xml file
Caution or -vdb.ddl for DDL file. Failure to name the deployment properly will result in a deployment failure as the
Teiid subsystem will not know how to properly handle the artifact.

if you have existing VDB in combination of *.vdb or -vdb.xml format, you can migrate to all DDL version using

Ti| .. . s . - . .
P the "teiid-convert-vdb.bat" or "teiid-convert-vdb.sh" utility in the "bin" directory of the installation.

Direct File Deployment
Copy the VDB file into the

<jboss-install>/standalone/deployments

directory. Then create an empty marker file with same name as the VDB with extension ".dodeploy" in the same directory. For
example, if your vdb name is "enterprise.vdb", then marker file name must be "enterprise.vdb.dodeploy". Make sure that there are
no other VDB files with the same name. If a VDB already exists with the same name, then this VDB will be replaced with the
new VDB. This is the simplest way to deploy a VDB. This is mostly designed for quick deployment during development, when

the Teiid server is available locally on the developer’s machine.

Note This only works in the Standalone mode. For Domain mode, you must use one of the other available methods.

Admin Console Deployment (Web)

Use the admin web console at:

http://<host>:<port>/console

More details for this can be found in the Admin Console VDB deployment section. This is the easiest way to deploy a VDB to a

remote server.

CLI based Deployment

WildFly 19.1.0 provides command line interface (CLI) for doing any kind of administrative task. Execute

bin/jboss-cli.sh --connect

http://www.jboss.org/teiid/basics/virtualdatabases.html

command and run

in stand alone mode
deploy /path/to/my.vdb

in domain mode
deploy /path/to/my.vdb --server-groups=main-server-group

to deploy the VDB. Note that in domain mode, you need to either select a particular "server-group" or all available server groups
are deployment options. Check out CLI documentation for more general usage of the CLI.

AdminAPI Deployment

See the "deploy" method. Consult the AdminAPI documentation for more information. When using AdminAPI, in domain mode,

the VDB is deployed to all the available servers.

Admin API Deployment

The Admin API (look in org.teiid.adminpi.*) provides Java API methods that lets a user connect to a Teiid runtime and deploy a
VDB. If you need to programatically deploy a VDB use this method. This method is preferable for OEM users, who are trying to
extend the Teiid’s capabilities through their applications. When using Admin API, in domain mode, the VDB is deployed to all the

servers.

https://docs.wildfly.org/19/Admin_Guide.html

Deploying VDB Dependencies

Apart from deploying the VDB, the user is also responsible for providing all the necessary dependent libraries, configuration for
creating the data sources that are needed by the models (schemas) defined in "META-INF/vdb.xml" file inside your VDB. For
example, if you are trying to integrate data from Oracle RDBMS and File sources in your VDB, then you are responsible for
providing the JDBC driver for the Oracle source and any necessary documents and configuration that are needed by the File

Translator.

Data source instances may be used by single VDB, or may be shared with as other VDBs or other applications. Consider sharing

connections to data sources that have heavy-weight and resource constrained.

With the exception of JDBC sources, other supported data sources have a corresponding JCA connector in the Teiid kit. Either
directly edit the standalone-teiid.xml or use CLI to create the required data sources by the VDB. Example configurations are
provided for all the sources in "<jboss-install>/docs/teiid/datasources" directory. Note that in the Domain mode, you must use CLI

or admin-console or AdminAPI to configure the data sources.

Some data sources may contain passwords or other sensitive information. See the WIKI article EncryptingDataSourcePasswords

to not store passwords in plain text.

Once the VDB and its dependencies are deployed, then client applications can connect using the JDBC API. If there are any errors
in the deployment, a connection attempt will not be successful and a message will be logged. You can use the admin-console tool
or check the log files for errors and correct them before proceeding. Check Client Developer’s Guide on how to use JDBC to

connect to your VDB.

https://community.jboss.org/wiki/JBossAS7SecuringPasswords

Apache Accumulo Data Sources

Accumulo data sources use a built-in Teiid specific JCA connector. There are many ways to create a Accumulo data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command
below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid:add(jndi-name=java:/accumul
o-ds, class- =org.teiid.resource.adapter.accumulo.AccumuloManagedConnectionFactory, enabled=true, use-java-c

ontext=true)
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=ZooKeeper
ServerlList:add(value=localhost:)
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Username:
add(value=user)
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Password:
add(value=password)
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=InstanceN
ame:add(value=instancename)
/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Roles:add
(value=public)

/subsystem=resource-adapters/resource-adapter=accumulo:activate

runbatch

All the properties that are defined on the RAR file are

Property Name Description Required Default

A comma separated list of
200 keeper server
locations. Each location

ZooKeeperServerList . . true none
can contain an optional
port, of the format
host:port

Username Connection User’s Name true none
Connection User’s

Password true none
password

InstanceName Accumulo instance name true none

optional visibility for user,
Roles supply multiple with false none
comma separated

To find out all the properties that are supported by this Accumulo Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=accumulo)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/accumulo"” directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Deploying VDB Dependencies

23

Amazon SimpleDB Data Sources

SimpleDB data sources use a built-in Teiid specific JCA connector. There are many ways to create a SimpleDB data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct access keys.
Add any additional properties required by the connector by duplicating the "connection-definitions" command below. Edit the
JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS:add(jndi-name=java:/si
mpledbDS, class- =org.teiid.resource.adapter.simpledb.SimpleDBManagedConnectionFactory, enabled=true, use-ja

va-context=true)
/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS/config-properties=Acce
ssKey:add(value=xxx)
/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS/config-properties=Secr
etAccessKey:add(value=xxx)

/subsystem=resource-adapters/resource-adapter=simpledb:activate

runbatch

To find out all the properties that are supported by this SimpleDB Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=simpledb)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/simpledb” directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Cassandra Data Sources

Cassandra data sources use a built-in Teiid specific JCA connector. There are many ways to create a Cassandra data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command
below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandraDS:add(jndi-name=java:/
cassandraDS, class-name=org.teiid.resource.adapter.cassandra.CassandraManagedConnectionFactory, enabled=true, u
se-java-context=true)
/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandrabDS/config-properties=Ad
dress:add(value= .0.1)
/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandrabDS/config-properties=Ke
yspace:add(value=my-keyspace)

/subsystem=resource-adapters/resource-adapter=cassandra:activate

runbatch

To find out all the properties that are supported by this Cassandra Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=cassandra)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/cassandra” directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Couchbase Data Sources

Couchbase data sources use a built-in Teiid specific JCA connector. There are many ways to create a Couchbase data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command
below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=couchbaseQS:add(module=org.jboss.teiid.resource-adapter.couchbase
)
/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS:add(jndi-name="jav
a:/couchbaseDs", class-name=org.teiid.resource.adapter.couchbase.CouchbaseManagedConnectionFactory, enabled=true
, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=
ConnectionString:add(value="localhost")
/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=
Keyspace:add(value="default")
/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=
Namespace:add(value="default")

runbatch

j —

To find out all the properties that are supported by this Couchbase Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=couchbase)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/couchbase" directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

File Data Sources

File data sources use a built-in Teiid specific JCA connector. There are many ways to create the file data source, using CLI,

admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct directory name
and other properties below. Add any additional properties required by the connector by duplicating the "connection-definitions"
command below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS:add(jndi-name=java:/fileDS, cl
ass-name=org.teiid.resource.adapter.file.FileManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS/config-properties=Parentdirect
ory:add(value=/home/rareddy/testing/)
/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS/config-properties=AllowParentP
aths:add(value=true)

/subsystem=resource-adapters/resource-adapter=file:activate

runbatch

To find out all the properties that are supported by this File Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=file)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/file" directory under "resource-adapters" subsystem. Shutdown the server before
you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Ftp/Ftps Data Sources

Ftp/Ftps data sources use a built-in Teiid specific JCA connector. There are many ways to create the Ftp/Ftps data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct directory name
and other properties below. Add any additional properties required by the connector by duplicating the "connection-definitions"
command below. Edit the JNDI name to match the JNDI name you used in VDB.

/subsystem=resource-adapters/resource-adapter=ftp:add(module=org.jboss.teiid.resource-adapter.ftp)
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS:add(jndi-name=${jndi.name}", cla
ss-name=org.teiid.resource.adapter.ftp.FtpManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=ParentDirector
y:add(value="${ftp.parent.dir}")
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Host:add(value
="${ftp.parent.host}")
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Port:add(value
=${ftp.parent.port}")
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Username:add(v
alue=${ftp.parent.username}")
/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Password:add(v
alue=${ftp.parent.password}")

/subsystem=resource-adapters/resource-adapter=ftp:activate()

To find out all the properties that are supported by this Ftp/Ftps Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=ftp)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/ftp" directory under "resource-adapters" subsystem. Shutdown the server before you
edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Google Spreadsheet Data Sources

The Google JCA connector is named teiid-connector-google.rar. The examples include a sample google.xml file. The JCA
connector has number of config-properties to drive authentication. The JCA connector connects to exactly one spreadsheet with

each sheet exposed as a table.

Authentication to your google account may be done using OAuth, which requires a refresh token (outlined below).

Config property Description
. client ID for access. If not specified, the Teiid default will
ClientId be used
. client secret for access. If not specified, the Teiid default
ClientSecret will be used
Use guide below to retrieve RefreshToken. Request access
RefreshToken to Google Drive and Spreadsheet API.
SpreadsheetName Name/Title of the Spreadsheet. May be used with v3.
SpreadsheetId ID of Spreadsheet. May be used with v3 or v4.
If spreadsheetld is not set, specifies more than one
spreadsheet for use in a format of
ST e prefix1=spreadsheetld1;prefix2=spreadsheet2... May be
used with v4.
. . Optional GData API version. Can be v3 or v4. Defaults to
ApiVersion v3
. Maximum number of rows that can be fetched at a time.
BatchSize

Defaults to 4096.

The v4 api requires the use of Spreadsheetld and specifying ClientId and ClientSecret. Some sheets such as those contained in a

team drive will only be visible to the v4 api.

Create Authorization Credentials

For v3 connections it is recommended that you create your own authorization credentials rather than relying on the default Teiid
client id and client secret. For v4 connections it is required that you create your own credentials. Creating your own project will

give you greater control over monitoring and controlling API access.

You should follow the OAuth2 For Devices Guide prerequisites. You should allow the project access to Google Drive API and the
Sheets API.

A condensed form of the rest of the guide "Obtaining OAuth 2.0 access tokens" is covered next as "Getting an OAuth Refresh
Token".

Getting an OAuth Refresh Token

With a browser or other client issue the request with the appropriate client ID:

https://developers.google.com/accounts/docs/OAuth2ForDevices

https://accounts.google.com/o/oauth2/auth?
scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fspread
sheets&redirect_uri=urn:ietf:wg:oauth:2.0:00b&response_type=code&client_id=<CLIENT_ID>;

Then copy the authorization code into following POST request and run it in command line:

curl \--data-urlencode code=<AUTHORIZATION_CODE> \

--data-urlencode client_id=<CLIENT_ID> \

--data-urlencode client_secret=<CLIENT_SECRET> \

--data-urlencode redirect_uri=urn:ietf:wg:oauth:2.0:00b \

--data-urlencode grant_type=authorization_code https://accounts.google.com/o/oauth2/token

The refresh token will be in the response.

To use the Teiid defaults:

Click on https://accounts.google.com/o/oauth2/auth?
scope=https%3A%2F%2Fwww.googleapis.com%?2Fauth%2Fdrive+https%3A%2F%2Fspreadsheets.google.com%2Ffeeds&redire
ct_uri=urn:ietf:wg:oauth:2.0:00b&response_type=code&client_id=217138521084.apps.googleusercontent.com

Then copy the authorization code into following POST request and run it in command line:

curl \--data-urlencode code=<AUTHORIZATION_CODE> \

--data-urlencode client_id=217138521084.apps.googleusercontent.com \

--data-urlencode client_secret=gXQ6-10kEjE11lVcz7giB4Poy \

--data-urlencode redirect_uri=urn:ietf:wg:oauth:2.0:00b \

--data-urlencode grant_type=authorization_code https://accounts.google.com/o/oauth2/token

Implementation Details

Google Translator is implemented using GData API and the Google Visualization Protocol. v4 connections still rely upon v3

functionality for update/delete as the v4 API does not provide appropriate search functionality.

https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fspreadsheets&redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=<CLIENT_ID>"
https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fspreadsheets.google.com%2Ffeeds&redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=217138521084.apps.googleusercontent.com

HDFS Data Sources

HDFS data sources use a built-in Teiid specific JCA connector. There are many ways to create the HDFS data source, using CLI,

admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct directory name
and other properties below. Add any additional properties required by the connector by duplicating the "connection-definitions"
command below. Edit the JNDI name to match the JNDI name you used in VDB.

/subsystem=resource-adapters/resource-adapter=hdfs:add(module=org.jboss.teiid.resource-adapter.hdfs)
/subsystem=resource-adapters/resource-adapter=hdfs/connection-definitions=hdfsDS:add(jndi-name=${jndi.name}", c
lass-name=org.teiid.resource.adapter.hdfs.HdfsManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=hdfs/connection-definitions=hdfsDS/config-properties=FsUri:add(va
lue="${fs.uri}")

/subsystem=resource-adapters/resource-adapter=hdfs:activate()

To find out all the properties that are supported by this Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=hdfs)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/hdfs" directory under "resource-adapters" subsystem. Shutdown the server before
you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Infinispan Data Sources

Infinispan data sources use a built-in Teiid specific JCA connector. There are many ways to create a Infinispan hotrod based data
source, using CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain

modes.

Execute the following commands using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command
below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=infinispanDS:add(module=org.jboss.teiid.resource-adapter.infinisp
an.hotrod)
/subsystem=resource-adapters/resource-adapter=infinispanDS/connection-definitions=ispnDS:add(jndi-name="java:/i
spnDS", class-name=org.teiid.resource.adapter.infinispan.hotrod.InfinispanManagedConnectionFactory, enabled=true
, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=infinispanDS/connection-definitions=ispnDS/config-properties=Remo
teServerList:add(value="{host}:11222")

/subsystem=resource-adapters/resource-adapter=infinispanDS:activate

run-batch

4 S 1]

All the properties that are defined on the RAR file are

Property Name Description Required Default

A comma separated list of server
. locations. Each location can
RemoteServerList . . Yes n/a
contain an optional port, of the

format host:port

If remote server is secured, this
UserName property is used as username to No n/a
login

If remote server is secured, this
Password property is used as password to No n/a
login

"EXTERNAL" is when certificate
SasIMechanism based security at use, all others No
use username/password.

The default
mechanism of Hotrod.

AuthenticationRealm Realm to use for authentication. No n/a

Infinispan server name where the

AuthenticationServerName Authentication is handled. No n/a
When "EXTERNAL"
SaslMechnism used, use this

TrustStoreFileName property to define truststore. No W

Alternatively JAVA system
property "javax.net.ssl.trustStore"
can also be defined instead.

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

When "EXTERNAL"
SaslMechnism used, use this
property to define truststore
password. Alternatively JAVA
system property
"javax.net.ssl.trustStorePassword"
can also be defined instead.

TrustStorePassword No n/a

When "EXTERNAL"
SasIMechnism used, use this
property to define keystore.
Alternatively JAVA system
property "javax.net.ssl.keyStore"
can also be defined instead.

KeyStoreFileName No n/a

When "EXTERNAL"
SasIMechnism used, use this
property to define keystore
KeyStorePassword password. Alternatively JAVA No n/a
system property
"javax.net.ssl.keyStorePassword"
can also be defined instead.

CacheName The default cache name. No n/a

If h h
ST i a cache needs to be created the No wa
template name to use.

The transaction mode expected
for cache access. Can be one of:
TransactionMode FULL_XA, No n/a
NON_DURABLE_XA,
NON_XA

To find out all the properties that are supported by this Infinispan Connector, execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=infinispan)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/infinispan" directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

JDBC Data Sources

The following is an example highlighting configuring an Oracle data source. The process is nearly identical regardless of the

database vendor. Typically the JDBC jar and the configuration like connection URL and user credentials change.

There are configuration templates for all the data sources in the "<jboss-install>/docs/teiid/datasources" directory. A complete
description how a data source can be added into WildFly is also described here. The below we present two different ways to create

a datasource.

Deploying a single JDBC Jar File

First step in configuring the data source is deploying the required JDBC jar file. For example, if you are trying to create a Oracle
data source, first you need to deploy the "ojdbc6.jar" file first. Execute following command using the CLI once you connected to

the Server.

deploy /path/to/ojdbcé.jar

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually copy this ’o0jdbc6.jar" to

Tip the "<jboss-install>/standalone/deployments" directory, to automatically deploy without using the CLI tool.

Creating a module for the Driver

You may also create a module to have more control over the handling of the driver. In cases where the driver is not contained in a

single file, this may be preferable to creating a "uber" jar as the dependencies can be managed separately.

Creating a module for a driver is no different than any other container module. You just include the necessary jars as resources in

the module and reference other modules as dependencies.

<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysqgl-connector-java-5.1.21.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>

</dependencies>
</module>

Create Data Source

Now that you have the JDBC driver deployed or the module created, it is time to create a data source using this driver. There are
many ways to create the datasource using CLI, admin-console etc. The example shown below uses the CLI tool, as this works in

both Standalone and Domain modes.

Execute following command using CLI once you connected to the Server. Make sure you provide the correct URL and user

credentials and edit the JNDI name to match the JNDI name you used in VDB.

/subsystem=datasources/data-source=oracel-ds:add(jndi-name=java:/OracleDS, driver-name=o0jdbc6.jar, connection-u
rl=jdbc:oracle:thin: {host}: :orcl,user-name={user}, password={password})
/subsystem=datasources/data-source=oracel-ds:enable

https://docs.wildfly.org/19/Admin_Guide.html#DataSource
https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli
https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

The driver-name will match the name of jar or module that you deployed for the driver.

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in *"<jboss-
install>/docs/teiid/datasources/oracle" directory under "datasources" subsystem. Shutdown the server before you
edit this file, and restart after the modifications are done.

Tip

LDAP Data Sources

LDAP data sources use a Teiid specific JCA connector which is deployed into WildFly 19.1.0 during installation. There are many
ways to create the ldap data source, using CLI, admin-console etc. The example shown below uses the CLI tool, as this works in

both Standalone and Domain modes.

Execute following command using CLI once you connected to the Server. Make sure you provide the correct URL and user
credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command below.
Edit the JNDI name to match the JNDI name you used in VDB.

batch

/subsystem=resource-adapters/resource-adapter=1ldap/connection-
definitions=1dapDS:add(jndi-name=java:/ldapDS, class-
name=org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory, enabled=true,
use-java-context=true)
/subsystem=resource-adapters/resource-adapter=1ldap/connection-
definitions=1dapDS/config-properties=LdapUrl:add(value=1ldap://ldapServer:389)
/subsystem=resource-adapters/resource-adapter=1ldap/connection-
definitions=1dapDS/config-properties=LdapAdminUserDN:add(value=
{cn=??7?,0u=???,dc=???})
/subsystem=resource-adapters/resource-adapter=1ldap/connection-
definitions=1dapDS/config-properties=LdapAdminUserPassword:add(value={pass})
/subsystem=resource-adapters/resource-adapter=1ldap/connection-
definitions=1dapDS/config-properties=LdapTxnTimeoutInMillis:add(value=-1)
/subsystem=resource-adapters/resource-adapter=ldap:activate

runbatch

To find out all the properties that are supported by this LDAP Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=1dap)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in *"<jboss-

Tip install>/docs/teiid/datasources/Idap" directory under "resource-adapters" subsystem. Shutdown the server before
you edit this file, and restart after the modifications are done.
Note To use an anonymous bind, set the LdapAuthType to none. When performing an anonymous bind the values for
the admin user and password will be ignored.
Tip If you experience stale connections in the pool, you should enable either the validate-on-match or the background-

validation pool settings.

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

MongoDB Data Sources

MongoDB data sources use a built-in Teiid specific JCA connector. There are many ways to create a MongoDB data source, using

CLI, admin-console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command
below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS:add(jndi-name="java:/mon
goDS", class-name=org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory, enabled=true, use-java-co
ntext=true)
/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS/config-properties=Remote
ServerList:add(value="{host}:27017")
/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS/config-properties=Databa
se:add(value="{db-name}")

/subsystem=resource-adapters/resource-adapter=mongodb:activate

runbatch

All the properties that are defined on the RAR file are

Property Name Description Required Default

A comma separated list of server
locations. Each location can contain an
optional port, of the format host:port. The
property may also contain a full standard
(mongodb://) or seedlist (mongodb+srv://)
connection URI string. If a full connection
string is used, then none of the other
configuration properties will be used nor
are required. However the database should
be specified in the URI.

RemoteServerList true

Username Connection User’s Name false none

Password Connection User’s password false none

MongoDB database name - required if not
Database suing a full connection URI in the false none
RemoteServerList

MongoDB Type of Authentication to be
used. Allowed values are
"None","SCRAM_SHA_1",
"SCRAM_SHA_256","MONGODB_CR",
SecurityType "Kerberos","X509". If you are using false SCRAM_SHA_1
MongoDB version lessthan 3.0,
MongoDB by default uses
"MONGODB_CR", thus this value need
to be set accordingly or set to None.

MongoDB Database Name for user
authentication in case when SecurityType
'MONGODB-CR!' is used. This is an
optional value.

AuthDatabase false none

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Ssl Use SSL Connections false none

To find out all the properties that are supported by this MongoDB Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=mongodb)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/mongodb" directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

Transaction support

With Teiid 12.1 running against a MongoDB server 4+ in a replica set, you may optionally use LocalTransaction transaction

support. Doing so through the CLI requires the creation of a new resource adapter.

batch

/subsystem=resource-adapters/resource-adapter=mongodbLocal:add(transaction-support=LocalTransaction, module=org
.jboss.teiid.resource-adapter.mongodb:main
/subsystem=resource-adapters/resource-adapter=mongodbLocal/connection-definitions=mongodbLocal:add(jndi-name="j
ava:/mongoDS", class-name=org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory, enabled=true, use
-java-context=true)

runbatch

Phoenix Data Sources

The following is a example for setting up Phoenix Data Sources, which is precondition for Apache Phoenix Translator. In addition
to the Data Sources set up, this article also cover mapping Phoenix table to an existing HBase table and creating a new Phoenix
table.

There are configuration templates for Phoenix data sources in the "<jboss-install>/docs/teiid/datasources" directory. A complete

description how a data source can be added into WildFly is also described here.

Configuring a Phoenix data source in WildFly

Configuring a Phoenix data source is nearly identical to configuring JDBC Data Sources. The first step is deploying the Phoenix
driver jar. Using below CLI command to deploy Phoenix driver:

module add --name=org.apache.phoenix --resources=/path/to/phoenix-[version]-client.jar --dependencies=javax.a
pi,sun.jdk,org.apache.log4j, javax.transaction.api
/subsystem=datasources/jdbc-driver=phoenix:add(driver-name=phoenix, driver-module-name=org.apache.phoenix, driver-
class-name=org.apache.phoenix. jdbc.PhoenixDriver)

4 S 1]

The Driver jar can be download from phoenix document.

The second steps is creating the Data Source base on above deployed driver, which is also like creating JDBC Data Source. Using
below CLI command to create Data Source:

/subsystem=datasources/data-source=phoenixDS:add(jndi-name=java:/phoenixDS, driver-name=phoenix, connection-ur
1=jdbc:phoenix: {zookeeper quorum server}, enabled=true, use-java-context=true, user-name={user}, password={pass
word})

/subsystem=datasources/data-source=phoenixDS/connection-properties=phoenix.connection.autoCommit:add(value=true)

j —

Please make sure the URL, Driver, and other properties are configured correctly:

e jndi-name - The JNDI name need to match the JNDI name you used in VDB
e driver-name - The Driver name need to match the driver you deployed in above steps

e connection-url - The URL need to match the HBase zookeeper quorum server, the format like jdbc:phoenix [: <zookeeper

quorum> [:<port number>] [:<root node>]], ’jdbc:phoenix:127.0.0.1:2181’ is a example
e user-name/password - The user credentials for Phoenix Connection

The Phoenix Connection AutoCommit default is false. Set phoenix.connection.autoCommit to true if you will be executing
INSERT/UPDATE/DELETE statements against Phoenix.

Mapping Phoenix table to an existing HBase table

Mapping Phoenix table to an existing HBase table has 2 steps. The first step is installing phoenix-[version]-server.jar to the
classpath of every HBase region server. An easy way to do this is to copy it into the HBase lib - for more details please refer to the

phoenix documentation.

The second step is executing the DDL to map a Phoenix table to an existing HBase table. The DDL can either be executed via

Phoenix Command Line, or executed by JDBC.

https://docs.wildfly.org/19/Admin_Guide.html#DataSource
http://phoenix.apache.org/
http://phoenix.apache.org/download.html
http://phoenix.apache.org/download.html

The Following is a example for mapping an existing HBase Customer with the following structure:

Row Key customer sales

ROW ID name city product amount
101 John White |Los Angeles, CA |Chairs $400.00
102 Jane Brown |Atlanta, GA Lamps $200.00
103 Bill Green Pittsburgh, PA Desk $500.00
104 Jack Black |St. Louis, MO Bed $1,600.00

As depicted above, the HBase Customer table have 2 column families, customer and sales, and each has 2 column qualifiers,

name, city, product and amount respectively. We can map this Table to Phoenix via DDL:

CREATE TABLE IF NOT EXISTS "Customer"("ROW_ID" PRIMARY KEY, "customer"."city" , "customer"."name"

, "sales"."amount" , "sales"."product")

j S—

For more about mapping Phoenix table to an existing HBase table please refer to the phoenix documentation.

Creating a new Phoenix table

Creating a new Phoenix table is just like mapping to an existing HBase table. Phoenix will create any metadata (table, column

families) that do not exist. Similar to the above example the DDL to create the Phoenix/HBase Customer table would be:

CREATE TABLE IF NOT EXISTS "Customer"("ROW_ID" PRIMARY KEY, "customer"."city" , "customer".'"name"
, "sales"."amount" , "sales"."product")

j S—

Defining Foreign Table in VDB

Finally, we need define a Foreign Table in VDB that map to Phoenix table, the following principles should be considered in
defining Foreign Table:

e nameinsource option in Table used to match Phoenix table name
e nameinsource option in Column used to match HBase Table’s Columns
e create a primary key is recommended, the primary key column should match Phoenix table’s primary key/HBase row id.

With "Mapping Phoenix table to an existing HBase table" section’s “Customer" table, below is a example:

CREATE FOREIGN TABLE Customer (
PK string OPTIONS (nameinsource 'ROW_ID'),
city string OPTIONS (nameinsource ''"city"'),
name string OPTIONS (nameinsource '"name"'),
amount string OPTIONS (nameinsource '"amount"'),
product string OPTIONS (nameinsource '"product"'"),
CONSTRAINT PK® PRIMARY KEY(PK)

) OPTIONS(nameinsource '"Customer"', "UPDATABLE" 'TRUE')

"Constraint violation. X may not be null" exception may thrown if updating a table without defining a primary

Note key.

http://phoenix.apache.org/faq.html#How_I_map_Phoenix_table_to_an_existing_HBase_table

Deploying VDB Dependencies

41

OSISoft PI Data Sources

The driver is not provided with Teiid install, this needs be downloaded from OSISoft and installed correctly on Teiid server
according to OSISoft documentation PI-JDBC-2016-Administrator-Guide.pdf or latest document.

Install on Linux

Make sure you have OpenSSL libraries installed, and you have following "export" added correctly in your shell environment
variables. Otherwise you can also add in <WildFly>/bin/standalone.sh file or <WildFly>/bin/domain.sh file.

export PI_RDSA LIB=/<path>/pipc/jdbc/lib/libRdsaWrapper-1.5b.so
export PI_RDSA _LIB64=/<path>/pipc/jdbc/lib/1ibRdsaWrapper64-1.5b.so

Please also note to execute from Linux, you also need install 'gSoap' library, as PI JDBC driver uses SOAP over HTTPS to

communicate with PI server.

Install on Windows

Follow the installation program provided by OSISoft for installing the JDBC drivers. Make sure you have the following

environment variables configured.

PI_RDSA_LIB C:\Program Files (x86)\PIPC\JDBC\RDSAWrapper.dll
PI_RDSA_LIB64 C:\Program Files\PIPC\JDBC\RDSAWrapper64.dll

Installing the JDBC driver for Teiid (same for both Linux and
Windows)

Then copy the module directory from <WildFly>/teiid/datasources/osisoft-pi/modules directory into _<WilfFly>/modules
directory. Then find the "PIJDBCDriver.jar" file from the installation directory, and copy it to
_<WildFly>/module/system/layers/dv/com/osisoft/main" directory. Then add the driver definition to the standalone.xml file by

editing the file and adding something similar to below

<drivers>
<driver name="osisoft-pi" module="com.osisoft">
<driver-class>com.osisoft.jdbc.Driver</driver-class>
</driver>
</drivers>

That completes the configuration of the PI driver in the Teiid. We still have not created a connection to the PI server.

You can start the server now.

Creating a Data Source to PI

You can execute following similar CLI script to create a datasource

/subsystem=datasources/data-source=pi-ds:add(jndi-name=java:/pi-ds, driver-
name=osisoft-pi, connection-url=jdbc:pioledbent://<DAC Server>/Data Source=<AF
Server>; Integrated Security=SSPI,user-name=user, password=mypass)
/subsystem=datasources/data-source=pi-ds:enable

this will create following XML in standalone.xml or domain.xml (you can also directly edit these files and add manually)

<datasource jndi-name="java:/pi-ds" pool-name="pi-ds">
<connection-url>jdbc:pioledbent://<DAC Server>/Data Source=<AF Server>;
Integrated Security=SSPI</connection-url>
<driver>osisoft-pi</driver>
<pool>
<prefill>false</prefill>
<use-strict-min>false</use-strict-min>
<flush-strategy>FailingConnectionOnly</flush-strategy>
</pool>
<security>
<user-name>user</user-name>
<password>mypass</password>
</security>
</datasource>

Now you have fully configured the Teiid with PI database connection. You can create VDB that can use this connection to issue

queries.

S3 Data Sources

S3 data sources use a built-in Teiid specific JCA connector. There are many ways to create the S3 data source, using CLI, admin-

console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct directory name
and other properties below. Add any additional properties required by the connector by duplicating the "connection-definitions"
command below. Edit the JNDI name to match the JNDI name you used in VDB.

/subsystem=resource-adapters/resource-adapter=s3:add(module=org.jboss.teiid.resource-adapter.s3)
/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS:add(jndi-name="${jndi.name}", class
-name=org.teiid.resource.adapter.s3.S3ManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=Endpoint:add(val
ue="${endpoint}")
/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=Bucket:add(value=
"${bucket}")
/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=AccessKey:add(va
lue="${accessKey}")
/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=SecretKey:add(va
lue="${secretKey}")

/subsystem=resource-adapters/resource-adapter=s3:activate

j —

To find out all the properties that are supported by this Connector execute the following command in the CLI.

If you do not specify endpoint, the AWS S3 service will be assumed, and if you only specify region, the endpoint will effectively
be to that AWS S3 region.

For non-AWS services (such as ceph or minio), or AWS services with non-default endpoints, you will need to set the endpoint.
The endpoint is expected to be the full service endpoint containing protocol, service, region, and hostname information as
applicable. The region when the endpoint is specified is used as the signing region override only and does not otherwise affect the

endpoint.

/subsystem=teiid:read-rar-description(rar-name=s3)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/s3" directory under "resource-adapters" subsystem. Shutdown the server before you
edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19//Admin+Guide#AdminGuide-RunningtheCLI

Salesforce Data Sources

Salesforce data sources use a built-in Teiid specific JCA connector. There are three versions of the salesforce resource adapter -
salesforce, which currently provides connectivity to the 34.0 Salesforce API, salesforce-34, which provides connectivity to the
34.0 Salesforce API, and salesforce-41 which actually provides access to 37.0 through at least 45.0. The version 22.0 support has

been removed.

If you need connectivity to an API version other than what is built in, you may try to use an existing connectivity
pair, but in some circumstances - especially accessing a later remote api from an older java api - this is not
possible and results in what appears to be hung connections. Please raise an issue if you cannot successfully
access a specific API version.

Note

There are many ways to create the salesforce data source, using CLI,AdminAPI, admin-console etc. The example shown below

uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct URL and user
credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command below.
Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS:add(jndi-name=java:/sfDS,
class-name=org.teiid.resource.adapter.salesforce.SalesForceManagedConnectionFactory, enabled=true, use-java-con
text=true)
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=URL:add(
value=https://login.salesforce.com/services/Soap/u/34.0)
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=username
radd(value={user})
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=password
radd(value={password})
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=connectT
imeout:add(value={timeout})
/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=requestT
imeout(value={timeout})

/subsystem=resource-adapters/resource-adapter=salesforce:activate

runbatch

The salesforce-xx connection definition configuration is similar to the above. The resource adapter name would instead be
salesforce-xx, and the url would point to a later version. It is recommended to set the url explicitly. If you use just the salesforce
resource adapter without setting the url, then later versions of Teiid can use a different default once the resource adapter moves to
a different version. The -34 resource adapter defaults to https://login.salesforce.com/services/Soap/u/34.0, and the -41 resource

adapter defaults to https://login.salesforce.com/services/Soap/u/40.0

that if you access a newer Salesforce API version than the resource adapter supports, you will receive low level

Note . - . .
metadata parsing exceptions - you can either access an older API or log an issue to have updated support.

To find out all the properties that are supported by this Salesforce Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=salesforce)

The resource adapter by default uses the Salesforce library for the http transport. Usage of the ConfigFile property allows you to
pass in a CXF configuration and instead use the CXF library. If you do so the other properties, such as the requestTimeout or

connectTimeout, are still applicable but may also be specified directly in the CXF config.

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
' install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in *"<jboss-
Tip install>/docs/teiid/datasources/salesforce” directory under "resource-adapters" subsystem. Shutdown the server

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli
https://login.salesforce.com/services/Soap/u/34.0
https://login.salesforce.com/services/Soap/u/40.0

before you edit this file, and restart after the modifications are done.

Mutual Authentication

If you need to connect to Salesforce using Mutual Authentication, follow the directions to setup Salesforce at
https://help.salesforce.com/apex/HT ViewHelpDoc?id=security_keys_uploading mutual auth_cert.htm&language=en_US then

configure the below CXF configuration file on the resource-adapter by adding following property to above cli script

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=ConfigFi
le:add(value=${jboss.server.config.dir}/cxf-https.xml)

cxf-https.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration”
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/confi
guration/http-conf.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/
spring-beans-2.0.xsd http://cxf.apache.org/configuration/security http://cxf.apache.org/schemas/configuration/s
ecurity.xsd">

<http-conf:conduit name="*.http-conduit">
<http-conf:client ConnectionTimeout="120000" ReceiveTimeout="240000"/>
<http-conf:tlsClientParameters secureSocketProtocol="SSL">
<sec:trustManagers>
<sec:keyStore type="JKS" password="changeit" file="/path/to/truststore.jks"/>
</sec:trustManagers>
</http-conf:tlsClientParameters>
</http-conf:conduit>
</beans>

more information about CXF configuration file can be found at http://cxf.apache.org/docs/client-http-transport-including-ssl-
support.html#ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport

OAuth Security with "Refresh Token"

The below layout the directions to use Refresh Token based OAuth Authentication with Salesforce.

1) create connected app (may need to setup custom domain) 2) add profile and/or permissions set to the connected app 3) grab the
"callback url" (one need to set as https://localhost:443/_callback" 4) Run through the teiid-oauth-util.sh in "<eap>/bin" directory,
use client_id, client_pass, and call back from connected app 5) use "https://login.salesforce.com/services/oauth2/authorize"
authorize link 6) use "https://login.salesforce.com/services/oauth2/token" for access token url 7) the you get a refresh token from

it 8) create a security-domain by executing CLI

/subsystem=security/security-domain=oauth2-security:add(cache-type=default)
/subsystem=security/security-domain=oauth2-security/authentication=classic:add
/subsystem=security/security-domain=oauth2-security/authentication=classic/login-
module=Kerberos:add(code=org.teiid.jboss.oauth.0Auth20LoginModule, flag=required,
module=org.jboss.teiid.security,
module-options=[client-id=xxxx, client-secret=xxxx, refresh-token=xxxx,
access-token-uri=https://login.salesforce.com/services/oauth2/token])
reload

https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_uploading_mutual_auth_cert.htm&language=en_US
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html#ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport
https://localhost:443/_callback

this will generate following XML in the standalone.xml or domain.xml (this can also be directly added to the standalone.xml or

domain.xml files instead of executing the CLI)

standalone.xml

<security-domain name="oauth2-security">
<authentication>
<login-module code="org.teiid.jboss.oauth.0Auth20LoginModule" flag="required" module="org.jboss.teiid.s
ecurity">
<module-option name="client-id" value="xxxx"/>
<module-option name="client-secret" value="xxxx"/>
<module-option name="refresh-token" value="xxxx"/>
<module-option name="access-token-uri" value="https://login.salesforce.com/services/oauth2/token"/>
</login-module>
</authentication>
</security-domain>

9) Then to use the above security domain in the sales force data source configuration, add "<security-domain>oauth2-

security</security-domain>"

OAuth Security with "JWT Token" based Steps

The below layout the directions to use JWT token based OAuth Authentication with Salesforce.

1) Create a Self-Signed certificate locally or on Sales Force. (user - setup — security-controls — Certificate and Key Management)
2) Download the certificate and also put in keystore and download keystore. Keystore is needed for Teiid, certificate for the
salesforce setup 3) Create connected app and select OAuth, and select all the scopes (some posts say refresh-token offline is must)
4) create a profile and/or permission set assign to the connected app. I believe before you can create a connected app you need to
set up custom domain 5) When you creating connected app make sure you add the certificate in "Digital Certificate" 6) Now in

Teiid create security-domain by executing CLI

/subsystem=security/security-domain=oauth2-jwt-security:add(cache-type=default)
/subsystem=security/security-domain=oauth2-jwt-security/authentication=classic:add
/subsystem=security/security-domain=oauth2-jwt-
security/authentication=classic/login-
module=oauth:add(code=org.teiid.jboss.oauth.0Auth20LoginModule, flag=required,
module=org.jboss.teiid.security,

module-options=[client-id=xxxx, client-secret=xxxx, access-token-
uri=https://login.salesforce.com/services/oauth2/token, jwt-
audience=https://login.salesforce.com, jwt-subject=your@sf-login.com,

keystore-type=JKS, keystore-password=changeme, keystore-

url=${jboss.server.config.dir}/salesforce.jks, certificate-alias=teiidtest,
signature-algorithm-name=SHA256withRSA])
reload

this will generate following XML in the standalone.xml or domain.xml (this can also be directly added to the standalone.xml or

domain.xml files instead of executing the CLI)

standalone.xml

<security-domain name="oauth2-jwt-security">
<authentication>
<login-module code="org.teiid.jboss.oauth.JWTBearerTokenLoginModule" flag="required" module="org.jboss.
teiid.security">
<module-option name="client-id" value="xxxxx"/>
<module-option name="client-secret" value="xxxx"/>

Deploying VDB Dependencies

<module-option name="access-token-uri" value="https://login.salesforce.com/services/oauth2/token"/>
<module-option name="jwt-audience" value="https://login.salesforce.com"/>
<module-option name="jwt-subject" value="your@sf-login.com"/>

<module-option name="keystore-type" value="JKS"/>
<module-option name="keystore-password" value="changeme"/>
<module-option name="keystore-url" value="${jboss.server.config.dir}/salesforce.jks"/>
<module-option name="certificate-alias" value="teiidtest"/>
<module-option name="signature-algorithm-name" value="SHA256withRSA"/>
</login-module>
</authentication>
</security-domain>

7) Then to use the above security domain in the sales force data source configuration, add "<security-domain>oauth2-jwt-

security</security-domain>"
More helpful links

https://developer.salesforce.com/blogs/developer-relations/2011/03/oauth-and-the-soap-api.html

https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US#create_token

http://salesforce.stackexchange.com/questions/31904/how-and-when-does-a-salesforce-saml-oauth2-user-give-permission-to-use-

a-conne http://salesforce.stackexchange.com/questions/30596/0auth-2-0-jwt-bearer-token-flow

http://salesforce.stackexchange.com/questions/88396/invalid-assertion-error-in-jwt-bearer-token-flow

Logging
Logging, when enabled, will be performed at an INFO level to the org.apache.cxf.interceptor context.

Per Resource Adapter

The CXF config property may also be used to control the logging of requests and responses.

Example logging data source

<resource-adapter id="salesforce-ds">
<module slot="main" id="org.jboss.teiid.resource-adapter.salesforce-34"/>
<transaction-support>NoTransaction</transaction-support>
<connection-definitions>
<connection-definition class-name="org.teiid.resource.adapter.salesforce.SalesForceManagedConnectionFac
tory" jndi-name="java:/salesforce_bulk_api" enabled="true" use-java-context="true" pool-name="salesforce-ds">
<config-property name="password">
token
</config-property>
<config-property name="URL">
https://login.salesforce.com/services/Soap/u/34.0
</config-property>
<config-property name="username">
name
</config-property>
<config-property name="ConfigFile">
/path/to/cxf.xml
</config-property>
</connection-definition>
</connection-definitions>
</resource-adapter>

Corresponding cxf.xml

Example logging data source

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

48

https://developer.salesforce.com/blogs/developer-relations/2011/03/oauth-and-the-soap-api.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US#create_token
http://salesforce.stackexchange.com/questions/31904/how-and-when-does-a-salesforce-saml-oauth2-user-give-permission-to-use-a-conne
http://salesforce.stackexchange.com/questions/30596/oauth-2-0-jwt-bearer-token-flow
http://salesforce.stackexchange.com/questions/88396/invalid-assertion-error-in-jwt-bearer-token-flow

Deploying VDB Dependencies

xmlns:cxf="http://cxf.apache.org/core"
xsi:schemaLocation="http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd http://www.springfr
amework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="loggingFeature" class="org.apache.cxf.feature.LoggingFeature"/>
<cxf:bus>
<cxf:features>
<ref bean="loggingFeature"/>
</cxf:features>
</cxf:bus>
</beans>

All CXF Usage

With the WildFly distribution of CXF a system property can be used to enable CXF logging across all usage in the application
server - see the WildFly docs.

Example System Property
<system-properties>

<property name="org.apache.cxf.logging.enabled" value="true"/>
</system-properties>

49

https://docs.jboss.org/author/display/JBWS/Advanced+User+Guide

Solr Data Sources

Solr data sources use a built-in Teiid specific JCA connector. There are many ways to create a Solr data source, using CLI, admin-

console, etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute the following command using the CLI once you connected to the Server. Make sure you provide the correct URL and
user credentials. Add any additional properties required by the connector by duplicating the "connection-definitions" command

below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS:add(jndi-name=java:/solrDS, cl
ass-name=org.teiid.resource.adapter.solr.SolrManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS/config-properties=url:add(valu
e=http://localhost:8983/s0lr/)
/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS/config-properties=CoreName:add
(value=collectionl)

/subsystem=resource-adapters/resource-adapter=solr:activate

runbatch

To find out all the properties that are supported by this Solr Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=solr)

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in "<jboss-
install>/docs/teiid/datasources/solr" directory under "resource-adapters" subsystem. Shutdown the server before
you edit this file, and restart after the modifications are done.

Tip

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Web Service Data Sources

Web service data sources use a built-in Teiid specific JCA connector. There are many ways to create the file data source, using

CLI, admin-console etc. The example shown below uses the CLI tool, as this works in both Standalone and Domain modes.

Execute following command using the CLI once you connected to the Server. Make sure you provide the correct endpoint and
other properties below. Add any additional properties required by the connector by duplicating the "connection-definitions"
command below. Edit the JNDI name to match the JNDI name you used in VDB.

batch
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS:add(jndi-name=java:/wsDS,
class- =org.teiid.resource.adapter.ws.WSManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=EndPoint
radd(value={end_point})

/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

To find out all the properties that are supported by this Web Service Connector execute the following command in the CLI.

/subsystem=teiid:read-rar-description(rar-name=webservice)

The Web Service Data Source supports specifying a WSDL using the Wsdl property. If the Wsdl property is set, then the
ServiceName, EndPointName, and NamespaceUri properties should also be set. The Wsdl property may be a URL or file location
or the WSDL to use.

Developer’s Tip - If WildFly 19.1.0 is running in standalone mode, you can also manually edit the "<jboss-
install>/standalone/configuration/standalone-teiid.xml" file and add the XML configuration defined in *"<jboss-
install>/docs/teiid/datasources/web-service" directory under "resource-adapters" subsystem. Shutdown the server
before you edit this file, and restart after the modifications are done.

Tip

All available configuration properties of web resource-adapter

Property Name applies to Required Default Value Description

URL for HTTP, Service Endpoint for
SOAP. Not required if using HTTP

. HTTP & invoke procedures that specify
EndPoint SOAP false wa absolute URLs. Will be used as the
base URL if an invoke procedure uses
arelative URL.
Type of Authentication to used with
SecuritvTvpe HTTP & false none the web service. Allowed values
ytyp SOAP ["None","HTTPBasic","WSSecurity",
"Kerberos", "OAuth"]
HTTP & Name value for authentication, used
AuthUserName SOAP false wa in HTTPBasic and WsSecurity
HTTP & Password value for authentication,
AuthPassword SOAP Lk a used in HTTPBasic and WsSecurity
ConfigFile HTTP & false n/a CXF client configuration File or URL

SOAP

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

HTTP & Local part of the end point QName to
EndPointName false teiid use with this connection, needs to
SOAP . . .
match one defined in cxf file

Local part of the service QName to

ServiceName SOAP false n/a . . .
use with this connection

. ey Namespace URI of the service

NamespaceUri SOAP false http://teiid.org L
. HTTP & .
RequestTimeout SOAP false n/a Timeout for request
ConnectTimeout LEUNY Eic false n/a Timeout for connection
SOAP

Wsdl SOAP false wa WSDL file or URL for the web

service

CXF Configuration

Each web service data source may choose a particular CXF config file and port configuration. The configfile config property
specifies the Spring XML configuration file for the CXF Bus and port configuration to be used by connections. If no config file is

specified then the system default configuration will be used.

Only 1 port configuration can be used by this data source. You may explicitly set the local name of the port QName to use via the
configName property. The namespace URI for the QName in your config file should match your WSDL/namespace setting on
the data source or use the default of http://teiid.org. See the CXF Documentation and the sections below on Security, Logging, etc.

for examples of using the CXF configuration file.

Sample Spring XML Configuration To Set Timeouts

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:conduit name="{http://teiid.org}configName.http-conduit">
<http-conf:client ConnectionTimeout="120000" ReceiveTimeout="240000"/>
</http-conf:conduit>
</beans>

In the conduit name {http://teiid.org[http://teiid.org]}configName.http-conduit, the namespace, {http://teiid.org[http://teiid.org]},
may be set via the namespace datasource property. Typically that will only need done when also supplying the wsdl setting. The

local name is followed by .http-conduit. It will be based upon the configName setting, with a default value of teiid.

See the CXF documentation for all possible configuration options.

It is not required to use the Spring configuration to set just timeouts. The ConnectionTimeout and

Note . . . - . . .
ReceiveTimeout can be set via the resource adapter connectTimeout and requestTimeout properties respectively.

Security

http://teiid.org
http://teiid.org
http://cxf.apache.org/docs/configuration.html
http://teiid.org
http://teiid.org
http://cxf.apache.org/docs/

To enable the use of WS-Security, the SecurityType should be set to WSSecurity. At this time Teiid does not expect a WSDL to
describe the service being used. Thus a Spring XML configuration file is not only required, it must instead contain all of the
relevant policy configuration. And just as with the general configuration, each data source is limited to specifying only a single

port configuration to use.

batch
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS:add(jndi-name=java:/wsDS,
class-name=org.teiid.resource.adapter.ws.WSManagedConnectionFactory, enabled=true, use-java-context=true)
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=ConfigFi
le:add(value=${jboss.server.home.dir}/standalone/configuration/xxx-jbossws-cxf.xml)
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=ConfigNa
me:add(value=port_x)
/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=Security
Type:add(value=WSSecurity)

/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

The corresponding xxx-jbossws-cxf.xml file that adds a timestamp to the SOAP header

Example WS-Security enabled data source

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd">

<jaxws:client name="{http://teiid.org}port_x"
createdFromAPI="true">
<jaxws:outInterceptors>
<bean/>
<ref bean="Timestamp_Request"/>
</jaxws:outInterceptors>
</jaxws:client>

<bean

id="Timestamp_Request">
<constructor-arg>
<map>
<entry key="action" value="Timestamp"/>
<map>
</constructor-arg>
</bean>

</beans>

Note that the client port configuration is matched to the data source instance by the QName {http://teiid.org}port_x, where the
namespace will match your namespace setting or the default of http://teiid.org. The configuration may contain other port

configurations with different local names.

For more information on configuring CXF interceptors, please consult the CXF documentation

Kerberos

WS-Security Kerberos is only supported when the WSDL property is defined in resource-adapter connection configuration and
only when WSDL Based Procedures are used. WSDL file must contain WS-Policy section, then WS-Policy section is correctly

interpreted and enforced on the endpoint. The sample CXF configuration will look like

http://teiid.org
http://cxf.apache.org/docs/security.html

Deploying VDB Dependencies

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:cxf="http://cxf.apache.org/core"
xmlns:p="http://cxf.apache.org/policy"
xmlns:sec="http://cxf.apache.org/configuration/security"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/sc
hema/beans/spring-beans.xsd http://cxf.apache.org/jaxws http://cxf.apache.o
rg/schemas/jaxws.xsd http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/sche
mas/configuration/http-conf.xsd http://cxf.apache.org/configuration/security http://cxf.apac
he.org/schemas/configuration/security.xsd http://cxf.apache.org/core http://cxf.apache.org/schemas/co
re.xsd http://cxf.apache.org/policy http://cxf.apache.org/schemas/policy.xsd">

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
<cxf:bus>
<cxf:features>
<p:policies/>
<cxf:logging/>
</cxf:features>
</cxf:bus>

<jaxws:client name="{http://webservices.samples.jboss.org/}HelloworldPort" createdFromAPI="true">
<jaxws:properties>
<entry key="ws-security.kerberos.client">
<bean class="org.apache.cxf.ws.security.kerberos.KerberosClient">
<constructor-arg ref="cxf"/>
<property name="contextName" value="alice"/>
<property name="serviceName" value="bob@service.example.com"/>
</bean>
</entry>
</jaxws:properties>
</jaxws:client>
</beans>

and you would need to configure the security-domain in the standalone-teiid.xml file under the 'security' subsystem as

<security-domain name="alice" cache-type="default">
<authentication>
<login-module code="Kerberos" flag="required">
<module-option name="storeKey" value="true"/>
<module-option name="useKeyTab" value="true"/>
<module-option name="keyTab" value="/home/alice/alice.keytab"/>
<module-option name="principal" value="alice@EXAMPLE.COM"/>
<module-option name="doNotPrompt" value="true"/>
<module-option name="debug" value="true"/>
<module-option name="refreshKrb5Config" value="true"/>
</login-module>
</authentication>
</security-domain>

for complete list of kerberos properties please refer to this testcase
Logging
Logging, when enabled, will be performed at an INFO level to the org.apache.cxf.interceptor context.

SOAP

The CXF config property may also be used to control the logging of requests and responses for specific or all ports.

Example logging data source

http://anonsvn.jboss.org/repos/jbossws/stack/cxf/trunk/modules/testsuite/cxf-spring-tests/src/test/java/org/jboss/test/ws/jaxws/samples/wsse/kerberos/KerberosTestCase.java

batch

/subsystem=resource-adapters/resource-adapter=webservice/connection-
definitions=wsDS:add(jndi-name=java:/wsDS, class-
name=org.teiid.resource.adapter.ws.WSManagedConnectionFactory, enabled=true, use-
java-context=true)
/subsystem=resource-adapters/resource-adapter=webservice/connection-
definitions=wsDS/config-
properties=ConfigFile:add(value=${jboss.server.home.dir}/standalone/configuration/x
XX-Jjbossws-cxf.xml)
/subsystem=resource-adapters/resource-adapter=webservice/connection-
definitions=wsDS/config-properties=ConfigName:add(value=port_x)
/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

Corresponding xxx-jbossws-cxf.xml

Example logging data source

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd">

<jaxws:client name="{http://teiid.org}port_y"
createdFromAPI="true">
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>
</jaxws:client>

</beans>

All CXF Usage

With the WildFly distribution of CXF a system property can be used to enable CXF logging across all usage in the application

server (including salesforce) - see the WildFly docs.

Example System Property

<system-properties>
<property name="org.apache.cxf.logging.enabled" value="true"/>
</system-properties>

Transport Settings

The CXF config property may also be used to control low level aspects of the HTTP transport. See the CXF documentation for all

possible options.

Example Disabling Hostname Verification

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration”
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd

https://docs.jboss.org/author/display/JBWS/Advanced+User+Guide
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

Deploying VDB Dependencies

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:conduit name="{http://teiid.org}port_z.http-conduit">
<!-- WARNING ! disableCNcheck=true should NOT be used in production -->
<http-conf:tlsClientParameters disableCNcheck="true" />

</http-conf:conduit>
</beans>

Configuring SSL Support (Https)
For using the HTTPS, you can configure CXF file as below

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/confi
guration/http-conf.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/
spring-beans-2.0.xsd http://cxf.apache.org/configuration/security http://cxf.apache.org/schemas/configuration/s
ecurity.xsd">

<http-conf:conduit name="*.http-conduit">
<http-conf:client ConnectionTimeout="120000" ReceiveTimeout="240000"/>
<http-conf:tlsClientParameters secureSocketProtocol="SSL">
<sec:trustManagers>
<sec:keyStore type="JKS" password="changeit" file="/path/to/truststore.jks"/>
</sec:trustManagers>
</http-conf:tlsClientParameters>
</http-conf:conduit>
</beans>

for all the http-conduit based configuration see http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html. You can
also configure for HTTPBasic, kerberos, etc.

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

Kerberos with REST based Services

Note "Kerberos in ws-security with SOAP services" -

Check out the cxf configuration to allow Kerberos in SOAP web services at http://cxf.apache.org/docs/security.html

The kerberos support is based SPNEGO as described in http://cxf.apache.org/docs/client-http-transport-including-ssl-
support.html#ClientHTTPTransport%28includingSSLsupport%29-SpnegoAuthentication%28Kerberos%29. There two types of

kerberos support

Negotiation

With this configuration, REST service is configured with Kerberos JAAS domain, to negotiate a token, then use it access the web

service. For this first create a security domain in standalone.xml file as below

<security-domain name="MY_REALM" cache-type="default">
<authentication>
<login-module code="Kerberos" flag="required">
<module-option name="storeKey" value="true"/>

<module-option name="useKeyTab" value="true"/>
<module-option name="keyTab" value="/home/username/service.keytab"/>
<module-option name="principal" value="host/testserver@Y_REALM"/>

<module-option name="doNotPrompt" value="true"/>
<module-option name="debug" value="false"/>
<module-option name="addGSSCredential" value="true"/>
</login-module>
</authentication>
</security-domain>

and the jboss-cxf-xxx.xml file needs to be set as

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http-conf="http://cxf.apache.org/transports/http/configuration”
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/c
onfiguration/http-conf.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/be
ans/spring-beans-2.0.xsd http://cxf.apache.org/configuration/security http://cxf.apache.org/schemas/configurati
on/security.xsd">

<http-conf:conduit name="*.http-conduit">
<http-conf:authorization>
<sec:AuthorizationType>Negotiate</sec:AuthorizationType>
<sec:Authorization>MY_REALM</sec:Authorization>
</http-conf:authorization>
</http-conf:conduit>
</beans>

The resource adapter creation needs to define the following properties

<config-property name="ConfigFile">path/to/jboss-cxf-xxxx.xml</config-property>
<config-property name="ConfigName'">test</config-property>

Even though above configuration configures the value of "ConfigName", the cxf framework currently in the case
Note of JAX-RS client does not give option to use it. For that reason use "*.http-conduit" which will apply to all the
HTTP communications under this resource adapter.

http://cxf.apache.org/docs/security.html
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html#ClientHTTPTransport%28includingSSLsupport%29-SpnegoAuthentication%28Kerberos%29

Delegation

If in case the user is already logged into Teiid using Kerberos using JDBC/ODBC or used SPNEGO in web-tier and used pass-
through authentication into Teiid, then there is no need to negotiate a new token for the Kerberos. The system can delegate the

existing token.

To configure for delegation, set up security domain defined exactly as defined in "negotiation", and jboss-cxf-xxx.xml file,

however remove the following line from jboss-cxf-xxx.xml file, as it is not going to negotiate new token.

<sec:Authorization>MY_REALM</sec:Authorization>

Add the following properties in web service resource adapter creation. One configures that "kerberos" security being used, the
second defines a security domain to be used at the data source, in this case we want to use a security domain that passes through a

logged in user

<config-property name="SecurityType">Kerberos</config-property>
<security>

<security-domain>passthrough-security</security-domain>
</security>

To configure in "passthrough-security" security domain, the "security" subsystem add following XML fragment

<security-domain name="passthrough-security" cache-type="default">
<authentication>
<login-module code="Kerberos" flag="required" module="org.jboss.security.negotiation">
<module-option name="delegationCredential" value="REQUIRED"/>
</login-module>
</authentication>
</security-domain>

If in case there is no delegationCredential is available on the context, the access will fail.

OAuth Authentication With REST Based Services

Single user OAuth authentication

Web Services resource-adapter can be configured to participate in OAuth 1.0a and OAuth2 authentication schemes. Using Teiid
along with "ws" translator and "web-services" resource adapter once write applications communicating with web sites like Google

and Twitter.

In order to support OAuth authentication, there is some preparation and configuration work involved. Individual web sites
typically provide developer facing REST based APIs for accessing their content on the web sites and also provide ways to register
custom applications on user’s behalf, where they can manage the Authorization of services offered by the web site. The first step
is to register this custom application on the web site and collect consumer/API keys and secrets. The web-sites will also list the
URLS, where to request for various different types of tokens for authorization using these credentials. A typical OAuth

authentication flow is defined as below

Your App Google Servers

S e

Reguestcode — &

|Br0wser on separate dewce

Cﬂdﬂ'—r User login & consent
& URL
User U
|
i
e
Poll server -
- - - oo Token response - ----------
-
Use token to call
Google API
- -

The above image taken from https://developers.google.com/accounts/docs/OAuth2

To accommodate above defined flow, Teiid provides a utility called "teiid-oauth-util.sh" or "teiid-oauth-util.bat" for windows in
the "bin" directory of your server installation. By executing this utility, it will ask for various keys/secrets and URLs for the

generating the Access Token that is used in the OAuth authentication and in the end output a XML fragment like below.

$./teiid-oauth-util.sh

Select type of OAuth authentication
1) OAuth 1.0A

2) OAuth 2.0

2
=== QAuth 2.0 Workflow ===

http://oauth.org
http://google.com
http://twitter.com
https://developers.google.com/accounts/docs/OAuth2

Enter the Client ID = 10-xxxjb.apps.googleusercontent.com

Enter the Client Secret = 3L6-Xxxx-v9xxDlznWg-o

Enter the User Authorization URL = https://accounts.google.com/o/0auth2/auth

Enter scope (hit enter for none) = profile

Cut & Paste the URL in a web browser, and Authticate

Authorize URL = https://accounts.google.com/o/0auth2/auth?client_id=10-
xxxjb.apps.googleusercontent.com&scope=profile&response_type=code&redirect_uri=urn%
3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&state=Auth+URL

Enter Token Secret (Auth Code, Pin) from previous step = 4/z-RT632cr2hf_vYoXdO6yIM-
XXXXX

Enter the Access Token URL = https://www.googleapis.com/oauth2/v3/token

Refresh Token=1/xxxx_5qzAF52j-EmN2U

Add the following XML into your standalone-teiid.xml file in security-domains
subsystem,
and configure data source securty to this domain

<security-domain name="oauth2-security">
<authentication>
<login-module code="org.teiid.jboss.oauth.0Auth20LoginModule"
flag="required" module="org.jboss.teiid.web.cxf">
<module-option name="client-id" value="10-
xxxjb.apps.googleusercontent.com"/>
<module-option name="client-secret" value="3L6-Xxxx-v9xxDlznwWqg-o0"/>
<module-option name="refresh-token" value="1/xxxx_5qzAF52j-EmN2U"/>
<module-option name="access-token-uri"
value="https://www.googleapis.com/oauth2/v3/token"/>
</login-module>
</authentication>
</security-domain>

The XML fragment at the end defines the JAAS Login Module configuration, edit the standalone-teiid.xml and add it under
"security-domains" subsystem. User needs to use this security-domain in their resource adapter as the security provider for this
data source. An example resource-adapter configuration to define the data source to the web site in standalone-teiid.xml file looks
like

<resource-adapter id="webservice3">
<module slot="main" id="org.jboss.teiid.resource-adapter.webservice"/>
<transaction-support>NoTransaction</transaction-support>
<connection-definitions>
<connection-definition class-name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory" jndi-name=
"java:/googleDS" enabled="true" use-java-context="true" pool-name="teiid-ws-ds">
<config-property name="SecurityType">
OAuth
</config-property>

<security>
<security-domain>oauth2-security</security-domain>
</security>
</connection-definition>
</connection-definitions>
</resource-adapter>

Then, any query written using the "ws" translator and above resource-adapter will be automatically Authorized w
ith the target web site using OAuth, when you access a protected URL.

=== QAuth with Delegation

In the above configuration a single user is configured to access the web site, however if you want to delegate
logged in user’s credential as OAuth authentication, then user needs to extend the above LoginModule
(org.teiid.jboss.oauth.0Auth20LoginModule or org.teiid.jboss.oauth.0OAuthi0LoginModule) and automate the proce
ss defined in the "teiid-oauth-util.sh" to define the Access Token

details dynamically. Since this process will be different for different web sites (it involves login and authen
tication), Teiid will not be able to provide single solution. However, user can extend the login module to prov
ide this feature much more easily since they will be working with targeted web sites.

VDB Versioning

VDB Versioning is a feature that allows multiple versions of a VDB to be deployed at the same time with additional support to
determine which version will be used. If a specific version is requested, then only that VDB may be connected to. If no version is

set, then the deployed VDBs are searched for the appropriate version. This feature helps support more fluid migration scenarios.

Version Property
When a user connects to Teiid the desired VDB version can be set as a connection property (See the Client Developer’s Guide) in
JDBC or used as part of the VDB name for OData and ODBC access.

The vdb version is set in either the vdb.xxx or through a naming convention of the deployment name - vdbname.version.vdb, e.g.
marketdata.2.vdb. The deployer is responsible for choosing an appropriate version number. If there is already a VDB
name/version that matches the current deployment, then connections to the previous VDB will be terminated and its cache entries

will be flushed. Any new connections will then be made to the new VDB.

When setting the version in the vdb.xml or ddl file a unique deployment name must still be used as that is the
Note name the application server internally uses for the deployment. Using the same deployment name as a previous
version will simply overwrite the older deployment.

A simple integer version actually treated as the semantic version X.0.0. If desired a full semantic version can be used instead. A

semantic version is up to three integers separated by periods.

Trailing version components that are missing are treated as zeros - version 1 is the same as 1.0.0 and version 1.1 is the same as
1.1.0.

JDBC and ODBC clients may use a version restriction - -vdbname.X. or vdbname.X.X. - note the trailing '.' which means a VDB
that must match the partial version specified. For example vdbname.1.2. could match any 1.2.X version, but would not allow 1.3+

or 1.1 and earlier.

Connection Type
Once deployed a VDB has an updatable property called connection type, which is used to determine what connections can be
made to the VDB. The connection type can be one of:

o NONE- disallow new connections.

e BY_VERSION- the default setting. Allow connections only if the version is specified or if this is the earliest BY_VERSION
vdb and there are no vdbs marked as ANY.

e ANY- allow connections with or without a version specified.

The connection type may be changed either through the AdminConsole or the AdminAPI.

Deployment Scenarios

If only a select few applications are to migrate to the new VDB version, then a freshly deployed VDB would be left as
BY_VERSION. This ensures that only applications that know the new version may use it.

If only a select few applications are to remain on the current VDB version, then their connection settings would need to be
updated to reference the current VDB by its version. Then the newly deployed vdb would have its connection type set to ANY,

which allows all new connections to be made against the newer version. If a rollback is needed in this scenario, then the newly

deployed vdb would have its connection type set to NONE or BY_VERSION accordingly.

Logging

The Teiid system provides a wealth of information via logging. To control logging level, contexts, and log locations, you should
be familiar with log4j and the container’s standalone-teiid.xml or domain-teiid.xml configuration files depending upon the start up
mode of WildFly.

All the logs produced by Teiid are prefixed by "org.teiid". This makes it extremely easy to control of of Teiid logging from a
single context. Note however that changes to the log configuration file manually require a restart to take affect. CLI based log

context modifications are possible, however details are beyond the scope of this document.

If you expect a high volume of logging information or use expensive custom audit/command loggers, it is a good idea to use an
async appender to minimize the performance impact. For example you can use a configuration snippet like the one below to insert

an async handler in front of the target appender.

<periodic-rotating-file-handler name="COMMAND_FILE">
<level name="DEBUG" />
<formatter>
<pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%C] (%t) %S¥E%n" />
</formatter>
<file relative-to="jboss.server.log.dir" path="command.log" />
<suffix value=".yyyy-MM-dd" />
</periodic-rotating-file-handler>

<async-handler name="ASYNC">
<level name="DEBUG"/>
<queue-length value="1024"/>
<overflow-action value="block"/>
<subhandlers>

<handler name="COMMAND_FILE"/>

</subhandlers>

</async-handler>

<logger category="org.teiid.COMMAND_LOG">
<level name="DEBUG" />
<handlers>
<handler name="ASYNC" />
</handlers>
</logger>

Logging Contexts

While all of Teiid’s logs are prefixed with "org.teiid", there are more specific contexts depending on the functional area of the
system. Note that logs originating from third-party code, including integrated org.jboss components, will be logged through their

respective contexts and not through "org.teiid". See the table below for information on contexts relevant to Teiid.

Context Description

Third-party transaction manager. This will include

com.arjuna information about all transactions, not just those for Teiid.
Root context for all Teiid logs. Note: there are potentially

org.teiid other contexts used under org.teiid than are shown in this
table.

org.teiid. PROCESSOR Query processing logs. See also org.teiid. PLANNER for

query planning logs.

http://logging.apache.org/log4j/

org.teiild. PLANNER

org.teiid. SECURITY

org.teiild. TRANSPORT

org.teiid. RUNTIME

org.teiid. CONNECTOR

org.teiid. BUFFER_MGR

org.teiid. TXN_LOG

org.teiid. COMMAND_LOG

org.teiid. AUDIT_LOG

org.teiid. ADMIN_API

org.teiid.ODBC

Query planning logs.

Session/Authentication events - see also AUDIT logging

Events related to the socket transport.

Events related to work management and system start/stop.

Connector logs.

Buffer and storage management logs.

Detail log of all transaction operations.

See command logging

See audit logging

Admin API logs.

pg/ODBC logs.

Command Logging

Command logging captures executing commands in the Teiid System. This includes user commands (that have been submitted to
Teiid at an INFO level), data source commands (that are being executed by the connectors at a DEBUG level), and query plans (at

a TRACE level) are tracked through command logging.

The user command, "START USER COMMAND", is logged when Teiid starts working on the query for the first time. This does
not include the time the query was waiting in the queue. And a corresponding user command, "END USER COMMAND", is
logged when the request is complete (i.e. when statement is closed or all the batches are retrieved). There is only one pair of these

for every user query.

The query plan command, "PLAN USER COMMAND", is logged when Teiid finishes the query planning process. There is no
corresponding ending log entry, but with trace logging enabled the query plan will be included with subsequent user command

events.

The data source command, "START DATA SRC COMMAND", is logged when a query is sent to the data source. And a
corresponding data source command, "END SRC COMMAND", is logged when the execution is closed (i.e all the rows has been
read). There can be one pair for each data source query that has been executed by Teiid, and there can be any number of pairs

depending upon your user query.

The SRC command itself is then translated into 1 or more source statements, operations, etc. For sources that have textual
representations of the native source query, each will be reported in a "SOURCE SRC COMMAND" event as at the DEBUG level
with the field sourceCommand representing the SQL, SOQL, LDAP query etc. that is actually issued.

With this information being captured, the overall query execution time in Teiid can be calculated. Additionally, each source query
execution time can be calculated. If the overall query execution time is showing a performance issue, then look at each data source

execution time to see where the issue maybe.

To enable command logging to the default log location, simply enable the DETAIL level of logging for the
org.teiid. COMMAND_LOG context.

To enable command logging to an alternative file location, configure a separate file appender for the DETAIL logging of the
org.teiid. COMMAND_LOG context. An example of this is shown below and can also be found in the standalone-teiid.xml
distributed with Teiid.

<periodic-rotating-file-handler name="COMMAND_FILE">
<level name="DEBUG" />
<formatter>
<pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%C] (%t) %S¥E%n" />
</formatter>
<file relative-to="jboss.server.log.dir" path="command.log" />
<suffix value=".yyyy-MM-dd" />
</periodic-rotating-file-handler>

<logger category="org.teiid.COMMAND_LOG">
<level name="DEBUG" />
<handlers>
<handler name="COMMAND_FILE" />
</handlers>
</logger>

See the Developer’s Guide to develop a custom logging solution if file based logging, or any other built-in Log4j logging, is not

sufficient.

The following is an example of a data source command and what one would look like when printed to the command log:

-02- 101:53, DEBUG [org.teiid.COMMAND_LOG] (Workerl_QueryProcessorQueuell START DATA SRC COMMAND: st
artTime= -02- B(ExL3
requestID=Ku4/dgtZPYk0.5 sourceCommandID=4 txID=null modelName=DTHCP translatorName=jdbc-simple sessionID=Ku4/d
gtZPYko
principal=user@teiid-security
$q1=HCP_ADDR_XREF . HUB_ADDR_ID, CPN_PROMO_HIST.PROMO_STAT_DT FROM CPN_PROMO_HIST, HCP_ADDRESS, HCP_ADDR_XREF
WHERE AND AND
'EMAIL%') AND "SENT_EM') AND
'2010-02-22 16:01:52.928'
Note the following pieces of information:
e modelName: this represents the physical model for the data source that the query is being issued.
e translatorName: shows type of translator used to communicate to the data source.
e principal: shows the user account who submitted the query

e startTime/endTime: the time of the action, which is based on the type command being executed.

e sql: is the command submitted to the engine or to the translator for execution - which is NOT necessarily the final sql

command submitted to the actual data source. But it does show what the query engine decided to push down.
END events will additionally contain:
e finalRowCount: the number of rows returned to the engine by the source query.

e cpuTime: the number of nanoseconds of cpu time used by the source command. Can be compared to the start/end wall clock

times to determine cpu vs. idle time.

Audit Logging

Audit logging captures important security events. This includes the enforcement of permissions, authentication success/failures,

etc.

To enable audit logging to the default log location, simply enable the DEBUG level of logging for the org.teiid. AUDIT_LOG

context.

Additional Logging Information

Once a session has been created, each log made by Teiid will include the session id and vdb name/version in the MDC (mapped
diagnostic context) with keys of teiid-session and teiid-vdb respectively.

Any log in the scope of a query will include the request id in the MDC with key of teiid-request.

Custom loggers, or format patterns, can take advantage of this information to better correlate log entries. See for example Teiid

default standalone-teiid.xml that uses a pattern format which includes the session id prior to the message:

<pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%C] (%t) %X{teiid-session} %s%E%n"/>

Clustering in Teiid

Since Teiid is installed in WildFly, there is no additional configuration needed beyond what was performed when Teiid is setup in
Domain Mode. See the Domain Mode section in the Teiid Installation Guide. Just make sure that you installed Teiid in every

WildFly node and started all WildFly instances in the Domain mode that to be a part of the cluster.

Typically users create clusters to improve the performance of the system through:

e Load Balancing: Take look at HAProxy below and in the Client Developer’s Guide on how to use simple load balancing

between multiple nodes.
e Fail Over: Take look at the Client Developer’s Guide on how to use fail over between multiple nodes.
e Distributed Caching: This is automatically done for you once you configure it as specified above.
e Event distribution: metadata and data modifications will be distributed to all cluster members.

In the Domain mode, the only way a user can deploy any artifacts is using either CLI or using the Admin API. Copying VDB

directly into the "deployments" directory is not supported.

some load balancers have timeouts that cannot be adjusted. You may need to adjust the tcp_keepalive_time on
Note your client OS. The default is typically 2 hours, which is much too long in many cases. See Custom
Configuration of TCP Socket Keep-Alive Timeouts.

HAProxy

HAProxy may be used for load-balancing and high availability. A good tutorial is located at L.oad Balancing JDV-HAProxy or see

Luigi Fugaro’s example.

The load balancer should use an algorithm that supports sticky connections as Teiid sessions as specific to the original host. For

HAProxy it is recommended that you use leastconn or source.

http://coryklein.com/tcp/2015/11/25/custom-configuration-of-tcp-socket-keep-alive-timeouts.html
http://blog.everythingjboss.org/articles/Load-Balancing-JDV-HAProxy/
https://github.com/foogaro/jdv-play

Monitoring

Teiid provides information about its current operational state. This information can be useful in tuning, monitoring, and managing

load and through-put. The runtime data can be accessed using administrative tools (i.e. Admin Console or Admin API).

Query/Session details:

Current Sessions

Current Request

Current Transactions

Query Plan

Name

Description

List current connected sessions

List current executing requests

List current executing transactions

Retrieves the query plan for a specific request

There are administrative options for terminating sessions, queries, and transactions.

Metrics:

Session/Query

Name

Session Count

Query Count

Active Query Plan
Count

Waiting Query Plan
Count

Max Waiting Query Plan
Watermark

Property

sessionCount

queryCount

ENGINE_STATISTIC.active-
plans-count

ENGINE_STATISTIC.waiting-
plans-count

ENGINE_STATISTIC.max-
waitplan-watermark

Description

Indicates the number of
user connections
currently active

Indicates the number of
queries currently active.

Number of query plans
currently being processed

Number of query plans
currently waiting

The maximum number of
query plans that have
been waiting at one time,
since the last time the
server started

Comment

To ensure number of
sessions are not
restricted at peak times,
check max-sessions-
allowed (default 10000)
is set accordingly and
review sessions-
expiration-timelimit

To ensure maximum
through-put, see the
QueryEngine section in
Threading on tuning.

Long Running Queries

Buffer Manager

longRunningQueries

For tuning suggestions, see Memory Management.

Name

Disk Write Count

Disk Read Count

Cache Write Count

Cache Read Count

Disk Space Used (MB)

Total memory in use
(KB)

Total memory in use by
active plans (KB)

Plan/Result Cache

Property
ENGINE_STATISTIC.buffermgr-

disk-write-count

ENGINE_STATISTIC.buffermgr-
disk-read-count

ENGINE_STATISTIC.buffermgr-
cache-write-count

ENGINE_STATISTIC.buffermgr-

cache-read-count

ENGINE_STATISTIC.buffermgr-
diskspace-used-mb

ENGINE_STATISTIC.total-
memory-inuse-kb

ENGINE_STATISTIC.total-
memory-inuse-active-plans-kb

For tuning suggestions, see Cache Tuning.

Name

Prepared Plan Cache Size

Prepared Plan Cache # of
Requests

Prepared Plan Cache Hit
Ratio %

ResultSet Cache Size

Property

List current executing
queries that have
surpassed the query
threshold(query-
threshold-in-seconds).

Description

Disk write count for the
buffer manager.

Disk read count for the
buffer manager.

Cache write count for
the buffer manager.

Cache read count for the
buffer manager.

Indicates amount of
storage space currently
used by buffer files

Estimate of the current
memory usage in
kilobytes.

Estimate of the current
memory usage by active
plans in kilobytes

PREPARED_PLAN_CACHE .total-entries

PREPARED_PLAN_CACHE.request-count

PREPARED_PLAN_CACHE hit-ratio

QUERY_SERVICE_RESULT_SET_CACHE.total-

entries

Setup alert to warn when
one or more queries are
consuming resources for
an extended period of
time. If running too long,
an option is to cancel
request or increase
threshold.

Comment

Setup alert to warn when
used buffer space is at
an unacceptable level,
based on the setting of
max-buffer-space

Description

Current number of entries in
cache.

Total number of requests
made against cache.

Percentage of positive cache
hits

Current number of entries in
cache.

ResultSet Cache # of QUERY_SERVICE_RESULT_SET_ CACHE.request- Total number of requests
Requests count made against cache.

gesultSet Cache Hit Ratio QUERY_SERVICE_RESULT SET_CACHE hit-ratio }ljietrscentage of positive cache
0 .

Performance Tuning

Performance tuning can be done by changing the property settings defined in the teiid subsystem and its sub components.

Execute the following command on CLI to see the possible settings at the root of the teiid subsystem:

/subsystem=teiid:read-resource-description

There are several categories of properties:
1. Memory Management
2. BufferManager: all properties that start with "buffer-service"
3. Cache Tuning: all properties that start with "resultset-cache" or "preparedplan-cache"
4. Threading
5. LOBs
6. Other Considerations
Socket Transport settings for one of the supported transport types (i.e., jdbc, odbc, embedded) can be viewed by executing the

following command:

/subsystem=teiid/transport={jdbc | odbc | embedded}:read-resource-description

Memory Management

The BufferManager is responsible for tracking both memory and disk usage by Teiid. Configuring the BufferManager properly
along with data sources and threading ensures high performance. In most instances though the default settings are sufficient as

they will scale with the JVM and consider other properties such as the setting for max active plans.

Execute following command on CLI to find all possible settings on BufferManager:

/subsystem=teiid:read-resource

All the properties that start with "buffer-manager" used to configure BufferManager. Shown below are the CLI write attribute

commands to change BufferManager’s settings (all show the default setting):

/subsystem=teiid:
/subsystem=teiid

/subsystem=teiid
/subsystem=teiid

/subsystem=teiid
/subsystem=teiid

/subsystem=teiid
/subsystem=teiid

/subsystem=teiid
/subsystem=teiid
/subsystem=teiid
/subsystem=teiid

:write-attribute(name=buffer-manager-disk-max-space-mb,value=
:write-attribute(name=buffer-manager-disk-encrypt-files,value=false)
:write-attribute(name=buffer-manager-disk-max-open-files,value=

:write-attribute(name=buffer-manager-disk-max-file-size-mb,value=

write-attribute(name=buffer-manager-inline-lobs, value=true)

:write-attribute(name=buffer-manager-processor-batch-size, value=)

:write-attribute(name=buffer-manager-heap-max-processing-kb, value=-1)
:write-attribute(name=buffer-manager-heap-max-reserve-mb,value=-1)

:write-attribute(name=buffer-manager-storage-enabled, value=true)
:write-attribute(name=buffer-manager-storage-max-object-size-kb, value=

:write-attribute(name=buffer-manager-fixed-memory-buffer-space-mb,value=-1)
:write-attribute(name=buffer-manager-fixed-memory-buffer-off-heap,value=false)

)

)
)

It is not recommend that to change these properties until there is an understanding of the properties (elaborated

Note g . . -
below) and any potential issue that is being experienced.

Some of BufferManager’s properties are described below. Note that the performance tuning advice is highlighted in info boxes.

General Properties

processor-batch-size (default 256) - Specifies the target row count of a batch of the query processor. A batch is used to represent
both linear data stores, such as saved results, and temporary table pages. Teiid will adjust the processor-batch-size to a working
size based upon an estimate of the data width of a row relative to a nominal expectation of 2KB. The base value can be doubled or
halved up to three times depending upon the data width estimation. For example a single small fixed width (such as an integer)
column batch will have a working size of processor-batch-size * 8 rows. A batch with hundreds of variable width data (such as
string) will have a working size of processor-batch-size / 8 rows. Any increase in the processor batch size beyond the first
doubling should be accompanied with a proportional increase in the max-storage-object-size to accommodate the larger storage

size of the batches.

Additional considerations are needed if large VM sizes and/or datasets are being used. Teiid has a non-negligible
amount of overhead per batch/table page on the order of 100-200 bytes. If you are dealing with datasets with
billions of rows and you run into memory issues, then after examining the root cause if you see that it’s solely
related to memory held by a significant number of batch references, then consider increasing the processor-batch-
size to force the allocation of larger batches and table pages. A general guideline would be to double processor-
batch-size for every doubling of the effective heap for Teiid beyond 4 GB - processor-batch-size = 512 for an 8
GB heap, processor-batch-size = 1024 for a 16 GB heap, etc.

Note

inline-lobs (default true) - Small lobs will be stored in their batch directly rather than managed out of band. Should generally be

left as true to minimize the fetch costs of small lobs.

Heap Properties

The amount of estimated heap in direct object references to batches / pages held by the BufferManager can be adjusted.

heap-max-reserve-mb (default -1) - setting determines the total size in kilobytes of batches that can be held by the
BufferManager in memory. This number does not account for persistent batches held by soft (such as index pages) or weak
references. The default value of -1 will auto-calculate a typical max based upon the max heap available to the VM. The auto-
calculated value assumes a 64bit architecture and will limit buffer usage to 40% of the first gigabyte of memory beyond the first
300 megabytes (which are assumed for use by the AS and other Teiid purposes) and 50% of the memory beyond that. The
additional caveat here is that if the size of the memory buffer space is not specified, then it will effectively be allocated out of the

max reserve space. A small adjustment is also made to the max reserve to account for batch tracking overhead.

With default settings and an 8GB VM size[*], then heap-max-reserve-mb will be: (1024-300) * 0.4) + (7 * 1024
* 0.5 = 4373.6 MB before considering the overhead for persistent batches or the fixed memory buffer. The fixed
memory buffer will by default use 40% of that initial calculation. Once additional overhead is removed, the actual
heap-max-reserve-mb will be around 2624 MB.

Note

[*] Teiid will use the max memory reported by the runtime. This value may be lower than the Xmx setting used as a VM argument

as the VM will adjust for necessary overheads.

The BufferManager automatically triggers the use of a canonical value cache if enabled when more than 25% of the reserve is in
use. This can dramatically cut the memory usage in situations where similar value sets are being read through Teiid, but does
introduce a lookup cost. If you are processing small or highly similar datasets through Teiid, and wish to conserve memory, you

should consider enabling value caching.

Memory consumption can be significantly more or less than the nominal target depending upon actual column
values and whether value caching is enabled. Large non built-in type objects can exceed their default size

Warning estimate. If an out of memory errors occur, then set a lower heap-max-reserve-mb value. Also note that source
lob values are held by memory references that are not cleared when a batch is persisted. With heavy lob usage
you should ensure that buffers of other memory associated with lob references are appropriately sized.

heap-max-processing-kb (default -1) - setting determines the total size in kilobytes of batches that can be guaranteed for use by
one active plan and may be in addition to the memory held based on heap-max-reserve-mb. Typical minimum memory required
by Teiid when all the active plans are active is #active-plans*heap-max-processing-kb. The default value of -1 will auto-calculate
a typical max based upon the max heap available to the VM and max active plans. The auto-calculated value assumes a 64bit

architecture and will limit nominal processing batch usage to less than 10% of total memory.

With default settings including 20 active-plans and an 8GB VM size, then heap-max-processing-kb will be: (.07
* 8 * 1024)/20/.8 = 537.4 MB/11 = 52.2 MB or 53,453 KB per plan. This implies a nominal range between 0

Note and 1060 MB that may be reserved with roughly 53 MB per plan. You should be cautious in adjusting heap-max-
processing-kb. Typically it will not need adjusted unless you are seeing situations where plans seem memory
constrained with low performing large sorts.

Storage Properties

The tiers of memory below the heap hold the batches / pages in a denser serialized columnar form. The lowest level is disk
storage. Fronting disk is a fixed memory buffer, which can be allocated on or off heap, that acts as a serialization buffer and cache

for reads/writes to disk.

storage-enabled (default true) - If disabled, batches / pages that are pushed to the storage layer are instead held in memory. Also

all temporary lob space will be allocated from memory as well. Generally only useful in constrained or testing situations.

storage-max-object-size-kb (default 8196 or 8MB) - The maximum size of a buffered managed object in bytes and represents the
individual batch page size. If the processor-batch-size is increased and/or you are dealing with extremely wide result sets (several
hundred columns), then the default setting of 8MB for the max-storage-object-size may be too low. The inline-lobs setting also
can increase the size of batches containing small lobs. The sizing for max-storage-object-size is in terms of serialized size, which
will be much closer to the raw data size than the Java memory footprint estimation used for max-reserved-mb. max-storage-
object-size should not be set too large relative to memory-buffer-space since it will reduce the performance of the memory buffer.
The memory buffer supports only 1 concurrent writer for each max-storage-object-size of the memory-buffer-space. Note that this
value does not typically need to be adjusted unless the processor-batch-size is adjusted, in which case consider adjusting it in

proportion to the increase of the processor-batch-size.

If exceptions occur related to missing batches and "TEIID30001 Max block number exceeded" is seen in the
Note server log, then increase the storage-max-object-size-kb to support larger storage objects. Alternatively you could
make the processor-batch-size smaller.

Fixed Memory Properties

fixed-memory-buffer-space-mb (default -1) - This controls the amount of on or off heap memory allocated as byte buffers for
use by the Teiid buffer manager measured in megabytes. This setting defaults to -1, which automatically determines a setting
based upon whether it is on or off heap and the value for heap-max-reserve-mb. The memory buffer supports only 1 concurrent
writer for each storage-max-object-size-mb of the fixed-memory-buffer-space-mb. Any additional space serves as a cache for the

serialized for of batches.

When left at the default setting the calculated memory buffer space will be approximately 40% of the heap-max-
reserve-mb size. If the memory buffer is on heap and the heap-max-reserve-mb is automatically calculated, then

Note the memory buffer space will be subtracted out of the effective heap-max-reserve-mb. If the memory buffer is off
heap and the heap-max-reserve-mb is automatically calculated, then it’s size will be reduced slightly to allow for
effectively more working memory in the vm.

fixed-memory-buffer-off-heap (default false) - Setting fixed-memory-buffer-off-heap to "true" will allocate the Teiid memory
buffer off heap. Depending on whether your installation is dedicated to Teiid and the amount of system memory available, this
may be preferable to on-heap allocation. The primary benefit is additional memory usage for Teiid without additional garbage
collection tuning. This becomes especially important in situations where more than 32GB of memory is desired for the VM. Note
that when using off-heap allocation, the memory must still be available to the java process and that setting the value of memory-
buffer-space too high may cause the VM to swap rather than reside in memory. With large off-heap buffer sizes (greater than

several gigabytes) you may also need to adjust VM settings.

Oracle/Sun VM - the relevant VM settings are MaxDirectMemorySize and UseLargePages. For example adding:
'-XX:MaxDirectMemorySize=12g -XX:+UseLargePages' to the VM process arguments would allow for an

Note effective allocation of approximately an 11GB Teiid memory buffer (the fixed-memory-buffer-space-mb
setting) accounting for any additional direct memory that may be needed by the AS or applications running in the
AS.
Disk Properties

disk-max-space-mb (default 51200) - For table page and result batches the buffer manager will have a limited number of files
that are dedicated to a particular storage size. However, as mentioned in the installation, creation of Teiid lob values (for example
through SQL/XML) will typically create one file per lob once the lob exceeds the allowable in memory size of 32KB. In heavy
temporary lob usage scenarios, consider pointing the buffer directory on a partition that is routinely defragmented. By default
Teiid will use up to 50GB of disk space. This is tracked in terms of the number of bytes written by Teiid. For large data sets, you

may need to increase the disk-max-space-mb setting.

disk-max-file-size-mb (default 2048) - Each intermediate result buffer, temporary LOB, and temporary table is stored in its own
set of buffer files, where an individual file is limited to disk-max-file-size-mb megabytes. Consider increasing the storage space
available to all such files by increasing disk-max-space-mb, if your installation makes use of internal materialization, makes heavy

use of SQL/XML, or processes large row counts.

Limitations

It’s also important to keep in mind that Teiid has memory and other hard limits which breaks down along several lines in terms of

of storage objects tracked, disk storage, streaming data size/row limits, etc.

1. The buffer manager has a max addressable space of 16 terabytes - but due to fragmentation you’d expect that the max usable
would be less. This is the maximum amount of storage available to Teiid for all temporary lobs, internal tables, intermediate

results, etc.

2. The max size of an object (batch or table page) that can be serialized by the buffer manager is 32 GB - but you should
approach that limit (the default limit is 8 MB). A batch/page is set or rows that are flowing through Teiid engine and is

dynamically scaled based upon the estimated data width so that the expected memory size is consistent.

3. The heap-max-processing-kb and heap-max-reserve-mb are based upon memory footprint estimations and not exact sizes -

actual memory usage and garbage collection cycles are influenced by a lot of other factors.
4. The maximum row count for any interface, JDBC/ODBC/OData, is 2/A31-1 rows.

Handling a source that has tera/petabytes of data doesn’t by itself impact Teiid in any way. What matters is the processing
operations that are being performed and/or how much of that data do we need to store on a temporary basis in Teiid. With a simple

forward-only query, Teiid will return a petabytes of data with minimal memory usage.

Other Limits

To prevent run away memory or disk consumption:

1. Error code TEIID31260. A single lob (xml, clob, blob, json) created on the server side is limited to the .25 * (max buffer

space) / (max active plans).

2. Error code TEIID31261. A single table or tuple buffer is limited to a portion of the total max reserve, fixed memory buffer,

and disk space.

If needed an administrator can further restrict memory usage from each session by setting the system property
org.teiid.maxSessionBufferSizeEstimate to the desired size in bytes. This is based upon the memory footprint estimate and may

not correspond exactly to heap or disk consumption.

Other Considerations for Sizing

Each batch/table page requires an in memory cache entry of approximately ~ 128 bytes - thus the total tracked max batches are
limited by the heap and is also why we recommend to increase the processing batch size on larger memory or scenarios making
use of large internal materializations. The actual batch/table itself is managed by buffer manager, which has layered memory

buffer structure with spill over facility to disk.

Using internal materialization is based on the BufferManager. BufferManager settings may need to be updated based upon the

desired amount of internal materialization performed by deployed vdbs.

If an out of memory error occurs it is best to first capture a heap dump to determine where memory is being held - tweaking the

BufferManager settings may not be necessary depending upon the cause.

Common Configuration Scenarios

In addition to scenarios outlined above, a common scenario would be to minimize the amount of on heap space consumed by
Teiid. This can be done by moving the memory buffer to off heap with the fixed-memory-buffer-off-heap setting or by restricting
the heap-max-reserve-mb setting. Reducing the heap-max-processing-kb setting should generally not be necessary, unless there is

a need to severely restrict the heap usage beyond the heap-max-reserve-mb setting.

Memory Management

77

Transport

max-socket-threads (default 0) - The max number of threads dedicated to the initial request processing. Zero indicates to use the
system default of max available processors. All the access to Teiid (JDBC, ODBC, etc) is controlled by "transport" element in the
configuration. Socket threads are configured for each transport. They handle NIO non-blocking IO operations as well as directly
servicing any operation that can run without blocking. For longer running operations, the socket threads queue with work the

query engine.

Query Engine

max-threads (default 64) - The query engine has several settings that determine its thread utilization. max-threads sets the total
number of threads available in the process pool for query engine work (processing plans, transaction control operations,
processing source queries, etc.). You should consider increasing the maximum threads on systems with a large number of
available processors and/or when it’s common to issue non-transactional queries that issue a large number of concurrent source

requests.

max-active-plans (default 20) - Should always be smaller than max-threads. By default, thread-count-for-source-concurrency is
calculated by (max-threads / max_active_plans) * 2 to determine the threads available for processing concurrent source requests
for each user query. Increasing the max-active-plans should be considered for workloads with a high number of long running
queries and/or systems with a large number of available processors. If memory issues arise from increasing the max-threads and
max-active-plans, then consider decreasing the amount of heap held by the buffer manager or decreasing the processor-batch-size

to limit the base number of memory rows consumed by each plan.

thread-count-for-source-concurrency (default 0) - Should always be smaller than max-threads, sets the number of concurrently
executing source queries per user request. 0 indicates to use the default calculated value based on 2 * (max-threads / max-active-
plans). Setting this to 1 forces serial execution of all source queries by the processing thread. Any number greater than 1 limits the
maximum number of concurrently execution source requests according. Using the respective defaults, this means that each user
request would be allowed 6 concurrently executing source queries. If the default calculated value is not applicable to your
workload, for example, if you have queries that generate more concurrent long running source queries, you should adjust this

value.

time-slice-in-milliseconds (default 2000) - Provides course scheduling of long running processor plans. Plans whose execution
exceed a time slice will be re-queued for additional processing to allow for other plans to be initiated. The time slice is from the
perspective of the engine processing thread. This value is not honored exactly as the plan may not be at a re-startable point when
the time slice expires. This is not a replacement for the thread scheduling performed by Java and the operating system, rather it

just ensures that Teiid allows other work to be started if the current set of active plans includes long running queries.

Async Operations

async-thread-pool-max-thread-count (default 10) - Controls the number of threads available for system level async operations,

such as metadata load.

Cache Tuning

Caching can be tuned for cached results (including user query results and procedure results) and prepared plans (including user
and stored procedure plans). Even though it is possible to disable or otherwise severely constrain these caches, this would

probably never be done in practice as it would lead to poor performance.

Cache statistics can be obtained through the Admin Console or the AdaminAPI. The statistics can be used to help tune cache

parameters and ensure a hit ratio.

Plans are currently fully held in memory and may have a significant memory footprint. When making extensive use of prepared
statements and/or virtual procedures, the size of the plan cache may be increased proportionally to number of gigabytes intended

for use by Teiid.

While the result cache parameters control the cache result entries (max number, eviction, etc.), the result batches themselves are
accessed through the BufferManager. If the size of the result cache is increased, you may need to tune the BufferManager

configuration to ensure there is enough buffer space.

Result set and prepared plan caches have their entries invalidated by data and metadata events. By default these events are
captured by running commands through Teiid. See the Developers Guide for further customization. Teiid stores compiled forms of
update plans or trigger actions with the prepared plan, so that if metadata changes, for example by disabling a trigger, changes
may take effect immediately. The default max-staleness for result set caching is 0 seconds or immediate invalidation. Consider
increasing this value to increase result set cache hits. Even with a setting of 0, full transactional consistency is not guaranteed -

rather the underlying Infinispan cache must be configured with a transaction mode of XA.

Socket Transports

Teiid separates the configuration of its socket transports for JDBC and pg/ODBC. You have the option of also configuring secure

versions of these transports. Typical installations will not need to adjust the default thread and other low level settings.

The default values for input-buffer-size and output-buffer-size are set to 0, which will use the system default. Before adjusting
these values, keep in mind that each JDBC/ODBC connection will create a new socket. Setting these values to a large buffer size
should only be done if the number of clients are constrained. All JDBC/ODBC socket operations are non-blocking, so setting the
number of max-socket-threads higher than the maximum effective parallelism of the machine should not result in greater

performance. The default value 0 indicates the system default of 2 * available processors will be used.

If you are using more than the 2 default socket transports on a machine with a high number of actual or virtual
Note cores, you may need to consider manually configuring the max threads for each to transport to cut down on the
number of threads created.

JDBC clients may need to adjust low-level transport values, in addition to SSL. Client Connection properties via a teiid-client-
settings.properties file. This file also contains buffer, socket pooling, and maxObjectSize (effectively the maximum response size)

settings.

LOBs

LOBs and XML documents are streamed from the Teiid Server to the Teiid JDBC API. Normally, these values are not
materialized in the server memory - avoiding potential out-of-memory issues. When using style sheets and non-streaming XQuery
whole XML documents must be materialized on the server. Even when using the XMLQuery or XMLTable functions and

document projection is applied, memory issues may occur for large documents.

LOBs are broken into pieces when being created and streamed. The maximum size of each piece when fetched by the client can
be configured with the "lob-chunk-size-in-kb" property on Teiid configuration. The default value is 100 KB. When dealing with
extremely large LOBs, you may consider increasing this value to decrease the amount of round-trips to stream the result. Setting

the value too high may cause the server or client to have memory issues.

Source LOB values (LOBs from physical sources) are typically accessed by reference, rather than having the value copied to a
temporary location. Thus care must be taken to ensure that source LOBs are returned in a memory-safe manner. This caution is
more for the source driver vendors to not to consume VM memory for LOBs. Translators via the copyLobs property can instead

copy lob values to a temporary location.
Cached lobs will be copied rather than relying on the reference to the source lob.

Temporary lobs created by Teiid will be cleaned up when the result set or statement is closed. To rely on implicit garbage
collection based cleanup instead of statement close, the Teiid session variable clean_lobs_onclose can be set to false (by issuing
the query "SELECT teiid_session_set('clean_lobs_onclose', false)" - which can be done for example via the new connection sql in

the datasource definition). This can be used for local client scenarios that relied on the implicit behavior.

Other Considerations

When using Teiid in a development environment, you may consider setting the max-source-rows-allowed property to reasonably
small level value (e.g. 10000) to prevent large amounts of data from being pulled from sources. Leaving the exception-on-max-
source-rows set to "true" will alert the developer through an exception that an attempt was made to retrieve more than the

specified number of rows.

Teiid Console

Teiid Console is a web based administrative and monitoring tool for Teiid. Teiid Console is extension of WildFly console that is
built using GWT based technologies. There are two primary Teiid kits - an overlay for an existing WildFly install, and an all in

one that includes the WildFly server and Teiid console.

The Web Console is now maintenance only. New work related to web tooling will be alligned with OpenShift efforts.

Installation

If you start with just the overlay, you may separately install the Teiid Console. Unzip the contents over the WildFly root directory

and all the required files will be overlayed correctly to install Teiid Console. See all downloads on teiid.io.

Management User

The Teiid Console, by default is secured, so you would need a management realm user id and password to log in. In the
<install>/bin directory, use

Adding a management user in linux

./add-user.sh

Adding a management user in Windows

add-user.bat

then follow the prompts to create Management Realm user. Once you have created a management user, you need to use these

credentials to log in to the Teiid Console.

Accessing The Console

If you have started your WildFly in default mode, then you can access the Teiid Console at

http://localhost:9990/console/App.html. If you have altered the binding or port numbers then modify the address accordingly.

Configuration

Click on the configuration tab at the top of the main console screen. Under Subsystems click on "Teiid" in left navigation tree.
There you have four choices:

e Query Engine - view and configure core Teiid engine properties.

e Translators - view, add and remove the Translators configured in Teiid.

e Transports - view, add and remove transports to the Teiid engine.

e Logging - toggle command / audit / trace logging.

http://teiid.io/teiid_runtimes/teiid_wildfly/downloads/
http://localhost:9990/console/App.html

@ jBoss EAP Management X+

< C @ localhost:9990/console/App.html#teiid

WildFly Full

«Back Configuration: Subsystems > Subsystem: Teild

TEID
Query Engine

Query Engine Distributed query engine, that parses, plans and excutes user's SQL commands and provides resuts

Common Threads Buffer Manager etCache Distributed Cache Authentication

f He

Translators LA

Allow ENV Function: false

Data Roles Required: false

Asynchronous Max Thread Count:

Max Rows Fetch Size: 20480
Lob Chunk Size: 00
Query Threshhold: 600

Max Source Rows: El
Throw Exception on Max Source Rows: ~ true
Detect Change Event: true

Query Timeout:

Tools £ Settings

Using this view you can change any configuration value of Teiid. Note that various different configuration properties are sub-

divided into different tabs. You can click "Need Help" link on these pages to see the description of each field on the page.

Note Server Restart - some properties require you to restart the server before they can take effect.

Runtime View

Runtime view shows runtime information about WildFly and the subsystems including Teiid. Click on the Runtime tab, select the
Standalone Server (or whatever server is appropriate), select Subsystems, then Teiid.

@ jBoss EAP Management X+

< C ® localhost:9990/console/App.html#standalone-runtim

Refresh

Deployed Virtual Databases
N Name Version Dynamic Status Valid Reload
Chorus 1 true LOADING Ld Reload
1of1
Summary Models Overides Caching DataRoles Requesis
Description:
Errors
Path

Error/Warnings

Noltems

Connection Typ

None - disallow

connections

® By version n or earlest versioned vdb when no other vdb marked as ANY

Any - Allow with

version

Apply

Imported VDBs

VDB Name VDB Version Inherit Data Role Policies?

~Tools #settings

Using this page user can view many different settings in the context a VDB. All the VDBs deployed in the server are shown in top

level table. When you select and highlight a VDB, more details about that VDB are displayed in the sub-tabs below. Each of these
sub-tabs are divided into grouping of the functionality.

Summary

This tab shows the description and any properties associated with VDB, along with any other VDBs this VDB imports. This tab is

designed to give a quick overview of the VDB status.

Models

This panel shows all the models that are defined in a given VDB, and shows each models translator name and source connection
JNDI name. It also shows the type of models and if it is multi-source or not. When a particular model is selected it will show all
properties of that model that are defined and also shows any errors associated with the model. When your VDB is not deployed in

the "active" status, you would need to verify these errors and fix to resolve any deployment issues.
The "DDL" button shows the schema for the given model.
The tool lets the user edit the translator name or JNDI name by double clicking on them and modifying them. This useful if you

would like to change the JNDI name in a given environment.

Overrides

If you have overridden any translators this panel will show the all the overridden translators and their properties.

Caching

Caching panel shows caching statistics of resultset cache as to how effectively the cache is being used. It also shows all the
internal materialized views in the VDB and their load status as to when they were loaded. It also gives options to invalidate a

specific view or all the views in a VDB, so that they can refresh/reload the contents from source.

This panel also provides a Ul to flush the entire the resultset cache contents or prepared plan cache contents for the selected VDB.

Data Roles

Data Roles panel shows the all the policies that defined in the VDB. For each selected policy, it will also list the "permissions" for
that policy as to what kind of authorizations user has and shows the mapped enterprise role assignments to that policy. You can

even add/remove a enterprise role to the policy using the this UI.

Requests

This panel shows all the current requests against the selected VDB at the time of VDB selection. You can click "refresh" to get a
more up to date requests. The top table in the panel shows the user submitted requests to the teiid engine, when one of those
requests are selected, then the bottom table shows all the source level queries that are submitted to the physical sources by Teiid

engine.

Using this UL, user can also submit a "cancel" request to a user level query. Since "cancel" asynchronous operation, the operation

is not guaranteed as query may already been finished, by the time cancel is submitted.

Sessions

This panel shows all the active sessions that are connected to the selected VDB. It shows their connection properties and also

gives an option to terminate either a selected session or all the sessions.

FAQ

e How to deploy a VDB in standalone mode?

Inthe Deployments view, click add and select the VDB to deploy. Also make sure you enable the VDB once it is deployed.
e How to create Data source?

Inthe configuration view, goto Subsystem — Datasources — XA/Non-XA , click add and follow the wizard to create
JDBC data source.

If you trying to create connection to Teiid based File, Salesforce or WS based connections, select Subsystem — Resource

Adaptors and click add .
e How to add COMMAND Logging?

In the configuration view, goto Subsystem — Logging , click view, on Log categories tab, click add
org.teiid.coMMAND_LOG in DEBUG mode. The default log will be in the FILE handler. You can even add other handler if choose

to do so.
e Change Teiid JDBC Port in standalone mode?

In the configuration view, goto Socket Binding click view , view the standard-sockets select teiid-jdbc and edit.

System Properties and Environment Variables

Some of Teiid’s low-level behavior can be configured via system or env properties, rather than through configuration files.

A typical place to set system properties for WildFly launches is in the <install>/bin/<mode>.conf. A property setting has the

format -pproperty=value .

With 13.0 environment variables will be checked after the corresponding system property. This allows for Teiid client and server
code running in Docker or on OpenShift to be easily configured. The environment property key will be checked by converting it
first to upper snake case - which replaces lower case with upper case, any period with _ and separates words with _. For example
org.teiid.allowNanInfinity would check the environment key ORG_TEIID_ALLOW_NAN_INFINITY.

Table of Contents
e General
e Security
e PostgreSQL Compatibility

o Client

General

Setting Description Default Value

Set to true to allow numeric functions
to return NaN (Not A Number) and
+-Infinity. Note that these values are
not covered by the SQL specification.

org.teiid.allowNanlInfinity false

Set to true to enable the canonical
value cache. Value caching is used
dynamically when buffer memory is
consumed to reuse identical values
and thus reduce the memory

org.teiid.useValueCache consumed by Teiid. There is a false
computation cost associated with the
cache lookup, so enabling this setting
is not appropriate for installations
handling large volumes of dissimilar
data.

Set to false to emulate Teiid 6.x and
prior behavior of treating double
quoted values without leading
identifier parts as string literals,
which is not expected by the SQL
specification.

org.teiid.ansiQuotedIdentifiers true

If true, the optimizer will
aggressively unnest subqueries in
WHERE predicates. If possible the
predicate will be unnested to a
traditional join and will be eligible
for dependent join planning.

org.teiid.subqueryUnnestDefault false

Target size in bytes of the ODBC

results buffer. This is not a hard
org.teiid. ODBCPacketSize maximunm, lobs and wide rows may 307200

use larger buffers.

org.teiid.decimalAsDouble

org.teiid.comparableLobs

org.teiid.comparableObject

org.teiid.padSpace

org.teiid.collationLocale

org.teiid.clientVdbLoadTimeoutMillis

org.teiid.enDateNames

org.teiid.pushdownDefaultNullOrder

Set to true to parse exact fixed point
literals, e.g. 1.0, as double values
rather than as decimal/BigDecimal
values and to return a double value
from the AVG function for integral
values in the same way as releases
earlier than 8.0.

Set to true to allow blob and clob
column values to be comparable in
Teiid. Source type metadata will
determine if the comparison can be
pushed down.

Set to true to allow object column
values to be comparable in Teiid.
Source type metadata will determine
if the comparison can be pushed
down. The object instances are
expected to correctly implement
java.lang.Comparable.compareTo. If
the instance object is not
Comparable, then
ClassCastExceptions may the thrown.

Set to true to compare strings as if
PAD SPACE collation is being used,
that is strings are effectively right
padded to the same length for
comparison. If this property is set, it
is not necessary to use the trimStrings
translator option.

Set to a Java locale string
language[_country[_varient]], where
language, country, and variant are
two letter codes - see java.util.Locale
for more on valid codes. Note that
even if org.teiid.comparableLobs is
set, clob values will not be compared
using the locale collator.

The default amount of time a client
(currently only local clients) will wait
to make a connection to an active
VDB before throwing an exception.
Clients may override this setting via
the loginTimeout connection

property.

Set to true to use English month and
day names for the system function
dayName and monthName, rather
than returning names from the Java
default locale. Prior to 8.2 dayName
and monthName always returned
English names.

Set to true to mimic 8.1 and prior
release behavior of pushing the
Teiid’s default null order of nulls low

false

false

false

false

Not set by default, which means that
Java’s natural (UTF-16) string
comparison will be used.

5 minutes

false

false

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

if the source has a different default
null order and supports explicit null
ordering.

Set to true to force all sorts to be in
org.teiid.requireTeiidCollation Teiid’s collation (see false
org.teiid.collationLocale).

Set to false to disable Teiid 8.2 and
prior release behavior of implicitly
partitioning joins between multi-
source tables. When set to false and
explicit predicate such as
tbl1l.source_name =
tbl2.source_name is required to
partition the results of the join.

org.teiid.implicitMultiSourceJoin true

Sets the nominal maximum length of

strings in Teiid - most operations in

Teiid will truncate strings that are

larger than this value. Setting this
org.teiid.maxStringLength value can also adjust the max size of 4000

lob bytes held in memory. NOTE:

sources may not appropriately handle

string values that are larger than the

source Supports.

Strings are always fully held in memory. Do not set this value too high as you may experience out of memory

Warning errors

If false and a translator does not
specify a collationLocale, then a sort
involving character data for a
sort/merge join will not be pushed.
Teiid defaults to the Java UCS-2
collation, which may not match the
default collation for sources,

org.teiid.assumeMatchingCollation particular tables, or columns. You false
may set the system property
org.teiid.assumeMatchingCollation
to true to restore the old default
behavior or selectively update the
translators to report a collationLocale
matching org.teiid.collationLocale
(UCS-2 if unset).

Set to false to use the Teiid 8.2 and

old computation of timestampdiff.

note that: using the old behavior can

result in differing results between
org.teiid.calendarTimestampDiff pushed and non-pushed versions of true

timestampdiff for intervals greater

than seconds as sources use date part

and not approximate interval

differences.

Set to true to have Teiid keep the
org.teiid.compactBufferFiles buffer files more compact false
(minimizing sparse regions).

org.teiid.maxMessageSize

org.teiid.maxStreamingLobSize

org.teiid.defaultIndependentCardinality

org.teiid.checkPing

org.teiid.defaultNullOrder

org.teiid.iso8601 Week

org.teiid.widenComparisonToString

org.teiid.aggressiveJoinGrouping

The maximum size of messages in
bytes that are allowed from clients.
Increase only if clients routinely use
large queries and/or non-lob bind
values.

The maximum size of lobs in bytes
that are allowed to be streamed as
part of the message from clients.

The number of independent rows or
less that can automatically trigger a
dependent join. Increase when tables
typically only have cardinality set
and more dependent joins are
desired.

Can be set to false to disable ping
checking for remote JDBC
connections. Ping checking should
only be disabled in specific
circumstances, such as when using
an external load balancer and not
utilizing the Teiid default load
balancing logic. Deprecated as of
Teiid 10.2.

Can be one of LOW, FIRST, HIGH,
LAST. Sets the default null order for
the Teiid engine. This will not be
used for source ordering unless
org.teiid.pushdownDefaultNullOrder
is also set.

Set to true to use ISO 8601 rules for
week calculations regardless of the
locale. When true the week function
will require that week 1 of a year
contains the year’s first Thursday.
Pushdown week values will be
calculated as ISO regardless of this
setting.

Set to true to enable widening of
values to string in comparisons,
which was the default behavior prior
to Teiid 9. For example with this
setting as false timestamp_col < 'a'
will produce an exception whereas
when set to true it would effectively
evaluate cast(timestamp_col as
string) < "a'.

Set to false to not aggressively group
joins (typically allowed if there
exists an explicit relationship)
against the same source for
pushdown and rely more upon a cost
based ordering.

Set to the desired size in bytes to
limit the amount of buffer resources
(heap and disk) consumed by a
single session’s tuple buffers and

2097152

4294967296

true

LOW

true

false

true

org.teiid.maxSessionBufferSizeEstimate

org.teiid.enforceSingleMaxBufferSizeEstimate

org.teiid.resultAnyPosition

org.teiid.requireUnqualifiedNames

org.teiid.useXMLxEscape

org.teiid.tracingWithActiveSpanOnly

org.teiid.longRanks

org.teiid.relativeXPath

table structures. This is based upon
the heap memory footprint estimate
and may not correspond exactly to
heap and especially to disk
consumption. In general data in
serialized from, whether on disk or
in the fixed memory buffer, is
between 3 and 8 times smaller than
its heap representation which
includes overhead such as additional
object wrappers, lists, and less
compact strings.

The system will determine an upper
limit from all available memory for a
single set of managed batches/pages
- which could be a table, result set, or
intermediate result - from all of the
available buffer manager memory
and disk. When this property is true
an exception will be thrown when
the limit is exceeded. When this
property is false a TEIID31292
warning will be logged, which can
be a good indicator of a query or
environment that should be
reviewed.

false

Set to true to allow a RESULT
parameter to appear at in position in false
a procedure parameter list.

Set to false to allow the pre-10.1

behavior of allowing qualified names

in create to be used. For example true
'create foreign table x.y ...", rather

than 'create foreign table "x.y" ...'

If _x escaping should be used for
invalid characters in SQL/XML
names. Set to false to use the older
behavior of an _u escape.

true

Set to false to always generate
OpenTracing information even if no true
Span is active.

Set to true to have the ranking
functions RANK, DENSE_RANK,
and ROW_NUMBER return long
instead of integer.

false

Set to true to have XPath PATH
values beginning with / and // in
XMLTABLE always be relative to
the context item (the same behavior
as Oracle). Set to false to have / and
// PATH values to be evaluated from
the root of the context item (the same
behavior as PostgreSQL).

true

2/63 - 1

Security

Setting

org.teiid.allowAlter

org.teiid.allowCreateTemporaryTablesByDefault

org.teiid.allowFunctionCallsByDefault

org.teiid.hiddenMetadataResolvable

org.teiid.ignoreUnauthorizedAsterisk

org.teiid.metadataRequiresPermission

org.teiid. ODBCRequireSecure

org.teiid.sanitizeMessages

Description

If true alter and
(sysdamin.setProperty) will be
allowed at runtime to alter possibly
ephemerally the metadata. If false
those metadata alterations will not
be allowed.

Set to true to use the pre-8.0
behavior of allowing any
authenticated user to create temp
tables without an explicit
permission.

Set to true to use the pre-8.0
behavior of allowing any
authenticated user to call any non-
system function without an explicit
permission.

If true pg/JDBC objects under a
hidden schema are still resolvable
if fully qualified. If false objects
under a hidden schema are never
directly resolvable by an end user.

If true unauthorized columns (as
determined by data role checking)
are not part of select all or
qualified select all expansion. If
false, the client may set the session
variable
ignore_unauthorized_asterisk to
true to achieve the same behavior.

If true metadata will only be
visible in SYS/SYSADMIN tables
if the user is permissioned in some
way for the given object. If false
the non-hidden schema metadata
will be visible to any authenticated
user.

If true setting the SSL config to
login or enabled will require
clients to connect appropriately
with either a GSS login or SSL
respectively. Setting the property
to false will allow client to use any
authentication and no SSL (which
was the behavior of the pg
transport prior to 8.9 CR2).

If true query related exception and
warnings will have their messages
replaced with just the Teiid code.
Server side stacktraces will also be
removed when sent to the client.
This should be enabled if there is a
concern about SQL or values being

true

false

false

true

false

true

true

false

Default Value

present in the exception/logs. If the
log level is increased to debug for
the relevant logger, then the
sanitizeMessages setting will have

no effect.

PostgreSQL Compatibility

Note These affect Teiid globally, and not just through the ODBC transport.

Setting

org.teiid.addPGMetadata

org.teiid.backslashDefaultMatchEscape

org.teiid.honorDeclareFetchTxn

org.teiid.pgVersion

Client

System properties can also be set for client VMs. See Additional Socket Client Settings.

Description

When set to false, the VDB will not
include Postgresql based system
metadata.

Set to true to use \' as the default
escape character for LIKE and
SIMILAR TO predicates when no
escape is specified. Otherwise Teiid
assumes the SQL specification
compliant behavior of treating each
non-wildcard character as an exact
match character.

When false the wrapping
begin/commit of a UseDeclareFetch
cursor will be ignored as Teiid does
not require a transaction.

Is the value that will be reported by
the server_version function.

Default Value

true

false

false

"PostgreSQL 8.2"

Teiid Management CLI

The WildFly CLI is a command line based administrative and monitoring tool for Teiid. Many snippets of CLI scripting are shown
throughout the Admin Guide - especially around managing data sources. AdminAPI provides higher level methods that are often
needed when interacting with Teiid. It is also useful to know the underlying CLI commands in many circumstances. The below is
a series useful CLI commands for administering a Teiid Server. Please also refer to the AS documentation for more on interacting

with the CLI - including how to navigate, list operations, etc.

Table of Contents
VDB Operations

Authentication Operations

Source Operations

Translator Operations

Runtime Operations

VDB Operations

deploy adminapi-test-vdb.xml

undeploy adminapi-test-vdb.xml

/subsystem=teiid

/subsystem=teiid

/subsystem=teiid:

/subsystem=teiid

/subsystem=teiid
t)

/subsystem=teiid:

test)

/subsystem=teiid:

/subsystem=teiid

:restart-vdb(vdb-name=AdminAPITestVDB, vdb-version=1, model-names=TestModel)

:list-vdbs()

get-vdb(vdb-name=AdminAPITestVDB, vdb-version=1)
:change-vdb-connection-type(vdb-name=AdminAPITestVDB, vdb-version=1,connection-type=ANY)
radd-data-role(vdb-name=AdminAPITestVDB, vdb-version=1, data-role=TestDataRole, mapped-role=tes
remove-data-role(vdb-name=AdminAPITestVDB, vdb-version=1, data-role=TestDataRole, mapped-role=

read-attribute(name=async-thread-pool-max-thread-count)
:write-attribute(name=async-thread-pool-max-thread-count,value=15)

Authentication Operations

/subsystem=teiid:

/subsystem=teiid

/subsystem=teiid:

/subsystem=teiid

/subsystem=teiid:

/subsystem=teiid

/subsystem=teiid:

/subsystem=teiid

/subsystem=teiid:

/subsystem=teiid

read-attribute(name=authentication-security-domain)
:write-attribute(name=authentication-security-domain,value=teiid-security)

read-attribute(name=authentication-max-sessions-allowed)
:write-attribute(name=authentication-max-sessions-allowed, value=)

read-attribute(name=authentication-sessions-expiration-timelimit)
:write-attribute(name=authentication-sessions-expiration-timelimit, value=0)

read-attribute(name=authentication-type)
:write-attribute(name=authentication-type, value=USERPASSWORD)

read-attribute(name=authentication-trust-all-local)
:write-attribute(name=authentication-trust-all-local,value=true)

Source Operations

/subsystem=teiid:add-source(vdb-name=AdminAPITestVDB, vdb-version=1, source-name=text-connector-test, translato
r-name=file, model-name=TestModel, ds-name=java:/test-file)

/subsystem=teiid:remove-source(vdb-name=AdminAPITestVDB, vdb-version=1, source-name=text-connector-test, model-
name=TestModel)
/subsystem=teiid:update-source(vdb-name=AdminAPITestVDB, vdb-version=1, source-name=text-connector-test, transl

ator-name=file, ds-name=java:/marketdata-file)

Translator Operations

/subsystem=teiid:list-translators()
/subsystem=teiid:get-translator(translator-name=file)
/subsystem=teiid:read-translator-properties(translator-name=file, type=OVERRIDE)
/subsystem=teiid:read-rar-description(rar-name=file)

Runtime Operations

/subsystem=teiid:workerpool-statistics()

/subsystem=teiid:cache-types()

/subsystem=teiid:clear-cache(cache-type=PREPARED_PLAN_CACHE)
/subsystem=teiid:clear-cache(cache-type=QUERY_SERVICE_RESULT_SET_CACHE)
/subsystem=teiid:clear-cache(cache-type=PREPARED_PLAN_CACHE, vdb-name=AdminAPITestVDB, vdb-version=1)
/subsystem=teiid:clear-cache(cache-type=QUERY_SERVICE_RESULT_SET_CACHE, vdb-name=AdminAPITestVDB,vdb-version=1)
/subsystem=teiid:cache-statistics(cache-type=PREPARED_PLAN_CACHE)
/subsystem=teiid:cache-statistics(cache-type=QUERY_SERVICE_RESULT_SET_CACHE)

/subsystem=teiid:engine-statistics()

/subsystem=teiid:list-sessions()
/subsystem=teiid:terminate-session(session=sessionid)

/subsystem=teiid:list-requests()
/subsystem=teiid:cancel-request(session=sessionId, execution-id=1)
/subsystem=teiid:list-requests-per-session(session=sessionId)
/subsystem=teiid:list-transactions()

/subsystem=teiid:mark-datasource-available(ds-name=java:/accounts-ds)

/subsystem=teiid:get-query-plan(session=sessionid, execution-id=1)

Diagnosing Issues

You may experience situations where you incur performance issues or unexpected results/exceptions. The rest of this chapter will
focus on query planning and processing issues. Configuration or operational issues related to the container are typically more
isolated and easier to resolve.

Table of Contents
e General Diagnostic Process

o Query Plans
o Pushdown Inhibited
o Common Issues
o XQuery
o Out of Memory
o Logging
o Plan Debug Log

General Diagnostic Process

e When there is an issue start by isolating a problem query as much as possible. OData, REST, and pg/ODBC access are
layered on JDBC. If not accessing through JDBC, does the issue occur when using JDBC? If not, then the issue is at the
transport layer rather than at the engine level. In whatever scenario the issue occurs, the particulars matter - what sources, if
there is a transaction, load, etc.

e Don’t make too many assumptions

o For example memory consumption can be heavily dependent upon drivers, and a resulting out of memory issue may
only be indirectly related to Teiid

e Start with the query plan - especially with performance issues

o There may be simplifications or changes possible to views and procedures utilized by the user query.

o Ensure that relevant costing metadata is set and/or that hints you have provided are being applied as expected.
e Utilize Logging

o Planning issues may be understood with the debug plan

o The command log

o A full debug/trace level log can shed even more light — but it may not be easy to follow.

m You can correlate what is happening by context, thread, session id, and request id.

e If no resolution is found, engage the community and utilize professional support

Query Plans

Once the problem has been isolated as much as possible, you should further examine the query plan. The only circumstance when
this is not possible is when there are planning errors. In this case the logs, either full debug or just the debug plan, is still useful to

then log an issue with the community or with support.

If you haven’t done so already, you should start by familiarizing yourself with Federated Planning - especially the sections on the

query plan.

The final processor plan is generally what is meant when referring to by “the query plan”. The plan can be viewed in an XML or a

plain text format.

You can also use Teiid Extensions, or SET/SHOW statements:

SET SHOWPLAN ON
SELUSCT 500
SHOW PLAN

or an Explain Statement:

EXPLAIN SELECT ...

Once you have the plan, you can:
e Double check that hints are taking effect
e Make sure things seem correct

o Look first at all of the source queries on the access nodes. Generally a missing pushdown, such as predicate is easy to

spot
o Focus on problem source queries and their parent nodes if you already have execution times

It’s also a good idea to validate query plans during the development and testing of a VDB. Also any engagement with the

community or support will likely need the query plan as well.

If the plan is obtained from an executed query, then the plan will also show execution statistics. It is especially useful to see the
stats when processing has finished and all rows have been fetched. While several stats are collected, it’s most useful to see “Node

Output Rows” and “Node Next Batch Process Time”.

Example text form of a query plan showing stats:

ProjectNode
+ Relational Node ID:6
+ Output Columns:x (double)
+ Statistics:

0: Node Output Rows: 6

1: Node Next Batch Process Time: 2

2: Node Cumulative Next Batch Process Time: 2
3: Node Cumulative Process Time: 2

4: Node Next Batch Calls: 8

5: Node Blocks: 7
+ Cost Estimates:Estimated Node Cardinality: -1.0
+ Child 0:
AccessNode
+ Relational Node ID:7
+ Output Columns
+ Statistics:
0: Node Output Rows: 6
Node Next Batch Process Time: 0
Node Cumulative Next Batch Process Time: 0
Node Cumulative Process Time: 0
Node Next Batch Calls: 2
Node Blocks: 1

a b W N B

In addition to the execution stats, note there are also cost estimates. The values for the cost estimates are derived from the statistic
values set of each table/column about the row count, number of distinct values, number of null values, etc. Unlike systems that
own the data, Teiid does not build histograms or other in-depth models of the data. Theses values are meant to be approximations

with nominally distribution assumptions. The costing information from the metadata only matters for physical entities as we’ll

recompute the higher values in planning after merge virtual and other plan modifications. If you see that join is being
implemented inefficiently, then first make sure reasonable costing values are being set on the tables involved. Statistics can be
gathered for some sources at design time or deploy time. In environments that fluctuate rapidly, you may need to issue runtime

costing updates via system procedures.
Note: if you cardinality values are unknown - shown as 'Node Cardinality: -1.0" in the plan - and no hints are used, then the

optimizer will not assume that dependent join plans should be used.

Pushdown Inhibited

One of the most common issues that causes performance problems is when not enough of the plan is pushed to a given source

leading to too many rows being fetched and/or too much processing in Teiid.
Pushdown problems fall into two categories:

e Something that cannot be pushed down. For example not all system functions are supported by each source. Formatting

functions in particular are not broadly supported.
e A planning or other issue that prevents other constructs from being pushed down
o Temp tables or materialization can inhibit pushdown when joining
o Window functions and aggregation when not pushed can prevent further pushdown

If pushdown is inhibited then the construct will be missing from the access node issuing the source query, and will instead be be at

a higher node:

<node name="SelectNode">...<property name="Criteria'"><value>pml.gl.e2 = 1</value>
<node name="AccessNode">...<property name="Query"><value>SELECT pml.gl.el, pml.gl.e2 FROM pml.gil</value>

When pushdown is inhibited by the source, it should be easy to spot in the debug plan with log line similar to:

LOW Relational Planner SubqueryIn is not supported by source pml - el IN /*+ NO_UNNEST */ (SELECT el FROM pm2.g
1) was not pushed

Common Issues

Beyond pushdown being inhibited, other common issues are:

Slight differences in Teiid/Pushdown results
o for example Teiid produces a different for a given function than the source
e Source query form is not optimal or incorrect
e There is an unaccounted for type conversion
o for example there is no char(n) type in Teiid
o A cast may cause a source index not to be used

Join Performance

o Costing values not set leading to a non-performant plan.
o Use hints if needed.

o Teiid will replace outer with inner joins when possible, but just in case review outer join usage in the user query and

view layers

XQuery

XQuery/XPath can be difficult to get correct when not assisted by tooling. Having an incorrect namespace for example could

simply result in no results rather than exception.

With XMLQUERY/XMLTABLE each XPath/XQuery expression can have a large impact on performance. In particular

descendant access '/ can be costly. Just accessing elements in the direct parentage is efficient though.
The larger the document being processed, the more careful you need to be to ensure that document projection and stream

processing can be used. Streaming typically requires a simple context path - 'a/b/c'

Out of Memory

Out of memory errors can be difficult to track down. In almost all cases, it is best to determine the actual memory consumption
utilizing a heap dump - which can be obtained using the vim HeapDumpOnOutOfMemoryError option or via a tool such as

Visual VM. You may also simply increase the size of the heap, but that may simply delay the issue from reappearing.

Logging

The query plan alone does not provide a full accounting of processing. Some decisions are delayed until execution or can only be

seen in the server logs:

e The ENAHANCED SORT JOIN node may execute can execute one of three different join strategies depending on the

actually row counts found, this will not be seen unless the query plan is obtained at the end of execution.
e The effect of translation is not yet accounted for as the plan shows the engine form of the query
o The full translation can be seen in with command logging at a trace level or with debug/trace logging in general.
e The query plan doesn’t show the execution stats of individual the source queries, which is shown in the command log

e The for full picture of execution down to all the batch fetches, you’ll just need the full server debug/trace log

Plan Debug Log

The logical plan optimization is represented by the planning debug log and is more useful to understand why planning decisions

were made.

SET SHOWPLAN DEBUG
SELECT ...
SHOW PLAN

You will typically not need to use this level of detail to diagnose issues, but it is useful to provide the plan debug log to support

when planning issues occur.

Migration Guide From Teiid 13.x to 14.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 12.x.

If possible you should make your migration to Teiid 15 by first using Teiid 14.0.x. Teiid 15 requires Java 8 and WildFly 19.1 (the

same as Teiid 14). See also 13 to 14 Migration Guide

Configuration Changes

e TEIID-6007 The meaning of the transport authentication mode was changed to specifically be the client authentication mode,

1-way has been replace by NONE, 2-way has been replaced by NEED, and a new value WANT is supported.

e TEIID-5998 The restriction on the size of a single file store for a temporary lob was greatly relaxed. If you were allocating

more disk space than desired to work around that limitation, you should be able to allocate less.

https://issues.redhat.com/browse/TEIID-6007
https://issues.redhat.com/browse/TEIID-5998

Migration Guide From Teiid 13.x to 14.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 13.x.

If possible you should make your migration to Teiid 14 by first using Teiid 13.1.x. Teiid 14 requires Java 8 and WildFly 19.1. See

also 12 to 13 Migration Guide

Configuration Changes

The mysql5 translator name has been deprecated. Similar to the handling of other JDBC translators, the mysql translator now can
handle MySQL 5 and later.

Migration Guide From Teiid 12.x to 13.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 12.x.

If possible you should make your migration to Teiid 13 by first using Teiid 12.2.x. Teiid 13 requires Java 8 and WildFly 17. See
also 11 to 12 Migration Guide

Configuration Changes

The salesforce translators no longer support the Model AuditFields execution property - the import property should be used

instead.

Compatibility Changes

SET NAMESPACE

SET NAMESPACE should no longer be used. An exception will be thrown if the a custom namepsace or prefix is defined - only
built-in namespaces/prefixes are allowed. Methods and constants related to namespaces have been removed. For now
SYS.PROPERTIES will present built-in keys in both the old FQN format "{http...}key" and the new prefix format "teiid_...:key"

so that existing SQL queries will work, but the legacy format will be removed in the next major release.

Security Changes

The target of GRANT/REVOKE statements will be validated against the metadata to ensure. Previous versions allowed the target

to be any string.

The default data role enforcement will now check the strict hierarchy of a schema object, rather than every potential name part. In
previous versions a table with a name containing "." such as "long.table.name" could have resulted in checks against permissions
specified against the partial table names "long.table" and "long" as well. Now the will be a check only against the full table name,

and then the schema.

The PolicyDecider was changed to reference the metadata objects rather than just strings. Any custom implementation will need

to updated accordingly.

Kitting/Build Changes

The teiid-admin module/jar has been combined with teiid-api. Any references in custom development to teiid-admin should be

replaces with teiid-api.

Migration Guide From Teiid 11.x to 12.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 11.x.

If possible you should make your migration to Teiid 12 by first using Teiid 11.2.x. Teiid 12 requires Java 8 and WildFly 14. See
also 10 to 11 Migration Guide

Configuration Changes

System Properties

The default for org.teiid.longRanks changed to true. This is more inline with other platforms. You may switch it back to false for

compatibility or make appropriate updates to your views and other sql that may expect integer values to be returned.

The default for org.teiid.enforceSingleMaxBufferSizeEstimate changed to false. Proactively limiting the size of a single operation
does not match well to many Teiid usage scenarios, which could run just fine as long as enough disk was allocated. The default
behavior will no selective kill sessions that are consuming the most amount of memory in response to running out of disk. It
cannot be guaranteed that the current operation for with the disk running out will succeed however - in those circumstances it

would be advisable to engage proactive limits.

Buffer Manager

The configuration property names for the buffer manager have been refined to greater consistency.

old New Notes

buffer-service-processor-batch-size buffer-manager-processor-batch-size

buffer-service-inline-lobs

buffer-service-max-processing-kb

buffer-service-max-reserve-kb

buffer-service-use-disk

buffer-service-max-storage-object-
size

buffer-service-memory-buffer-space

buffer-service-memory-buffer-off-
heap

buffer-manager-inline-lobs instead

buffer-manager-heap-max-
processing-kb

buffer-manager-heap-max-reserve-
mb

buffer-manager-storage-enabled

buffer-manager-storage-max-object-
size-kb

buffer-manager-fixed-memory-space-
mb

buffer-manager-fixed-memory-off-
heap

The unit change from kilobytes to
megabytes

Renamed to storage - which is both
the fixed memory buffer and disk
tiers below the buffer managed heap

The units changed from bytes to
kilobytes

. —_— buffer-manager-disk-max-file-size-
buffer-service-max-file-size

mb
buffer-service-max-buffer-space buffer-manager-disk-max-space-mb
buffer-service-max-open-files buffer-manager-disk-max-open-files
buffer-service-encrypt-files buffer-manager-disk-encrypt-files

This change introduced a new version of the WildFly xml configuration for Teiid. Older xml and cli are still compatible and are

automatically converted to the new configuration. You should not mix the usage of new and old properties.

Compatibility Changes

The ability to specify a jgroups configuration file directly to Teiid Embedded has been removed. If you need Teiid Embedded to

support clustering, please log an issue.

Kitting/Build Changes

AdminShell

The AdminShell has been removed from the build. AdminShell has releases between 10.x and 11.x are effectively identical. You
may still use one of those versions if you wish to continue using AdminShell. Alternatively you may use the AdminAPI directly

from Java or with the scripting language binding of your choice.

WildFly/JEE Restructuring

The maven coordinates for the full source, wildfly, and combined wildfly artifacts have changed. They were under org.teiid:teiid

with classifiers that began with wildfly-. For example, instead of:

<groupId>org.teiid</groupId>
<artifactId>teiid</artifactId>
<classifier>wildfly-server</classifier>
<type>zip</type>

Use:

<groupId>org.teiid.wildfly</groupId>
<artifactId>teiid-wildfly</artifactId>
<classifier>server</classifier>
<type>zip</type>

Similarly all of the org.teiid:connector-xxx artifacts have moved to org.teiid.wildfly:connector-xxx. The Teiid embedded examples

will be updated to reflect this change.

Dependencies on JEE have been pushed to non-core modules of Teiid. This should not affect anyone using a base Teiid

distribution. However if you have done custom development it may affect you. The changes include:

The org.teiid.resource.spi package was moved from the teiid-api jar to the org.teiid.wildfly:teiid-resource-spi jar. Poms
will need to be updated accordingly. There is no change needed for jboss modules as the teiid-resource-spi artifact is already

included in org.jboss.teiid.api.
ResourceException has been replaced by TranslatorException on Teiid connection interfaces such as SalesforceConnection.

The file translator resource adapter translator and connector logic were refactored to use a Teiid VirtualFile interface rather
than directly expose both a Java File and VFS. If you were developing based upon FileConnection, please use

VirtualFileConnection org.teiid.connectors:file-api instead.

org.teiid.translator.wsConnection has been moved into org.teiid.connector:translator-ws
org.teiid.translator.ws.WSConnection

The arche-type version compatible with Teiid 12.0.0 has been bumped to 12.0.0.

Teiid Embedded usage will need to include the org.teiid:cache-infinispan dependency, otherwise it will default to non-
concurrent cache. If you are already setting the CacheFactory on the EmbeddedConfiguration, no action is needed. The
EmbeddedConfiguration InfinispanConfigFile methods have been deprecated - in the future the user/platform will be fully

responsible for wiring in the CacheFactory.

Migration Guide From Teiid 10.x to 11.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 10.x.

If possible you should make your migration to Teiid 11 by first using Teiid 10.3. Teiid 10.0 though 10.3 have the same JRE and
WildFly requirements. Teiid 11 requires Java 8 and WildFly 11. See also 9 to 10 Migration Guide

Configuration Changes

The default max buffer space on disk for embedded, Spring, and Thorntail environments is 5 GB. The WildFly server
environment default remains 50 GB, but needs to be specified in the configuration. If you are reusing the same configuration from
Teiid 10 that has the default omitted, use the jboss cli to run:

/subsystem=teiid/:write-attribute(name=buffer-service-max-buffer-space, value=51200)

The authentication-allow-security-domain-qualifier property has been removed.

Compatibility Changes
Function model support has been completely removed as it had been deprecated in Teiid Designer for some time. Those models
should be removed and the functions moved to other physical or virtual models.

The salesforce translator and resource adapter now provide access to the 34.0 version of the Salesforce API. You may need to re-

import your salesforce source metadata to ensure compatibility.

Starting with 11.1 the Teiid client no longer supports the pluggable ServerDiscovery mechanism. The client will no longer support
post-connection load-balancing nor a client side ping. If connecting to Teiid servers earlier than 10.2, then ping must be disabled

on the server.

Session/user scoped materialized views are no longer supported. Please use a global temporary table instead.

Migration Guide From Teiid 9.x to 10.x
Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are
made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 9.x.

If possible you should make your migration to Teiid 10 by first using Teiid 9.3. Teiid 9.1 though 9.3 have the same JRE and
WildFly requirements. Teiid 10 requires Java 8 and WildFly 11. See also 8 to 9 Migration Guide

Configuration Changes

Teiid Embedded by default will not allow the usage of the ENV function. Use the EmbeddedConfiguration.setAllowEnvFunction
to toggle this behavior.

Compatibility Changes

The FROM_UNIXTIME function now matches the behavior of HIVE/IMPALA. It accepts a long and returns a string, rather than

a timestamp.

XML Document Model

The XML Document Model has been removed along with related client properties. Please consider migrating to OData or utilizing

SQL/XML functions for constructing documents.

Kitting/Build Changes

The maven coordinates for Teiid artifacts has change from the org.jboss.teiid group to the org.teiid group. The artifacts are also
published directly to maven central, rather than the JBoss nexus repository. This change was largely motivated by making the
Teiid Spring integration less cuambersome. Note that this does not effect EAP/WildFly module names as those remain

org.jboss.teiid.

Migration Guide From Teiid 8.x to 9.x

Teiid strives to maintain consistency between all versions, but when necessary breaking configuration and VDB/sql changes are

made - and then typically only for major releases.

You should consult the release notes for compatibility and configuration changes from each minor version that you are upgrading

over. This guide expands upon the release notes included in the kit to cover changes since 8.x.

If possible you should make your migration to Teiid 9 by first using Teiid 8.13. 8.13 is a non-feature transitional release that is
effectively Teiid 8.12 running on WildFly 9.0.2.

JRE Support

Teiid 9.1 uses WildFly 10.0.0. Both the server kit and usage of Teiid Embedded will require Java 1.8+. The client driver may still

use a 1.6 runtime.

Teiid 9.0 uses WildFly 9.0.2. Both the server kit and usage of Teiid Embedded will require Java 1.7+. The client driver may still

use a 1.6 runtime.

Configuration Changes

You will need to apply your Teiid and other configuration changes starting with a new base configuration for WildFly, such as the
standalone-teiid.xml included in the kit. Note that 9999 port has been removed by default. Admin connections are expected to use
either 9990 (http) or 9993 (https).

Security Related

There is now a single session service. Session service related properties, prefixed by authentication, are no longer specified per

transport. Instead they now appear as a single sibling to the transports.

Old standalone.xml Configuration

<transport name="local"/>

<transport name="odata">
<authentication security-domain="teiid-security"/>

</transport>

<transport name="jdbc" protocol="teiid" socket-binding="teiid-jdbc">
<authentication security-domain="teiid-security"/>

</transport>

<transport name="odbc" protocol="pg" socket-binding="teiid-odbc">
<authentication security-domain="teiid-security"/>
<ssl mode="disabled"/>

</transport>

New standalone.xml Configuration

<authentication security-domain="teiid-security"/>

<transport name="local"/>

<transport name="odata"/>

<transport name="jdbc" protocol="teiid" socket-binding="teiid-jdbc"/>

<transport name="odbc" protocol="pg" socket-binding="teiid-odbc">
<ssl mode="disabled"/>

</transport>

The default maximum number of sessions was increased to 10000 to accommodate for this change.

In addition there is a new property trust-all-local that defaults to true and allows unauthenticated access by local pass-through
connections over the embedded transport - this was effectively the default behavior of 8.x and before when no security-domain

was set on the embedded transport. You may choose to disallow that type of access by setting the property to false instead.

The authentication-security-domain property will only accept a single security domain, and will not interpret the value as a
comma separated list. The default behavior has also changed for user names - they are longer allowed to be qualified by the
security domain. Use the authentication-allow-security-domain-qualifier property to allow the old behavior of accepting user

names that are security domain qualified.

RoleBasedCredentialMapldentityL.oginModule

The RoleBasedCredentialMapldentityLoginModule class has been removed. Consider alternative login modules with roles

assignments to restrict access to the VDB.

Local Transport

The embedded transport was renamed to local to avoid confusion with Teiid embedded.
Behavioral

widenComparisonToString

The resolver’s default behavior was to widen comparisons to string, but 9.0 now defaults org.teiid.widenComparisonToString to

false. For example with this setting as false a comparison such as "timestamp_col < 'a" will produce an exception whereas when

set to true it would effectively evaluate "cast(timestamp_col as string) < 'a". If you experience resolving errors when a vdb is

deployed you should update the vdb if possible before reverting to the old resolving behavior.

reportAsViews

The JDBC client will report Teiid views in the metadata as table type VIEW rather than TABLE by default. Use the connection

property reportAsViews=false to use pre-9.0 behavior.

Default Precision/Scale

If a column is specified with a precision of 0 or left as the default in DDL metadata it will be treated as having the nominal
internal maximum value of 32767. This may cause the precision and scale to be reported differently, which may have been
2147483647 in some places or 20 in JDBC DatabaseMetaData.

Compatibility Changes
DDL Delimiters

Not using a semicolon delimiter between statements is deprecated and should only be relied on for backwards compatibility.

System Metadata

With data roles enabled system tables (SYS, SYSADMIN, and pg_catalog) will only expose tables, columns, procedures, etc. for
which the user is entitled to access. A READ permission is expected for tables/columns, while an EXECUTE permission is

expected for functions/procedures. All non-hidden schemas will still be visible though.

The OID columns has been removed. The UID column should be used instead or the corresponding pg_catalog table will contain

an OID values.

Parent uid columns have been added to the SYS Tables, Procedures, KeyColumns, and Columns tables.

XML Document Model

The XML Document Model has been deprecated. Please consider migrating to OData or utilizing SQL/XML functions for

constructing documents.

Kitting/Build Changes

Admin JAR

For 8.13 the entry point for creating remote admin connection, AdminFactory, was moved into the teiid-jboss-admin jar rather

than being located in teiid-admin.

API Changes

The AuthorizationValidator and PolicyDecider interfaces had minor changes. AuthorizationValidator has an additional method to

determine metadata filtering, and PolicyDecider had isTempAccessable corrected to isTempAccessible.

Semantic versioning required the change of the VDB version field from an integer to a string. This affected the following public

classes:

VDB Session EventListener VDBImport ExecutionContext MetadataRepository

There are also duplicate/deprecated methods on:

EventDistributor Admin

Using the TranslatorProperty annotation without a setter now requires that readOnly=true be set on the annotation.

The JDBC DatabaseMetaData and CommandContext getUserName methods will now return just the base user name without the

security domain.

Embedded Kit

The Embedded Kit has been removed. You should follow the Embedded Examples to use maven to pull the dependencies you

need for your project.

There were extensive changes in dependency management for how the project is built. These changes allowed us to remove the
need for resource adapter jars built with the lib classifier. If you need to reference these artifacts from maven, just omit the

classifier.

Legacy Drivers

The drivers for JRE 1.4/1.5 systems have been discontinued. If you still need a client for those platforms, you should use the

appropriate 8.x driver.

OData

The OData v2 war based upon odata4j has been removed. You should utilize the OData v4 war service instead.

https://github.com/teiid/teiid-embedded-examples

The names of the wars have been changed to strip version information - this makes it easier to capture a deployment-overlay in

the configuration such that it won’t be changed from one Teiid version to the next.
teiid-odata-odata2.war has become teiid-odata.war teiid-olingo-odata4.war has become teiid-olingo-odata4.war

To change properties in an web.xml file or add other files to the default odata war, you should use a deployment overlay instead.

Materialization

The semantic versioning change requires the materialization status tables to change their version column from an integer to string.

Both the source and the source model will need to be updated with the column type change.

https://docs.wildfly.org/19/Admin_Guide.html#Deployment_Overlays

Caching Guide

Teiid provides several capabilities for caching data including:
1. Materialized views
2. ResultSet caching
3. Code table caching
These techniques can be used to significantly improve performance in many situations.

With the exception of external materialized views, the cached data is accessed through the BufferManager. In some cases the

BufferManager setting can be adjusted to the particular memory constraints of your installation.

See the Cache Tuning for more on parameter tuning.

Results Caching

Teiid provides the capability to cache the results of specific user queries and virtual procedure calls. This caching technique can

yield significant performance gains if users of the system submit the same queries or execute the same procedures often.

Support Summary

e Caching of user query results.
e Caching of virtual procedure results.

e Scoping of results is automatically determined to be VDB/user (replicated) or session level. The default logic will be
influenced by every function evaluated, consider the DETERMINISM property on all source models/tables/procedures, and

the Scope from the ExecutionContext or CacheDirective.
e Configurable number of cache entries and time to live.

e Administrative clearing.

User Interaction

User Query Cache

User query result set caching will cache result sets based on an exact match of the incoming SQL string and PreparedStatement
parameter values if present. Caching only applies to SELECT, set query, and stored procedure execution statements; it does not
apply to SELECT INTO statements, or INSERT, UPDATE, or DELETE statements.

End users or client applications explicitly state whether to use result set caching. This can be done by setting the JDBC

ResultSetCacheMode execution property to true (default false)

Properties info = new Properties();
info.setProperty("ResultSetCacheMode", "true");

Connection conn = DriverManager.getConnection(url, info);

or by adding a Cache Hint to the query. Note that if either of these mechanisms are used, Teiid must also have result set caching
enabled (the default is enabled).

The most basic form of the cache hint, /*+ cache */ , is sufficient to inform the engine that the results of the non-update

command should be cached.

PreparedStatement ResultSet Caching
PreparedStatement ps = connection.prepareStatement("/*+ cache */ select col from t where col2 = ?");
ps.setInt(1, 5);
ps.execute();

The results will be cached with the default ttl and use the SQL string and the parameter value as part of the cache key.

The pref_mem and ttl options of the cache hint may also be used for result set cache queries. If a cache hint is not specified, then

the default time to live of the result set caching configuration will be used.

Advanced ResultSet Caching

/*+ cache(pref_mem ttl1:60000) */ select col from t

In this example the memory preference has been enabled and the time to live is set to 60000 milliseconds or 1 minute. The ttl for
an entry is actually treated as it’s maximum age and the entry may be purged sooner if the maximum number of cache entries has

been reached.

Each query is re-checked for authorization using the current user’s permissions, regardless of whether or not the

Note
results have been cached.

Procedure Result Cache

Similar to materialized views, cached virtual procedure results are used automatically when a matching set of parameter values is
detected for the same procedure execution. Usage of the cached results may be bypassed when used with the OPTION

NOCACHE clause. Usage is covered in Hints and Options.

Cached Virtual Procedure Definition

To indicate that a virtual procedure should be cached, it’s definition should include a Cache Hint.

Procedure Caching

/*+ cache */
BEGIN

END

Results will be cached with the default ttl.
The pref_mem and ttl options of the cache hint may also be used for procedure caching.

Procedure results cache keys include the input parameter values. To prevent one procedure from filling the cache, at most 256

cache keys may be created per procedure per VDB.

A cached procedure will always produce all of its results prior to allowing those results to be consumed and placed in the cache.
This differs from normal procedure execution which in some situations allows the returned results to be consumed in a streaming

manner.

Cache Configuration

By default result set caching is enabled with 1024 maximum entries with a maximum entry age of 2 hours. There are actually 2
caches configured with these settings. One cache holds results that are specific to sessions and is local to each Teiid instance. The
other cache holds VDB scoped results and can be replicated. See the teiid subsystem configuration for tuning. The user may also

override the default maximum entry age via the Cache Hint.

Result set caching is not limited to memory. There is no explicit limit on the size of the results that can be cached. Cached results
are primarily stored in the BufferManager and are subject to it’s configuration - including the restriction of maximum buffer

space.

While the result data is not held in memory, cache keys - including parameter values - may be held in memory. Thus the cache

should not be given an unlimited maximum size.

Result set cache entries can be invalidated by data change events. The max-staleness setting determines how long an entry will

remain in the case after one of the tables that contributed to the results has been changed.

See the Developer’s Guide for further customization.

Extension Metadata

You can use the extension metadata property

{http://www.teiid.org/ext/relational/2012}data-ttl

as a schema/model property or on a source table to indicate a default TTL. A negative value means no TTL, 0 means do not cache,
and a positive number indicates the time to live in milliseconds. If no TTL is specified on the table, then the schema will be
checked. The TTL for the cache entry will be taken as the least positive value among all TTLs. Thus setting this value as a model

property can quickly disable any caching against a particular source.

For example, setting the property in the vdb:

CREATE DATABASE vdbname;
USE DATABASE vdbname;

CREATE SCHEMA PM1 SERVER connector OPTIONS ("teiid_rel:data-ttl" 0);

As an XML VDB:

<vdb name="vdbname" version="1">
<model name="Customers'">
<property name="teiid rel:data-ttl" value="0"/>

Cache Administration

The result set cache can be cleared through the AdminAPI using the clearcache method. The expected cache key is
"QUERY_SERVICE_RESULT _SET_CACHE".

Clearing the ResultSet Cache in AdminAPI

admin.clearCache("QUERY_SERVICE_RESULT_SET_CACHE")

See the AdminAPI for more on using the AdminAPI.

Limitations

e XML, BLOB, CLOB, JSON, Geometry, and OBJECT type cannot be used as part of the cache key for prepared statement of

procedure cache keys.

e The exact SQL string, including the cache hint if present, must match the cached entry for the results to be reused. This

allows cache usage to skip parsing and resolving for faster responses.

e Result set caching is transactional by default using the NON_XA transaction mode. If you want full XA support, then change
the configuration to use NON_DURABLE_XA.

e Clearing the results cache clears all cache entries for all VDBs.

Results Caching

116

Materialized Views

Teiid supports materialized views. Materialized views are just like other views, but their transformations are pre-computed and
stored just like a regular table. When queries are issued against the views through the Teiid Server, the cached results are used.
This saves the cost of accessing all the underlying data sources and re-computing the view transformations each time a query is

executed.

Materialized views are appropriate when the underlying data does not change rapidly, or when it is acceptable to retrieve data that
is "stale" within some period of time, or when it is preferred for end-user queries to access staged data rather than placing

additional query load on operational sources.

Support Summary

e Caching of relational table or view records (pre-computing all transformations)
e Model-based definition of virtual groups to cache

e User ability to override use of materialized view cache for specific queries through Hints and Options

Approach

The overall strategy toward materialization should be to work on the integration model first, then optimize as needed from the top

down.

Result set caching, ideally hint driven, should be used if there lots of repeated user queries. If result set caching is insufficient,
then move onto internal materialization for views that are closest to consumers (minimally or not layered) that are introducing
performance issues. Keep in mind that the use of materialization inlines access to the materialization table rather than the view so
scenarios that integrate on top of the materialization may suffer if they were relying on pushing/optimizing the work of the view

with surrounding constructs.

Based upon the limitations of internal materialization, then switch to external materialization as needed.

Materialized View Definition

Materialized views are defined in by setting the materialized property on a table or view in a virtual (view) relational model.
Setting this property’s value to true (the default is false) allows the data generated for this virtual table to be treated as a

materialized view.

It is important to ensure that all key/index information is present as these will be used by the materialization

Important -
P process to enhance the performance of the materialized table.

The target materialized table may also be set in the properties. If the value is left blank, the default, then internal materialization
will be used. Otherwise for external materialization, the value should reference the fully qualified name of a table (or possibly
view) with the same columns as the materialized view. For most basic scenarios the simplicity of internal materialization makes it

the more appealing option.
Reasons to use external materialization

e The cached data needs to be fully durable. Internal materialization does not survive a cluster restart.

Full control is needed of loading and refresh. Internal materialization does offer several system supported methods for

refreshing, but does not give full access to the materialized table.

Control is needed over the materialized table definition. Internal materialization does support Indexes, but they cannot be

directly controlled. Constraints or other database features cannot be added to internal materialization tables.

The data volume is large. Internal materialization (and temp tables in general) have memory overhead for each page. A rough

guideline is that there can be 100 million rows in all materialized tables across all VDBs for every gigabyte of heap.

Important

Important

Materialized view tables default to the VDB scope. By default if a materialized view definition directly or
transitively contains a non-deterministic function call, such as random or hasRole, the resulting table will
contain only the initially evaluated values. In most instances you should consider nesting a materialized view
without the deterministic results that is joined with relevant non-deterministic values in a parent view.

Nearly all of the materialization related properties must be set at the time the vdb is loaded and are not
monitored for changes. Removal of properties at runtime, such as the status table, will result in exceptions.

External Materialization

This document will explain what Teiid External Materialization is and how to use it.

Table of Contents
e Whatisit?
e External Materialized Data Source Systems
o RDBMS Systems
o Infinispan
e View Options
e Materialization Management
o 1. Creation of Status Table
o 2. Creation of View and Materialized Table
o Materialization Table Loading
o Refresh Type: EAGER
e Appendix-1: DDL for creating MatView Status Table
e Appendix-2: Example VDB with External Materialized View Options

Whatisit?

In Teiid, a view is a virtual table based on the computing(loading/transforming/federating) of a complex SQL statement across
heterogeneous data sources. Teiid external materialization process can cache the View data to an external data source systems on a
periodic basis. When a user issues queries against this View, the request will be redirected to this external data source system
where cached results will be returned, rather than re-computing results from source systems. Materialization can prove to be time

and resource saving if your View transformation is complex and/or access to the source systems is constrained.

VDB

Materialized View

In coming SQL Al A2 B3 Materialization enabled
N

Ho Materialization

T

h 4
Results Source Table A Source Table B Materialized Table
Al | A2 | A3 Bl |B2|EB3 Al A2 | B3

Materialized View - Materialized view is just like other views, with additional options in View Options, to enable pre-computing

and caching data to an external data source system.

Materialized Table - Materialized table represents the target table for the materialized View, has the same structure as the

materialized view, but exists on the external data source system.

MatView Status Table - Each materialized view has a reference to 'Status' table, this used to save the Materialized views' refresh

status. This table typically exists on the same physical source with the Materialized Table .

An external materialized view gives the administrator full control over the loading and refresh strategies. Refer to Materialization

Management for details.

External Materialized Data Source Systems

The following are the types of data sources that have been tested to work in the external materialization process:

RDBMS Systems

e RDBMS - a relational database should work. Example databases; Oracle, Postgresgl, MySQL, MS SqglServer, SAP Hana, etc.

If the database supports a transactional rename operation, you can use the default load strategy that uses a staging table and rely

on renaming the staging table to the live table in the after load script.

TEIID-4294 raises that not every database supports a transactional rename, either as separate or a block of
Note statements. If this is the case you should consider using a LOADNUMBER column, or a custom load strategy that
maintains only a single table.

Infinispan

e Infinispan - for in-memory caching of results. see the Infinispan Translator.

View Options
The following View properties are extension properties that used in the management of the Materialized View.

Property Name Description Optional

MATERIALIZED Set thg \{alue to 'TRUE' for the View to be false wa
materialized.

Defines the name of target table, this also

hints the materialization is using external
MATERIALIZED_TABLE materialization. Omitting this property and false n/a

setting the MATERIALIZED property true,

invokes internal materialization.

Allow updating Materialized View via DML

UPDATABLE true false
updates

teiid_rel: ALLOW_MATVIEW_MANAGEMENT Allow Teild based automatic management true false
of load/refresh strategies of View.
Fully qualified Status Table Name to

teiid_rel: MATVIEW STATUS.TABLE manage the load/refresh of the materialized false wa

view. See below for table structure and DDL
for it.

https://issues.redhat.com/browse/TEIID-4294

teiid_rel:MATVIEW_LOAD_SCRIPT -
DEPRECATED

teiid_rel:MATERIALIZED_STAGE_TABLE -
DEPRECATED

teiid_rel:MATVIEW_LOADNUMBER_COLUMN

teiid_re:MATVIEW_BEFORE_LOAD_SCRIPT

teiid_re:MATVIEW_AFTER_LOAD_SCRIPT

teiid_re:MATVIEW_SHARE_SCOPE

teiid_rel:ON_VDB_START_SCRIPT

teiid_rel:ON_VDB_DROP_SCRIPT

teiid_rel: MATVIEW_ONERROR_ACTION

teiid_rel:MATVIEW_TTL

teiid_rel:MATVIEW_WRITE_THROUGH

command to run for loading of the cache.
Use of this property is deprecated in favor of
using the
"MATVIEW_LOADNUMBER_COLUMN"
property.

When MATVIEW_LOAD_SCRIPT
property not defined, Teiid loads the cache
contents into this table. Required when
MATVIEW_LOAD_SCRIPT not defined.
Use of this property is deprecated in favor
using the
"MATVIEW_LOADNUMBER_COLUMN"
property.

Name of column in the

MATERIALIZED_TABLE that can hold status
information about load/refresh load process.
The column type MUST be long, and
typically named as "LoadNumber".

DDL/DML command to run before the
actual load of the cache

DDL/DML command to run after the actual
load of the cache.
teiid_re:MATVIEW_STAGE_TABLE to
MATVIEW table

Allowed values are {IMPORTED, FULL},
which define if the cached contents are

shared among different VDB versions and
different imported VDBs and parent VDB.

DDL/DML command to run start of vdb

DDL/DML command to run at VDB un-
deploy; typically used for cleaning the
cache/status tables. DO NOT use this script
to delete the contents of Status table, when
cache scope settings are configured for
{FULL} scope, if another version of the
VDB is still active. Deletion of this
information will reload the materialization
table.

Action to be taken when mat view contents
are requested but cache is invalid. Allowed
values are (THROW_EXCEPTION =
throws an exception, IGNORE = ignores the
warning and supplied invalidated data,
WALIT = waits until the data is refreshed and
valid then provides the updated data)

time to live in milliseconds. Provide
property or cache hint on view
transformation - property takes precedence.

When true Teiid will perform both the
underlying update and the corresponding
update against the materialization target for

true

true

false

true

true

true

true

true

true

true

true

will
trans

n/a

NO?!

Whe

Whe

IMP

n/a

n/a

WAI

2162
table
load:

false

an insert/update/delete issued against the
view.

This property defines the percentage max of
staleness allowed before a refresh to the
View is invoked. Any double value 0 to 100
is valid value. The StateCount column on
Status table is used to keep track of the
number of updates, and this value is
checked against Cardinality column to
calculate the amount of variance. The
availability of this property, supercedes the
MATVIEW_TTL property interms of when
a refresh job triggred to update the contents
of the view.

teiid_rel:MATVIEW_MAX STALENESS_PCT true n/a

This property defines a query that must
return a single timestamp value. If the value
is greater than the last update time of the
materialization table, it will be reloaded.

teiid_rel:MATVIEW_POLLING_QUERY true n/a

This property defines the polling interval, in
teiid_re:MATVIEW_POLLING_INTERVAL milliseconds, used with the polling query true 600(
and STALENESS_PCT based refreshes.

This property defines the partitioned load

column. If specified the default load strategy

will be updated to refresh the materialization

one partition at a time. This must specify a
teiid_re:MATVIEW_PART_LOAD_COLUMN column that exists on the view and it must true n/a

be of a comparable type. Currently only

works with

MATVIEW_LOADNUMBER_COLUMN

specified.

If MATVIEW_PART_LOAD_COLUMN is
specified, this may be a query expression
that returns a single column providing the

. . the ¢
teiid_rel:MATVIEW_PART LOAD_VALUES partition values. e.g. for multi-source you true MA]
can get the source names via the query selec

"select s.name from (exec
sysadmin.schemaSources('schema name'))

S

for scripts that need more than one statement executed, use a procedure block BEGIN statement; statement; ...

Tip gD

When a vdb is imported into another vdb, materializied views are automatically shared across these vdbs.
The teiid_rel: MATVIEW_SHARE_SCOPE property must be set to TMPORTED' or 'FULL' on importing

VDB’s materialized views to enable sharing across the both vdbs. The below table shows an example of how
this property works

Important

For example: Table A is in VDB X.1 and Table C in VDB Y.1 Table A & B in VDB X.2 and imports Y.1 then depending on scope

setting the system will cache sharing will work as

Scope X.1 Y.1 X.2

A-own copy,B-own

IMPORTED A-own copy C-Shared w/X.2 copy,C-Shared from Y.1

FULL A-Shared with/X.* C-Shared w/X.2 A-Shared with/ X,B-
Shared w/X,C-Shared
from/Y.1

An example View definition with View Options

CREATE VIEW Person (
id varchar,
name varchar,
dob date,
PRIMARY KEY (id)
) OPTIONS (
MATERIALIZED 'TRUE',
UPDATABLE 'TRUE',
MATERIALIZED_TABLE 'materialized.PersonCached’,
"teiid_rel:MATVIEW_TTL" 20000,
"teiid_rel:ALLOW_MATVIEW_MANAGEMENT" 'true',
"teiid_rel:MATVIEW_LOADNUMBER_COLUMN" 'LoadNumber',
"teiid_rel:MATVIEW_STATUS_TABLE" 'materialized.status'
)
AS
SELECT p.id, p.name, p.dob FROM Source.Person AS p;

Materialization Management

When designing Views, you can define additional metadata and extension properties(refer to above section) on the views to
control the loading and refreshing of external materialization cache. This option provides a limited, but a powerful way to manage

the materialization views. Below we will list steps need to take to configure a View to be materialized.

1. Creation of Status Table

To manage and report the loading and refreshing activity of materialization of the view, a Materialized Table and Status Table
need be be defined in one of the source models in the VDB. Create these tables on the physical database, before you deploy the
VDB.

The below defines the DDL for creating the Status table.

CREATE TABLE status

(

VDBName (50) not o
VDBVersion (50) not o
SchemaName (50) not ,
Name () not 0
TargetSchemaName (50),
TargetName () not 0
Valid not 0

LoadState (25) not 7

Cardinality long,

Updated timestamp not 0

LoadNumber long not ,

NodeName (25) not 7

StaleCount long,

PRIMARY KEY (VDBName, VDBVersion, SchemaName, Name)
)i

Appendix-1: DDL for creating MatView Status Table contains a series of verified schemas against different RDBMS sources.

These can be modified to suit your database, please make sure the names and data types match exactly.

Some databases, such as MySQL with the InnoDB backend, may not allow a large primary key such as the
one for the status table. If you experience this, you should consider making the field sizes shorter (such as the
table name), using a different database to hold the status, or using a smaller index (for example just over
vdbname and vdbversion).

Warning

Description Status table:

Column Name Description
VDBName Name of VDB
VDB Version Version of VDB
SchemaName View’s Schema
TargetSchemaName Schema name of materialization Table
TargetName Name of materialization Table

true when view materialization contents are valid; false

Vel otherwise
Status of the View; LOADING, LOADED,

LoadState FAILED_LOAD. During the materialization load, this
status is set to LOADING, depending upon the success or
failure either LOADED or FAILED_LOAD is set.

Cardinality Number of rows loaded

Updated Time .sta_rnp_when the last update occurred on the
materialization contents

LoadNumber Count.er .to keep track of number of updates to the
materialization contents
Node name, which updated the materialization contents

NodeName
last

StaleCount Number updates counted against View, based on source

table changes when using LAZY-SNAPSHOT strategy.

2. Creation of View and Materialized Table

Define the View and its transformation a VDB’s model/schema. Then provide the extension properties on the View as defined in

View Options

Set the MATERIALIZED to 'TRUE'and the MATERIALIZED_TABLE point to a target table is necessary for external materialization,
UPDATABLE is optional, set it to "TRUE' if want the external materialized view be updatable, this must be set to true, if you want

to issue incremental eager updates to the view. Define the TTL to define the load/refresh semantics.

In an another PHYSICAL model in the VDB (where the Status table defined), define the Materialized table, where the
Materialized Table should have the same structure as View it is representing, with additional "LoadNumber" column with "long"

data type.

Once a View, which is defined with the above properties, is deployed, the following sequence of events will take place:

Tip Example VDB based on DDL is defined below for reference.

Materialization Table Loading

Upon deployment of the VDB to the Teiid server, SYSADMIN.loadMatView used to perform a complete refresh of materialized
table, this procedure reads the extension properties defined from View Options to customize the load. The following describes the

sequence of events that occur inside this procedure
1. Inserts/updates an entry in teiid_rel:MATVIEW_STATUS_TABLE , which indicates that the cache is being loaded.
2. Executes teiid_rel:MATVIEW_BEFORE_LOAD_SCRIPT if defined.
3. Runs a query to load the cache contents. This makes use of View’s transformation to load the contents.
4. Executes teiid_rel:MATVIEW_AFTER_LOAD_SCRIPT if defined.

5. Updates teiid_rel:MATVIEW_STATUS_TABLE entry to set materialized view status status to "LOADED" and valid. If failure

happens it will be marked as such.

The start/stop scripts are not cluster aware - that is they will run on each cluster member as the VDB is deployed.
When deploying into a clustered environment, the scripts should be written in such a way as to be cluster safe.

Tip
Once the first load of the materialized view, the update/refresh of the this View is controlled by the extension property
"MATVIEW_TTL" or "MATVIEW_MAX_STALENESS_PCT". Currently there are three different refresh types allowed

Refresh Type: TTL Based SNAPSHOT

Based on the MATVIEW_TTL extension property defined on View, when the time configured is elapsed from the time of finish of
loading the View, the whole view is reloaded automatically if the "ALLOW_MATVIEW_MANAGEMENT" property is set to
true. If the contents are externally managed additional properties are required. Note, that "MATVIEW_MAX_STALENESS_PCT"

is not provided in this case.

Refresh Type: LAZY SNAPSHOT

This is similar to TTL Based SNAPSHOT, but differs as to what triggers the reload of the view. Every source table update(s) is
captured in the Status table’s StaleCount column as single updated event, and when this updated count reaches or exceeds the
defined "MATVIEW_MAX_STALENESS_PCT" value, then a full refresh is triggered. The values of StaleCount/Cardinality are
used to calculate the percent of variance to invoke the trigger for refresh. Also note this refresh type only applies when view is
materialized to external sources. SYSADMIN.updateStaleCount procedure is used to increment the StaleCount counter. When

integrated with CDC technologies like Debezium (new feature coming..) this procedure is called automatically.

Refresh Type: EAGER

When a view refresh type is defined as "EAGER", the very first time the contents if the materialized view are loaded similar to
that of other types using the SYSADMIN.loadMatview procedure upon the deployment of the VDB. However, once the contents are
loaded, SYSADMIN.updateMatView can be used to perform a eager incremental update based on any criteria provided. If you
know that certain data points in the source system were changed after last full refresh of the materialized view, you can call this
procedure with a criteria based on the view that cover those changed values, and this procedure will update only those affected
rows in the materialized table instead of doing full snapshot update. This can save lot of time and resources and also keeps your

view materialization cache upto date with source system changes.

Note: This script is not invoked automatically by Teiid, as the source update events may be occurring outside of Teiid. This
procedure needs to be invoked by user, when he/she knows that there is change in the source systems. When CDC technologies

like Debezium is used (new feature coming..), this procedure can be automatically invoked to keep the the View contents fresh.

Appendix-1: DDL for creating MatView Status Table

h2

CREATE TABLE status

(

VDBName (50) not 5
VDBVersion (50) not ;
SchemaName (50) not ;
Name () not 5
TargetSchemaName (50),
TargetName () not 5
Valid not 5

LoadState (25) not 7

Cardinality long,

Updated timestamp not 7

LoadNumber long not ,

NodeName (25) not ,

StaleCount long,

PRIMARY KEY (VDBName, VDBVersion, SchemaName, Name)
)i

MariaDB

CREATE TABLE status

(

VDBName (50) not ,
VDBVersion (50) not ,
SchemaName (50) not ,
Name () not ,
TargetSchemaName (50),
TargetName () not ,
Valid not ,
LoadState (25) not ,
Cardinality ,

Updated timestamp not ,
LoadNumber not ,
NodeName (25) not ,
StaleCount ,

PRIMARY KEY (VDBName, VDBVersion, SchemaName, Name)
)i

Appendix-2: Example VDB with External Materialized View
Options

The below VDB defines three models, one "Source" model that defines your source database where your business data is in,
"ViewModel" defines a "Person" view which is derived from subset of the data from your table in the "Source" model’s table(s).
Note that view table also marked with few extension properties to allow external materialization. The "materialized" model
defines a source database model, where it has a table with exact table structure as the ViewModel’s materialized view with
additional column called "LoadNumber". Note the "materialized table also contains the "status" table. Both these tables must be
created manually on the source database before VDB is deployed to the server. The example below uses TTL_SNAPSHOT based

refresh.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<vdb name="example" version="1">
<model name="Source">
<source name="source" translator-name="h2" connection-jndi-name="java:/my-ds" />
</model>

<model name="ViewModel" type="VIRTUAL">
<metadata type="DDL"><![CDATA[
CREATE VIEW Person (
id varchar,
name varchar,
dob date,
PRIMARY KEY (id)
) OPTIONS (
MATERIALIZED 'TRUE', UPDATABLE 'TRUE',
MATERIALIZED_TABLE 'materialized.PersonCached',
"teiid_rel:MATVIEW_TTL" 20000,
"teiid_rel:ALLOW_MATVIEW_MANAGEMENT" 'true',
"teiid_rel:MATVIEW_LOADNUMBER_COLUMN" 'LoadNumber',
"teiid_rel:MATVIEW_STATUS_TABLE" 'materialized.status'
)
AS
SELECT p.id, p.name, p.dob FROM Source.Person AS p;
11>
</metadata>
</model>

<model name="materialized" type="PHYSICAL">
<source name="matview" translator-name="h2" connection-jndi-name="java:/matview-ds" />
<metadata type="DDL"><![CDATA[
CREATE VIEW PersonCached (
id varchar,
name varchar,
dob date,
LoadNumber long,
PRIMARY KEY (id)
)i
CREATE TABLE status (
VDBName varchar(50) not null,
VDBVersion varchar(50) not null,
SchemaName varchar(50) not null,
Name varchar(256) not null,
TargetSchemaName varchar(50),
TargetName varchar(256) not null,
Valid boolean not null,
LoadState varchar(25) not null,
Cardinality long,
Updated timestamp not null,
LoadNumber long not null,
NodeName varchar(25) not null,
StaleCount long,
PRIMARY KEY (VDBName, VDBVersion, SchemaName, Name)
) OPTIONS (UPDATABLE true);
11>
</metadata>
</model>
</vdb>

Internal Materialization

Internal materialization creates Teiid temporary tables to hold the materialized table. While these tables are not fully durable, they
perform well in most circumstances and the data is present at each Teiid instance which removes the single point of failure and

network overhead of an external database. Internal materialization also provides built-in facilities for refreshing and monitoring.
See Memory Limitations regarding size limitations.

Table of Contents
e View Options
e Loading And Refreshing
o Using System Procedure
o Using TTL Snapshot Refresh
e Updatable
e Indexes

e Clustering Considerations

View Options

The materialized option must be set for the view to be materialized. The Cache Hint, when used in the context of an internal
materialized view transformation query, provides the ability to fine tune the materialized table. The caching options are also

settable via extension metadata:

Property Name Description Optional

materialized Set for the view to be materialized false true

Allow updating Materialized View via

DML UPDATE true e

UPDATABLE

Allow Teiid based management of the
teiid_rel: ALLOW_MATVIEW_MANAGEMENT ttl and initial load rather than the true false
implicit behavior.

Same as the pref_mem cache hint

. true false
option.

teiid_rel:MATVIEW_PREFER_MEMEORY

Trigger a Scheduled ExecutorService
teiid_rel:MATVIEW_TTL which execute refreshMatView true null
repeatedly with a specified time to live

Allow updating Materialized View via
teiid_rel: MATVIEW_UPDATABLE refreshMatView, refreshMatViewRow, true false.
refreshMatViewRows

teiid_rel:MATVIEW_SCOPE Same as the scope cache hint option. true VDB

When true Teiid will perform both the
underlying update and the
corresponding update against the
materialization target for an
insert/update/delete issued against the
view.

teiid_re:MATVIEW_WRITE_THROUGH true false

teiid_rel:MATVIEW_POLLING_QUERY

teiid_rel:MATVIEW_POLLING_INTERVAL

teiid_rel:MATVIEW_PART LOAD_COLUMN

teiid_re:MATVIEW_PART LOAD_VALUES

This property defines a query that must
return a single timestamp value. If the
value is greater than the last update
time of the materialization table, it will
be reloaded.

This property defines the polling
interval, in milliseconds, used with the
polling query.

This property defines the partitioned
load column. If specified the default
load strategy will be updated to refresh
the materialization one partition at a
time. NOTE: this does not yet work for
the initial load. This must specify a
column that exists on the view and it
must be of a comparable type that is
convertable to string values.

If
MATVIEW_PART_LOAD_COLUMN
is specified, this may be a query
expression that returns a single column
providing the partition values. e.g. for
multi-source you can get the source
names via the query "select s.name
from (exec
sysadmin.schemaSources('schema
name')) s"

true

true

true

true

n/a

60000

n/a

the distinct
MATVIEW
selected wil

The pref_mem option also applies to internal materialized views. Internal table index pages already have a memory preference, so

the perf_mem option indicates that the data pages should prefer memory as well.

All internal materialized view refresh and updates happen atomically. Internal materialized views support READ_COMMITTED
(used also for READ_UNCOMMITED) and SERIALIZABLE (used also for REPEATABLE_READ) transaction isolation levels.

A sample VDB defining an internal materialization

<?xml version="

<vdb name="saki

<model name

<source name="pg" translator-name="postgresql" connection-jndi-name="java:/sakila-ds"/>

</model>

<model name
<metadata t
CREATE
acto

firs

last

last

) OPTIO

AS SELECT actor_id, first_name, last_name, last_update from pg

11>
</metadata>
</model>
</vdb>

1.0" encoding="UTF-8" standalone="yes

la" version="1">

="pg">

="sakila" type="VIRTUAL">
ype="DDL"><![CDATA[

VIEW actor (

r_id integer,

t_name varchar(45) NOT NULL,

_name varchar(45) NOT NULL,
_update timestamp NOT NULL

NS (materialized true,
UPDATABLE 'TRUE',
"teiid_rel:MATVIEW_TTL" 120000,

"teiid_rel:MATVIEW_PREFER_MEMORY" 'true',
"teiid_rel:ALLOW_MATVIEW_MANAGEMENT" 'true',

"teiid_rel:MATVIEW_UPDATABLE" 'true',
"teiid_rel:MATVIEW_SCOPE" 'vdb')

."public".actor;

Loading And Refreshing

An internal materialized view table is initially in an invalid state (there is no data).
e If teiid_rel:ALLOW_MATVIEW_MANAGEMENT is specified as true, then the initial load will occur on vdb startup.

e If teiid_rel:ALLOW_MATVIEW_MANAGEMENT is not specified or false, then the load of the materialization table will occur on

implicit on the first query that accesses the table.

When a refresh happens while the materialization table is invalid all other queries against the materialized view will block until

the load completes.

Using System Procedure

In some situations administrators may wish to better control when the cache is loaded with a call to SYSADMIN.refreshMatview .
The initial load may itself trigger the initial load of dependent materialized views. After the initial load user queries against the
materialized view table will only block if it is in an invalid state. The valid state may also be controlled through the

SYSADMIN.refreshMatView pFOCEdUF&

Invalidating Refresh

CALL SYSADMIN.refreshMatView(viewname=>'schema.matview', invalidate=>)

matview will be refreshed and user queries will block until the refresh is complete (or fails).

While the initial load may trigger a transitive loading of dependent materialized views, subsequent refreshes performed with
refreshMatview will use dependent materialized view tables if they exist. Only one load may occur at a time. If a load is already
in progress when the SYSADMIN.refreshMatview procedure is called, it will return -1 immediately rather than preempting the

current load.

Using TTL Snapshot Refresh

The Cache Hint or extension properties may be used to automatically trigger a full snapshot refresh after a specified time to live

(tt). The behavior is different depending on whether the materialization is managed or non-managed.

For non-managed views the ttl starts from the time the table is finished loading and the refresh will be initiated after the ttl has

expired on a view access.
For managed views the ttl is a fixed interval and refreshes will be triggered regardless of view usage.

In either case the refresh is equivalent to CALL SYSADMIN.refreshMatview('view name', *) , where the invalidation behavior * is
determined by the vdb property lazy-invalidate. By default ttl refreshes are invalidating, which will cause other user queries to
block while loading. That is once the ttl has expired, the next access will be required to refresh the materialized table in a blocking
manner. If you would rather that the ttl is enforced lazily, such that the current contents are not replaced until the refresh

completes, set the vdb property lazy-invalidate=true.

Auto-refresh Transformation Query*

select t.col, ti.col from t, t1 where t.id = t1.id

The resulting materialized view will be reloaded every hour (3600000 milliseconds).

TTL Snapshot Refresh Limitations

e The automatic ttl refresh may not be suitable for complex loading scenarios as nested materialized views will be used by the

refresh query.

e The non-managed ttl refresh is performed lazily, that is it is only trigger by using the table after the ttl has expired. For

infrequently used tables with long load times, this means that data may be used well past the intended ttl.

Updatable

In advanced use-cases the cache hint may also be used to mark an internal materialized view as updatable. An updatable internal
materialized view may use the SYSADMIN.refreshMatviewRow procedure to update a single row in the materialized table. If the
source row exists, the materialized view table row will be updated. If the source row does not exist, the correpsonding
materialized row will be deleted. To be updatable the materialized view must have a single column primary key. Composite keys

are not yet supported by SYSADMIN.refreshMatViewRow . Transformation Query:

/*+ cache(updatable) */ select t.col, ti.col from t, tl1 where t.id = t1.id

Update SQL:

CALL SYSADMIN.refreshMatViewRow(viewname=>'schema.matview', key=>5)

Given that the schema.matview defines an integer column col as its primary key, the update will check the live source(s) for the

row values.

The update query will not use dependent materialized view tables, so care should be taken to ensure that getting a single row from
this transformation query performs well. See the Reference Guide for information on controlling dependent joins, which may be
applicable to increasing the performance of retrieving a single row. The refresh query does use nested caches, so this refresh

method should be used with caution.

When the updatable option is not specified, accessing the materialized view table is more efficient because modifications do not
need to be considered. Therefore, only specify the updatable option if row based incremental updates are needed. Even when

performing row updates, full snapshot refreshes may be needed to ensure consistency.

The Eventdistributor also exposes the updateMatViewRow as a lower level API for Programmatic Control - care should be

taken when using this update method.

Indexes

Internal materialized view tables will automatically create a unique index for each unique constraint and a non-unique index for
each index defined on the materialized view. The primary key (if it exists) of the view will automatically be part of a clustered

index.

The secondary indexes are always created as ordered trees - bitmap or hash indexes are not supported. Teiid’s metadata for
indexes is currently limited. We are not currently able to capture additional information, sort direction, additional columns to

cover, etc. You may workaround some of these limitations though.

e Function based index are supported, but can only be specified through DDL metadata. If you are not using DDL metadata,
consider adding another column to the view that projects the function expression, then place an index on that new column.

Queries to the view will need to be modified as appropriate though to make use of the new column/index.

e If additional covered columns are needed, they may simply be added to the index columns. This however is only applicable
to comparable types. Adding additional columns will increase the amount of space used by the index, but may allow its usage

to result in higher performance when only the covered columns are used and the main table is not consulted.

Clustering Considerations

Each member in a cluster maintains its own copy of each materialized table and associated indexes. An attempt is made to ensure
each member receives the same full refresh events as the others. Full consistency for updatable materialized views however is not

guaranteed. Periodic full refreshes of updatable materialized view tables helps ensure consistency among members.

Code Table Caching

Teiid provides a short cut to creating an internal materialized view table via the lookup function.

The lookup function provides a way to accelerate getting a value out of a table when a key value is provided. The function
automatically caches all of the key/return pairs for the referenced table. This caching is performed on demand, but will
proactively load the results to other members in a cluster. Subsequent lookups against the same table using the same key and

return columns will use the cached information.

This caching solution is appropriate for integration of "reference data" with transactional or operational data. Reference data is
usually static and small data sets that are used frequently. Examples are ISO country codes, state codes, and different types of

financial instrument identifiers.

Usage

This caching mechanism is automatically invoked when the lookup scalar function is used. The lookup function returns a scalar
value, so it may be used anywhere an expression is expected. Each time this function is called with a unique combination of

referenced table, return column, and key column (the first 3 arguments to the function).
See the Lookup Function in the Reference Guide for more information on use of the lookup function.

Country Code Lookup

lookup('ISOCountryCodes', 'CountryCode', 'CountryName', 'United States')

Limitations
e The use of the lookup function automatically performs caching; there is no option to use the lookup function and not perform
caching.
e No mechanism is provided to refresh code tables

e Only a single key/return column is cached - values will not be session/user specific.

Materialized View Alternative

The lookup function is a shortcut to create an internal materialized view with an appropriate primary key. In many situations, it

may be better to directly create the analogous materialized view rather than to use a code table.

Country Code Lookup Against A Mat View

SELECT (SELECT CountryCode From MatISOCountryCodes WHERE CountryName = tbl.CountryName) as cc FROM tbl

Here MatISOCountryCodes is a view selecting from ISOCountryCodes that has been marked as materialized and has a primary

key and index on CountryName. The scalar subquery will use the index to lookup the country code for each country name in tbl.
Reasons to use a materialized view:

e More control of the possible return columns. Code tables will create a materialized view for each key/value pair. If there are

multiple return columns it would be better to have a single materialized view.

e Proper materialized views have built-in system procedure/table support.

e More control via the cache hint.

e The ability to use OPTION NOCACHE.

e There is almost no performance difference.
Steps to create a materialized view:

1. Create a view selecting the appropriate columns from the desired table. In general, this view may have an arbitrarily

complicated transformation query.
2. Designate the appropriate column(s) as the primary key. Additional indexes can be added if needed.
3. Set the materialized property to true.

4. Add a cache hint to the transformation query. To mimic the behavior of the implicit internal materialized view created by the
lookup function, use the Hints and Options /*+ cache(pref_mem) */ to indicate that the table data pages should prefer to

remain in memory.

Just as with the lookup function, the materialized view table will be created on first use and reused subsequently. See the

Materialized Views for more.

Translator Results Caching

Translators can contribute cache entries into the result set cache via the use of the cachebirective object. The resulting cache

entries behave just as if they were created by a user query. See the Translator Caching API for more on this feature.

Cache Hint

A query cache hint can be used to:
e Indicate that a user query is eligible for result set caching and set the cache entry memory preference, time to live, etc.
e Set the materialized view memory preference, time to live, or updatablity.

e Indicate that a virtual procedure should be cachable and set the cache entry memory preference, time to live, etc.

/*+ cache[([pref_mem] [ttl:n] [updatable] [scope:session|user|vdb])]*/ sql ...

e The cache hint should appear at the beginning of the SQL. It can be appear as any one of the leading comments. It will not
have any affect on INSERT/UPDATE/DELETE statements or INSTEAD OF TRIGGERS.

e pref_mem- if present indicates that the cached results should prefer to remain in memory. The results may still be paged out

based upon memory pressure.

Care should be taken to not over use the pref_mem option. The memory preference is implemented with Java soft
references. While soft references are effective at preventing out of memory conditions. Too much memory held
by soft references can limit the effective working memory. Consult your JVM options for clearing soft references
if you need to tune their behavior.

Note

e (tl:n- if present n indicates the time to live value in milliseconds. The default value for result set caching is the default

expiration for the corresponding Infinispan cache. There is no default time to live for materialized views.

e updatable- if present indicates that the cached results can be updated. This defaults to false for materialized views and to true

for result set cache entries.

e scope- There are three different cache scopes: session - cached only for current session, user - cached for any session by the
current user, vdb - cached for any user connected to the same vdb. For cached queries the presence of the scope overrides the

computed scope. Materialized views can only be the vdb scope.

The pref_mem, ttl, updatable, and scope values for a materialized view may also be set via extension properties on the view -
using the teiid_rel namespace with MATVIEW_PREFER_MEMORY, MATVIEW_TTL, MATVIEW_UPDATABLE, and
MATVIEW_SCOPE respectively. If both are present, the use of an extension property supersedes the usage of the cache hint.

Limitations

The form of the query hint must be matched exactly for the hint to have affect. For a user query if the hint is not specified
correctly, e.g. /*+ cach(pref_mem) */ , it will not be used by the engine nor will there be an informational log. It is currently
recommended that you verify (see Client Developers Guide) in your testing that the user command in the query plan has retained

the proper hint.

OPTION NOCACHE

Individual queries may override the use of cached results by specifying oPTION NocAcHE on the query. O or more fully qualified
view or procedure names may be specified to exclude using their cached results. If no names are specified, cached results will not

be used transitively.

Full NOCACHE

SELECT * from vgl, vg2, vg3 WHERE .. OPTION NOCACHE

No cached results will be used at all.

Specific NOCACHE

SELECT * from vgl, vg2, vg3 WHERE .. OPTION NOCACHE vgl, vg3

Only the vg1 and vg3 caches will be skipped, vg2 or any cached results nested under vg1 and vg3 will be used.

OPTION NOCACHE may be specified in procedure or view definitions. In that way, transformations can specify to always use real-

time data obtained directly from sources.

Programmatic Control

Teiid exposes a bean that implements the org.teiid.events.EventDistributor interface. It can be looked up in JNDI under the name
teiid/event-distributor-factory. The EventDistributor exposes methods like dataModification (which affects result set caching)
or updateMatViewRow (which affects internal materialization) to alert the Teiid engine that the underlying source data has been
modified. These operations, which work cluster wide will invalidate the cache entries appropriately and reload the new cache

contents.

Change Data Capture - If your source system has any built-in change data capture facilities that can scrape logs,
Note install triggers, etc. to capture data change events, they can captured and can be propagated to Teiid engine
through a pojo bean/MDB/Session Bean deployed in WildFly engine.

The below shows a code example as how user can use EventDistributor interface in their own code that is deployed in the
same WildFly VM using a Pojo/MDB/Session Bean. Consult WildFly documents deploying as bean as they out of scope for this

document.

EventDistributor Code Example

public class ChangeDataCapture {

public void invalidate {
InitialContext ic = new InitialContext();
EventDistributor ed = ((EventDistributorFactory)ic.lookup("teiid/event-distributor-factory")).getEventD
istributor();

// this below line indicates that Customer table in the "model-name" schema has been changed.
// this result in cache reload.
ed.dataModification("vdb-name", "version", "model-name", "Customer");

Updating Costing information - The EventDistributor interface also exposes many methods that can be used to
Note update the costing information on your source models for optimized query planning. Note that these values
volatile and will be lost during a cluster re-start, as there is no repository to persist.

Developing clients for Teiid
This guide intended for developers that are trying to write 3rd party applications that interact with Teiid. You can find information
about connection mechanisms, extensions to the JDBC API, ODBC, SSL and so forth.

Before one can delve into Teiid it is very important to learn few basic constructs of Teiid, like what is VDB? what is Model? etc.

For that please read the short introduction.

http://teiid.io/about/basics/

JDBC compatibility

Teiid provides a robust JDBC driver that implements most of the JDBC API according to the latest specification and compatible
Java version. Most tooling designed to work with JDBC should work seamlessly with the Teiid driver. When in doubt, see

Incompatible JDBC Methods for functionality that has yet to be implemented.

If your needs go beyond JDBC, Teiid has also provided JDBC Extensions for asynch handling, federation, and other features.

Generated Keys

Teiid can return generated keys for JDBC sources and from Teiid temp tables with SERTAL primary key columns. However the
current implementation will return only the last set of keys generated and will return the key results directly from the source - no
view projection of other intermediate handling is performed. For most scenarios (single source inserts) this handling is sufficient.
A custom solution may need to be developed if you are using a FOR EACH ROW instead of trigger to process your inserts and
target multiple tables that each return generated keys. It is possible to develop a UDF that also manipulates the returned generated

keys - see the org.teiid.CommandContext methods dealing with generated keys for more.

Note You cannot use Generated Keys when the JDBC Batched updates is used to insert the values into the source table.

Connecting to a Teiid Server

The Teiid JDBC API provides Java Database Connectivity (JDBC) access to a Virtual Database (VDB) deployed on Teiid. The
Teiid JDBC API is compatible with the JDBC 4.0 specification; however, it is not compatible with some methods. You cannot use

some advanced features, such as updatable result sets or SQL3 data types.

Java client applications connecting to a Teiid Server will need to use at least the Java 1.8 JDK. Earlier versions of Java are not

compatible. You may attempt to use a client driver from earlier Teiid versions that were compatible with the target JRE.
Support for Teiid clients and servers older than version 8 has been dropped from Teiid 10.2 and later.
Before you can connect to the Teiid Server using the Teiid JDBC API, please do following tasks.

1. Install the Teiid Server. See the "Admin Guide" for instructions.

2. Build a Virtual Database (VDB). Check the "Reference Guide" for instructions on how to build a VDB. If you do not know
what VDB is, then start with this document.

3. Deploy the VDB into Teiid Server. Check Administrator’s Guide for instructions.
4. Start the Teiid Server (WildFly), if it is not already running.

After you deploy the virtual database, client applications can connect to it and issue SQL queries against it using the JDBC API. If
you are new to JDBC, refer to the Java documentation about JDBC. Teiid ships with teiid-VERSION_NUMBER-jdbc.jar that is

available from the Teiid.io downloads.

You can also obtain the Teiid JDBC from the Maven repository at https://oss.sonatype.org/content/repositories/releases/ using the

coordinates:

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid</artifactId>
<classifier>jdbc</classifier>
<version>$versionNumber</version>
</dependency>

where versionNumber is the version of the most recent Teiid release.
Important classes in the client JAR:

® org.teiid.jdbc.Teiidbriver - allows JDBC connections using the DriverManager class.

® org.teiid.jdbc.TeiidDatasource - allows JDBC connections using the DataSource X ADataSource class. You should use

this class to create managed or XA connections.

Once you have established a connection with the Teiid Server, you can use standard JDBC API classes to interrogate metadata and

execute queries.

OpenTracing compatibility

OpenTracing is optional for the client driver. For remote connections to propagate the span the driver must have the appropriate

OpenTracing jars in its classpath. This can be done via a maven dependency:

<dependency>
<groupId>io.opentracing</groupId>
<artifactId>opentracing-util</artifactId>
<version>${version.opentracing}</version>

http://www.jboss.org/teiid/basics/virtualdatabases.html
http://docs.oracle.com/javase/tutorial/jdbc/index.html
http://teiid.io/teiid_wildfly/downloads/
https://oss.sonatype.org/content/repositories/releases/
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DriverManager.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/DataSource.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/XADataSource.html
http://opentracing.io/

</dependency>

where version.opentracing is defined in the project integration bom.

Alternately, you can manually include the opentracing-util , opentracing-api , and opentracing-noop jar files as needed by

the tooling or other environment where the Teiid client jar is utilized.

OpenTracing support in the client and server requires that the respective runtimes have an appropriate tracing client installed and
available via the GlobalTracer.

Driver Connection

Use org.teiid.jdbc.TeiidDriver as the driver class.

Use the following URL format for JDBC connections:

jdbc:teiid:<vdb-name>[@mm[s]:

The JDBC client will have both JRE and server compatibility considerations. Unless otherwise stated a client jar
Note will typically be forward and backwards compatible with one major version of the server. You should attempt to
keep the client up-to-date though as fixes and features are made on to the client.

URL Components

1. <vdb-name> - Name of the VDB you are connecting to. Optionally VDB name can also contain version information inside it.
For example: "myvdb.2", this is equivalent to supplying the "version=2" connection property defined below. However, use of

vdb name in this format and the "version" property at the same time is not allowed.
2. mm - defines Teiid JDBC protocol, mms defines a secure channel (see SSL Client Connections for more)

3. <host> - defines the server where the Teiid Server is installed. If you are using IPv6 binding address as the host name, place

it in square brackets. ex:[::1]
4. <port> - defines the port on which the Teiid Server is listening for incoming JDBC connections.

5. [prop-name=prop-value] - additionally you can supply any number of name value pairs separated by semi-colon [;]. All
compatible URL properties are defined in the connection properties section. Property values should be URL encoded if they

contain reserved characters, e.g. (’?’, '=', '}, etc.)

Note host and port may be a comma separated list to specify multiple hosts.

Local Connections

To make a in-VM connection, omit the protocol and host/port: jdbc:teiid:vdb-name;props

For local WildFly deployments it’s preferred to configure the DataSource as an in-VM rather than socket based connection.

URL Connection Properties

The following table shows all the connection properties that you can use with Teiid JDBC Driver URL connection string, or on the
Teiid JDBC Data Source class.

Table 1. Connection Properties

Property Name Type Description
PRl e RS el Name Ojf the client application; allows the administrator to identi
connections
S - Size of the resultset; The default size if 500. <=0 indicates that th
should be used.
R NG 2 boolean Enable/disable partial results mode. Default false. See the Partial

Mode section.

autoCommitTxn

disablelLocalTxn

user

Password

ansiQuotedIdentifiers

version

resultSetCacheMode

autoFailover

SHOWPLAN

NoExec

PassthroughAuthentication

useCallingThread

QueryTimeout

String

boolean

String

String

boolean

integer

boolean

boolean

String

String

boolean

boolean

integer

Only applies only when "autoCommit" is set to "true". This dete
executed command needs to be transactionally wrapped inside th
engine to maintain the data integrity.

e ON - Always wrap command in distributed transaction
e OFF - Never wrap command in distributed transaction

e DETECT (default)- If the executed command is spanning
source it automatically uses distributed transaction. Transac
more information.

If "true", the autoCommit setting, commit and rollback will be ig
local transactions. Default false.

User name

Credential for user

Sets the parsing behavior for double quoted entries in SQL. The
parses doubled quoted entries as identifiers. If set to false, then d
values that are valid string literals will be parsed as string literals

Version number of the VDB

ResultSet caching is turned on/off. Default false.

If true, will automatically select a new server instance after a cor
exception. Default false. This is typically not needed when conne
managed, as the connection can be purged from the pool. If true

mode, connections will reconnect to a newer VDB of the same n

(typically not set as a connection property) Can be ON, OFF,DE]
e ON returns the query plan along with the results

e DEBUG additionally prints the query planner debug inform
log and returns it with the results. Both the plan and the log
through JDBC API extensions.

e Default OFF.

(typically not set as a connection property) Can be ON, OFF; O}
query execution, but parsing and planning will still occur. Defau!

Only applies to "local" connections. When this option is set to "t
Teiid looks for already authenticated security context on the calli
one found it uses that users credentials to create session. Teiid al:
that the same user is using this connection during the life of the c
it finds a different security context on the calling thread, it switct
identity on the connection, if the new user is also eligible to log i
otherwise connection fails to execute.

Only applies to "local" connections. When this option is set to "t
default), then the calling thread will be used to process the query
then an engine thread will be used.

Default query timeout in seconds. Must be >= 0. 0 indicates no ti
be overriden by statement.setQueryTimeout . Default 0.

useJDBC4ColumnNameAndLabelSemantics

jaasName

kerberosServicePrincipleName

encryptRequest

disableResultSetFetchSize

loginTimeout

reportAsViews

boolean

String

String

boolean

boolean

integer

boolean

A change was made in JDBC4 to return unaliased column names
ResultSetMetadata column name. Prior to this, if a column alias
was returned as the column name. Setting this property to false v
backwards compatibility with JDBC3 and earlier. Defaults to tru

JAAS configuration name. Only applies when configuring a GS¢
authentication. Defaults to Teiid. See the Security Guide for coni
required for GSS.

Kerberos authenticated principle name. Only applies when confi;
authentication. See the Security Guide for configuration requirec

Only applies to non-SSL socket connections. When "true" the re
message and any associate payload will be encrypted using the ¢
cryptor. Default false.

In some situations tooling may choose undesirable fetch sizes fol
results. Set to true to disable honoring ResultSet.setFetchSize. D

The login timeout in seconds. Must be >= 0. 0 indicates no speci
but other timeouts may apply. If a connection cannot be created i
approximately the the timeout value an exception will be thrown
0 does not mean that the login will wait indefinitely. Typically if
vdb cannot be found, the login will fail at that time. Local conne:
specify a vdb version however can wait by default for up to the t
in the property

org.teiid.clientVdbLoad TimeoutMillis[org.teiid.clientVdbLoad T

If DatabaseMetaData will report Teiid views as a VIEW table ty]
then Teiid views will be reported as a TABLE. Default true.

DataSource Connection

To use a data source based connection, use org.teiid.jdbc.TeiidDataSource as the data source class. The TeiidbataSource is

also an XADatasource. Teiid DataSource class is also Serializable, so it possible for it to be used with JNDI naming services.
Teiid is compatible with the XA protocol, XA transactions will be extended to Teiid sources that support XA.

All the properties (except for version, which is known on TeiidDataSource as DatabaseVersion) defined in the Driver
Connection#URL Connection Properties have corresponding "set" methods on the org.teiid.jdbc.TeiidbataSource . Properties

that are assumed from the URL string have additional "set" methods, which are described in the following table.

Table 1. Datasource Properties

Property Name Type Description

The name of a virtual database
(VDB) deployed to Teiid. Optionally
Database name can also contain
"DatabaseVersion" information
inside it. For example: "myvdb.2",

DatabaseName String this is equivalent to supplying the
"DatabaseVersion" property set to
value of 2. However, use of Database
name in this format and use of
DatabaseVersion property at the same
time is not allowed.

Server hostname where the Teiid

runtime installed. If you are using
ServerName String IPv6 binding address as the host

name, place it in square brackets. ex:

[::1]

Optional delimited list of host:port
entries. See the Using Multiple Hosts
for more information. If you are
using IPv6 binding address as the
host name, place them in square
brackets. ex:[::1]

AlternateServers String

Optional setting of properties that has
AdditionalProperties String the same format as the property
string in a connection URL.

Port number on which the Server

PortNumber integer L X
process is listening on.

Secure connection. Flag to indicate
secure boolean to use SSL (mms) based connection
between client and server

DatabaseVersion integer VDB version

DataSourceName String Name given to this data source

Additional Properties - All the properties from URL Connection Properties can be used on DataSource using the
AdditionalProperties setter method if the corresponding setter method is not already available. For example, you

can add "useCallingThread" property as <xa-datasource-property
name="AdditionalProperties">useCallingThread=false</xa-datasource-property>

Note

Connecting to a Teiid Server

147

Standalone Application

To use either Driver or DataSource based connections, add the client JAR to your Java client application’s classpath. See the

simple client example in the kit for a full Java sample of the following.

Driver Connection

Sample Code:

public class TeiidClient {
public Connection getConnection throws Exception {
String url = "jdbc:teiid:myVDB@mm://localhost:31000;ApplicationName=myApp";
return DriverManager.getConnection(url, user, password);

Datasource Connection

Sample Code:

public class TeiidClient {
public Connection getConnection throws Exception {

TeiidDataSource ds = new TeiidDataSource();
ds.setUser (user);
ds.setPassword(password);
ds.setServerName("localhost");
ds.setPortNumber ();
ds.setDatabaseName("'myVDB");
return ds.getConnection();

WildFly DataSource

Teiid can be configured as a JDBC data source in a WildFly Server to be accessed from JNDI or injected into your JEE
applications. Deploying Teiid as data source in WildFly is exactly same as deploying any other RDBMS resources like Oracle or
DB2.

Defining as data source is not limited to WildFly, you can also deploy as data source in Glassfish, Tomcat, Websphere, Weblogic
etc servers, however their configuration files are different than WildFly. Consult the respective documentation of the environment

in which you are deploying.

A special case exists if the Teiid instance you are connecting to is in the same VM as the WildFly instance. If that matches you

deployment, then follow the Local JDBC Connection instructions
Installation Steps

1. If you are working with an AS instance that already has Teiid installed then required module / jar files are already installed. If
the AS instance does not have Teiid installed, then you should create a module for the client jar. Under the path

module/org/jboss/teiid/client add the client jar and a module.xml defined as:

Sample Teiid Client Module

<module xmlns="urn:jboss:module:1.1" name="org.jboss.teiid.client">
<resources>
<resource-root path="teiid-{version}-jdbc.jar"/>
</resources>

<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>

</dependencies>
</module>
Note Prior to Teiid 8.12.3 a module dependency on sun.jdk was also required.

2. Use the CLI or edit the standalone-teiid.xml or domain-teiid.xml file and add a datasource into the "datasources"

subsystem.

Based on the type of deployment (XA, driver, or local), the contents of this will be different. See the following sections for more.

The data source will then be accessible through the JNDI name specified in the below configuration.

DataSource Connection

Make sure you know the correct DatabaseName, ServerName, Port number and credentials that are specific to your deployment

environment.

Sample XADataSource in the WildFly using the Teiid DataSource class org.teiid.jdbc.TeiidDataSource

<datasources>
<xa-datasource jndi-name="java:/teiidDS" pool-name="teiidDS" enabled="true" use-java-context="true" use
-ccm="true">

<xa-datasource-property name="PortNumber">31000</xa-datasource-property>
<xa-datasource-property name="DatabaseName">{db-name}</xa-datasource-property>
<xa-datasource-property name="ServerName">{host}</xa-datasource-property>

<driver>teiid</driver>
<xa-pool>
<min-pool-size>10</min-pool-size>

<max-pool-size>20</max-pool-size>
<is-same-rm-override>true</is-same-rm-override>
<prefill>false</prefill>
<use-strict-min>false</use-strict-min>
<flush-strategy>FailingConnectionOnly</flush-strategy>
<no-tx-separate-pools/>
</xa-pool>
<security>
<user-name>{user}</user-name>
<password>{password}</password>
</security>
</xa-datasource>
<drivers>
<driver name="teiid" module="org.jboss.teiid.client">
<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>
<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>
</driver>
</drivers>
</datasources>

Driver based connection
You can also use Teiid’s JDBC driver class org.teiid.jdbc.TeiidDriver to create a data source

<datasources>
<datasource jndi-name="java:/teiidDS" pool-name="teiidDS">
<connection-url>jdbc:teiid: {vdb}@mm://{host}:31000</connection-url>
<driver>teiid</driver>
<pool>
<prefill>false</prefill>
<use-strict-min>false</use-strict-min>
<flush-strategy>FailingConnectionOnly</flush-strategy>
</pool>
<security>
<user-name>{user}</user-name>
<password>{password}</password>
</security>
</datasource>
<drivers>
<driver name="teiid" module="org.jboss.teiid.client">
<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>
<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>
</driver>
</drivers>
</datasources>

Local JDBC Connection

If you are deploying your client application on the same WildFly instance as the Teiid runtime is installed, then you will want to
configure the connection to by-pass making a socket based JDBC connection. By using a slightly different data source

configuration to make a "local" connection, the JDBC API will lookup a local Teiid runtime in the same VM.

Since DataSources start before Teiid VDBs are deployed, leave the min pool size of 0 for local connections.
Otherwise errors may occur on the startup of the Teiid DataSource. Also note that local connections
specifying a VDB version will wait for their VDB to be loaded before allowing a connection. See
loginTimeout and the org.teiid.clientVdbLoadTimeoutMillis system property.

Warning

Do not include any additional copy of Teiid jars in the application classload that is utilizing the local
Warning connection. Even if the exact same version of the client jar is included in your application classloader, you
will fail to connect to the local connection with a class cast exception.

By default local connections use their calling thread to perform processing operations rather than using an engine
Note thread while the calling thread is blocked. To disable this behavior set the connection property
useCallingThreads=false. The default is true, and is recommended in transactional queries.

Local data source

<datasources>
<datasource jndi-name="java:/teiidDS" pool-name="teiidDS">
<connection-url>jdbc:teiid:{vdb}</connection-url>
<driver>teiid-local</driver>
<pool>
<prefill>false</prefill>
<use-strict-min>false</use-strict-min>
<flush-strategy>FailingConnectionOnly</flush-strategy>
</pool>
<security>
<user-name>{user}</user-name>
<password>{password}</password>
</security>
</datasource>
<drivers>
<driver name="teiid-local" module="org.jboss.teiid">
<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>
<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>
</driver>
</drivers>
</datasources>

This is essentially the same as the XA configuration, but "ServerName" and "PortNumber" are not specified. Local connections

have additional features such as using PassthroughAuthentication

Using Multiple Hosts

A group of Teiid Servers in the same WildFly cluster may be connected using failover and load-balancing features.

External HA / Load Balancers

You may choose to use an external tcp load balancer, such as haproxy. The Teiid driver/DataSource should then typically be

configured to just use the single host/port of your load balancer.

Even if you configure the load balancer to redirect when there is a failed host, that will not maintain the Teiid session state. If you
wish to keep the connection alive, then use the autoFailover feature discussed below. Otherwise the other Teiid Client Features

are not necessary when using an external load balancer.

Teiid Client Features

To enable theses features in their simplest form, the client needs to specify multiple host name and port number combinations on

the URL connection string.

Example URL connection string

jdbc:teiid:<vdb-name>@mm:

If you are using a DataSource to connect to Teiid Server, use the "AlternateServers" property/method to define the failover

servers. The format is also a comma separated list of host:port combinations.

The client will randomly pick one the Teiid server from the list and establish a session with that server. If that server cannot be
contacted, then a connection will be attempted to each of the remaining servers in random order. This allows for both connection

time fail-over and random server selection load balancing.

Fail Over

Post connection fail over will be used if the autoFailover connection property on JDBC URL is set to true. Post connection
failover works by sending a ping, at most every second, to test the connection prior to use. If the ping fails, a new instance will be

selected prior to the operation being attempted.

This is not true "transparent application failover" as the client will not restart the transaction/query/recreate session scoped temp

tables, etc. So this feature should be used with caution.

https://www.haproxy.org/

Client SSL Settings

The following sections define the properties required for each SSL mode. Note that when connecting to Teiid Server with SSL

enabled, you MUST use the "mms" protocol, instead of "mm" in the JDBC connection URL, for example

Note Anonymous SSL mode is not provided for some JREs, see the Teiid Server Transport Security for alternatives.

jdbc:teiid:<myVdb>@mms:

There are two different sets of properties that a client can configure to enable 1-way or 2-way SSL.

See also the Teiid Server Transport Security chapter if you are responsible for configuring the server as well.

Option 1: Java SSL properties

These are standard Java defined system properties to configure the SSL under any JVM, Teiid is not unique in its use of SSL.

Provide the following system properties to the client VM process.

1-way SSL

-Djavax.net.
-Djavax.net.
-Djavax.net.

2-way SSL

-Djavax.net.
-Djavax.net.
-Djavax.net.
-Djavax.net.
-Djavax.net.

ssl.
ssl.
ssl.

ssl.
ssl.
ssl.
ssl.
ssl.

trustStore=<dir>/server.truststore (required)
trustStorePassword=<password> (optional)
keyStoreType (optional)

keyStore=<dir>/client.keystore (required)
keyStrorePassword=<password> (optional)
trustStore=<dir>/server.truststore (required)
trustStorePassword=<password> (optioanl)
keyStroreType=<keystore type> (optional)

Option 2: Teiid Specific Properties

Use this option when the above "javax" based properties are already in use by the host process. For example if your client
application is a Tomcat process that is configured for https protocol and the above Java based properties are already in use, and

importing Teiid-specific certificate keys into those https certificate keystores is not allowed.

In this scenario, a different set of Teiid-specific SSL properties can be set as system properties or defined inside the a "teiid-client-
settings.properties" file. A sample "teiid-client-settings.properties” file can be found inside the "teiid-<version>-client.jar" file at
the root called "teiid-client-settings.orig.properties". Extract this file, make a copy, change the property values required for the

chosen SSL mode, and place this file in the client application’s classpath before the "teiid-<version>-client.jar" file.

SSL properties and definitions that can be set in a "teiid-client-settings.properties" file are shown below.

SSL Settings

#

The key store type. Defaults to JKS

#

org.teiid.ssl.keyStoreType=JKS

The key store algorithm, defaults to
the system property "ssl.TrustManagerFactory.algorithm"
#

#org.teiid.ssl.algorithm=

The classpath or filesystem location of the

key store.

This property is required only if performing 2-way

authentication that requires a specific private
key.

* O W W H B H K

#org.teiid.ssl.keyStore=

#
The key store password (not required)
#

#org.teiid.ssl.keyStorePassword=

#

The key alias(not required, if given named certificate is used)
#

#org.teiid.ssl.keyAlias=

#

The key password(not required, used if the key password is different than the keystore password)
#

#org.teiid.ssl.keyPassword=

The classpath or filesystem location of the

trust store.

This property is required if performing 1-way

authentication that requires trust not provided
by the system defaults.

F* O o H H H H H*

#org.teiid.ssl.trustStore=

#
The trust store password (not required)
#

#org.teiid.ssl.trustStorePassword=

#
The cipher protocol, defaults to TLSv3
#

org.teiid.ssl.protocol=TLSv1

#

Whether to allow anonymous SSL

(the TLS_DH_anon_WITH_AES_128_CBC_SHA cipher suite)
defaults to true

#

org.teiid.ssl.allowAnon=true
#

Whether to allow trust all server certificates
defaults to false

#org.teiid.ssl.trustAll=false

#

Whether to check for expired server certificates (no affect in anonymous mode or with trustAll=true)
defaults to false

#

#org.teiid.ssl.checkExpired=false

1-way SSL

org.teiid.ssl.trustStore=<dir>/server.truststore (required)

2-way SSL

org.teiid.ssl.keyStore=<dir>/client.keystore (required)
org.teiid.ssl.trustStore=<dir>/server.truststore (required)

Additional Socket Client Settings

A teiid-client-settings.properties file can be used to configure Data Virtualization low level and SSI. connection
properties. Currently only a single properties file is expected per driver/classloader combination. A sample teiid-client-
settings.properties file can be found inside the teiid-<version>-client.jar file at the root called teiid-client-
settings.orig.properties . To customize the settings, extract this file, make a copy, change the property values accordingly, and
place this file in the client application’s classpath before the teiid-<version>-client.jar" file . Typically clients will not need

to adjust the non-SSL properties. The following properties are available:

Misc Socket Configuration

The time in milliseconds for socket timeouts.
Timeouts during the initialization, handshake, or
a server ping may be treated as an error.

This is the lower bound for all other timeouts
the JDBC login timeout.

Typically this should be left at the default of 1000
(1 second). Setting this value too low may cause read
errors.

R N

org.teiid.sockets.soTimeout=1000

#

Set the max time to live (in milliseconds) for non-execution
synchronous calls.

#

org.teiid.sockets.synchronousttl1=240000

#

Set the socket receive buffer size (in bytes)

0 indicates that the default socket setting will be used.
#

org.teiid.sockets.receiveBufferSize=0

#

Set the socket send buffer size (in bytes)

0 indicates that the default socket setting will be used.
#

org.teiid.sockets.sendBufferSize=0

#

Set to true to enable Nagle's algorithm to conserve bandwidth
by minimizing the number of segments that are sent.

#

org.teiid.sockets.conserveBandwidth=false

#

Maximum number of bytes per server message.

May need to be increased when using custom types and/or large batch sizes.

#

org.teiid.sockets.maxObjectSize=33554432

Note All properties listed in "teiid-client-settings.properties" can also be set as System or env properties.

Prepared Statements

Teiid provides a standard implementation of java.sql.Preparedstatement . PreparedStatements can be very important in
speeding up common statement execution, since they allow the server to skip parsing, resolving, and planning of the statement.

See the Java documentation for more information on PreparedStatement usage.
Preparedstatement Considerations
e It is not necessary to pool client side Teiid Preparedstatements , since Teiid performs plan caching on the server side.

e The number of cached plans is configurable, and cached plans are purged by the least recently used (LRU). For information

about configuring cached plans, see the Admin Guide.
e Cached plans are not distributed through a cluster. A new plan must be created for each cluster member.

e Plans are cached for the entire VDB or for just a particular session. The scope of a plan is detected automatically based upon

the functions evaluated during it’s planning process.
e Stored procedures executed through a callablestatement have their plans cached just as a Preparedstatement .

e Bind variable types in function signatures, e.g. "where t.col = abs(?)" can be determined if the function has only one
signature or if the function is used in a predicate where the return type can be determined. In more complex situations it may

be necessary to add a type hint with a cast or convert, e.g. upper(convert(?, string)).

e If you have the same value of a binding repeated multiple times in your query, you can consolidate that usage in a couple of

ways.

o The query can be enclosed as a anonymous procedure block:

BEGIN
DECLARE string PARAM1 = cast(? as string);
SELECT ... WHERE COLUMN1 = $1 AND COLUMN2 = $1 ...;

Note the cast of the bind variable, which is due to a small issue with the resolver that isn’t inferring the type from the variable

declaration.

e You can also use the PostgreSQL like feature of $n positional bindings:

SELECT ... WHERE COLUMN1 = $1 AND COLUMN2 = $

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039

ResultSet Limitations

The following limitations apply to result sets in Teiid:
e TYPE_SCROLL_SENSITIVE are not compatible.
e UPDATABLE ResultSets are not compatible.

e You cannot return multiple ResultSets from a Procedure execution.

JDBC Extensions

These are custom extensions to JDBC API from Teiid to provide compatibility with various features.

Statement Extensions

The Teiid statement extension interface, org.teiid.jdbc.TeiidStatement , provides functionality beyond the JDBC standard. To
use the extension interface, simply cast or unwap the statement returned by the Connection. The following methods are provided

on the extension interface:

Table 1. Connection Properties

Method Name Description

Get the query engine annotations if the statement was last
executed with SHOWPLAN ON/DEBUG. Each

org.teiid.client.plan.Annotation contains a
description, a category, a severity, and possibly a resolution
of notes recorded during query planning that can be used to
understand choices made by the query planner.

getAnnotations

Get the debug log if the statement was last executed with

getDebuglLog
SHOWPLAN DEBUG.

Get the current value of an execution property on this

getExecutionProperty .
statement object.

Get the query plan description if the statement was last
executed with SHOWPLAN ON/DEBUG. The plan is a
tree made up of org.teiid.client.plan.PlanNode
objects. Typically PlanNode.toString() or

PlanNode.toxml() will be used to convert the plan into a
textual form.

getPlanDescription

Get an identifier for the last command executed on this
getRequestIdentifier statement. If no command has been executed yet, null is
returned.

Set the execution property on this statement. See the
Execution Properties section for more information. It is

setExecutionProperty generally preferable to use the SET Statement unless the
execution property applies only to the statement being
executed.

Set a per-command payload to pass to translators.
setPayload Currently the only built-in use is for sending hints for
Oracle data source.

Partial Results Mode

You can use a "partial results" query mode with the Teiid Server. In this mode, the behavior of the query processor changes so that

the server returns results even when some data sources are unavailable.

For example, suppose that two data sources exist for different suppliers and your data designers have created a virtual group that
creates a union between the information from the two suppliers. If your application submits a query without using partial results
query mode and one of the suppliers’ databases is down, the query against the virtual group returns an exception. However, if your
application runs the same query in "partial results" query mode, the server returns data from the running data source and no data

from the data source that is down.

When using "partial results" mode, if a source throws an exception during processing it does not cause the user’s query to fail.

Rather, that source is treated as returning no more rows after the failure point. Most commonly, that source will return 0 rows.

This behavior is most useful when using UNION or OUTER J0IN queries as these operations handle missing information in a
useful way. Most other kinds of queries will simply return 0 rows to the user when used in partial results mode and the source is

unavailable.

For each source that is excluded from the query, a warning will be generated describing the source and the failure. These warnings
can be obtained from the statement.getwarnings() method. This method returns a sqLwarning object but in the case of
"partial results" warnings, this will be an object of type org.teiid.jdbc.PartialResultswarning class. This class can be used to

obtain a list of all the failed sources by name and to obtain the specific exception thrown by each source.

Because Teiid enables cursoring before an entire result is formed, it is possible that a data source failure will not
be determined until after the first batch of results have been returned to the client. This can happen in the case of

Note
unions, but not joins. To ensure that all warnings have been accumulated, the statement should be checked after
the entire result set has been read.

Note If other warnings are returned by execution, then the partial results warnings may occur after the first warning in

the warning chain.

Partial results mode is off by default but can be turned on for all queries in a Connection with either setPartialResultsMode("true")
on a DataSource or partialResultsMode=true on a JDBC URL. In either case, partial results mode may be toggled later with a SET

Statement.

Setting Partial Results Mode

Statement statement = ...obtain statement from Connection...
statement.execute("set partialResultsMode true");

Getting Partial Results Warnings

statement.execute("set partialResultsMode true");
ResultSet results = statement.executeQuery("SELECT Name FROM Accounts");
while (results.next()) {
. //process the result set
}
SQLwWarning warning = statement.getWarnings();
while(warning !'= null) {
if (warning instanceof PartialResultsWarning) {
PartialResultswWarning partialWarning = (PartialResultsWarning)warning;
Collection failedConnectors = partialWarning.getFailedConnectors();
Iterator iter = failedConnectors.iterator();
while(iter.hasNext()) {
String connectorName = (String) iter.next();
SQLException connectorException = partialWarning.getConnectorException(connectorName);
System.out.println(connectorName + ": " + connectorException.getMessage());

}

warning = warning.getNextWarning();

In some instances, typically JDBC sources, the source not being initially available will prevent Teiid from
automatically determining the appropriate set of source capabilities. If you get an exception indicating that the

Warning capabilities for an unavailable source are not valid in partial results mode, then it may be necessary to
manually set the database version or similar property on the translator to ensure that the capabilities are known
even if the source is not available.

Non-blocking Statement Execution

JDBC query execution can indefinitely block the calling thread when a statement is executed or a resultset is being iterated. In
some situations you may not wish to have your calling threads held in these blocked states. When using embedded/local
connections, you may optionally use the org.teiid.jdbc.TeiidStatement and org.teiid.jdbc.TeiidPreparedStatement
interfaces to execute queries with a callback org.teiid.jdbc.StatementCallback that will be notified of statement events, such
as an available row, an exception, or completion. Your calling thread will be free to perform other work. The callback will be
executed by an engine processing thread as needed. If your results processing is itself blocking and you want query processing to
be concurrent with results processing, then your callback should implement onRow handling in a multi-threaded manner to allow

the engine thread to continue.

Non-blocking Prepared Statement Execution

PreparedStatement stmt = c.prepareStatemen(sql);
TeiidPreparedStatement tStmt = stmt.unwrap(TeiidPreparedStatement.class);
tStmt.submitExecute(new StatementCallback() {

@override

public void {

System.out.println(rs.getString(1));

@override
public void throws Exception {
s.close();

@override

public void throws Exception {
s.close();

}, new RequestOptions()

1)

The non-blocking logic is limited to statement execution only. Other JDBC operations, such as connection creation or batched

executions do not yet have non-blocking options.

If you access forward positions in the onRow method (calling next, isLast, isAfterLast, absolute), they may not yet be valid and a
org.teiid.jdbc.AsynchPositioningException will be thrown. That exception is recoverable if caught or can be avoided by

calling TeiidResultSet.available() to determine if your desired positioning will be valid.

Continuous Execution

The Requestoptions object may be used to specify a special type of continuous asynch execution via the continuous or
setContinuous methods. In continuous mode the statement will be continuously re-executed. This is intended for consuming
real-time or other data streams processed through a SQL plan. A continuous query will only terminate on an error or when the
statement is explicitly closed. The SQL for a continuous query is no different than any other statement. Care should be taken to
ensure that retrievals from non-continuous sources is appropriately cached for reuse, such as by using materialized views or

session scoped temp tables.
A continuous query must do the following:
e return a result set
e be executed with a forward-only result set

e cannot be used in the scope of a transaction

Since resource consumption is expected to be different in a continuous plan, it does not count against the server max active plan

limit. Typically custom sources will be used to provide data streams.
For more information, see ReusableExecutions in the Developers Guide.

When the client wishes to end the continuous query, the Sstatement.close() or Statement.cancel() method should be called.

Typically your callback will close whenever it no long needs to process results.

See also the continuousStatementCallback for use asthe Statementcallback for additional methods related to continuous

processing.

ResultSet Extensions

The Teiid result set extension interface, org.teiid.jdbc.TeiidResultSet , provides functionality beyond the JDBC standard. To
use the extension interface, simply cast or unwrap a result set returned by a Teiid statement. The following methods are provided

on the extension interface:

Table 1. Connection Properties
Method Name Description
Returns an estimate of the minimum number of rows that

available can be read (after the current) without blocking or the end
of the ResultSet is reached.

Connection Extensions

Teiid connections (defined by the org.teiid.jdbc.TeiidConnection interface) are compatible with the changeUser method to
reauthenticate a given connection. If the reauthentication is successful the current connection my be used with the given identity.

Existing statements/result sets are still available for use under the old identity.

See the JBossAS issue JBAS-1429 for more on using reauthentication support with JCA.

https://issues.redhat.com/browse/JBAS-1429

Incompatible JDBC Methods

Based upon the JDBC in JDK 1.6, this appendix details only those JDBC methods that Teiid is not compatible with. Unless
specified below, Teiid is compatible with all other JDBC Methods.

Those methods listed without comments throw a SQLException stating that it is not supported.

Where specified, some listed methods do not throw an exception, but possibly exhibit unexpected behavior. If no arguments are
specified, then all related (overridden) methods are not compatible. If an argument is listed then only those forms of the method

specified are not compatible.

Incompatible Classes and Methods in "java.sql"

Class name

Blob

CallableStatement

Clob

Connection

DatabaseMetaData

NClob

PreparedStatement

Ref

Methods

getBinaryStream(long, long) - throws SQLFeatureNotSupportedException
setBinaryStream(long) - - throws SQLFeatureNotSupportedException
setBytes - - throws SQLFeatureNotSupportedException

truncate(long) - throws SQLFeatureNotSupportedException

getObject(int parameterIndex, Map<String, Class<?>> map) - throws
SQLFeatureNotSupportedException

getRef - throws SQLFeatureNotSupportedException

getRowId - throws SQLFeatureNotSupportedException

getURL(String parameterName) - throws SQLFeatureNotSupportedException
registerOutParameter - ignores

registerOutParameter (String parameterName, *) - throws SQLFeatureNotSupportedE
xception

setRowId(String parameterName, RowId x) - throws SQLFeatureNotSupportedExcepti
on

setURL(String parameterName, URL val) - throws SQLFeatureNotSupportedException

getCharacterStream(long arg®, long argl) - throws SQLFeatureNotSupportedExcept
ion

setAsciiStream(long arg®) - throws SQLFeatureNotSupportedException
setCharacterStream(long arg@) - throws SQLFeatureNotSupportedException
setString - throws SQLFeatureNotSupportedException

truncate - throws SQLFeatureNotSupportedException

createBlob - throws SQLFeatureNotSupportedException

createClob - throws SQLFeatureNotSupportedException

createNClob - throws SQLFeatureNotSupportedException

createSQLXML - throws SQLFeatureNotSupportedException
createStruct(String typeName, Object[] attributes) - throws SQLFeatureNotSuppo
rtedException

getClientInfo - throws SQLFeatureNotSupportedException
releaseSavepoint - throws SQLFeatureNotSupportedException
rollback(Savepoint savepoint) - throws SQLFeatureNotSupportedException
setHoldability - throws SQLFeatureNotSupportedException

setSavepoint - throws SQLFeatureNotSupportedException

setTypeMap - throws SQLFeatureNotSupportedException

setRealOnly - effectively ignored

getAttributes - throws SQLFeatureNotSupportedException
getClientInfoProperties - throws SQLFeatureNotSupportedException
getRowIdLifetime - throws SQLFeatureNotSupportedException

Not Supported

setRef - throws SQLFeatureNotSupportedException
setRowId - throws SQLFeatureNotSupportedException
setUnicodeStream - throws SQLFeatureNotSupportedException

Not Implemented

deleteRow - throws SQLFeatureNotSupportedException

getHoldability - throws SQLFeatureNotSupportedException

getObject(*, Map<String, Class<?>> map) - throws SQLFeatureNotSupp
ortedException

Unsupported JDBC Methods

ResultSet

RowId

Savepoint

SQLData

SQLInput

SQLOutput

getRef - throws SQLFeatureNotSupportedException

getRowId - throws SQLFeatureNotSupportedException
getUnicodeStream - throws SQLFeatureNotSupportedException
getURL - throws SQLFeatureNotSupportedException

insertRow - throws SQLFeatureNotSupportedException
moveToInsertRow - throws SQLFeatureNotSupportedException
refreshRow - throws SQLFeatureNotSupportedException
rowDeleted - throws SQLFeatureNotSupportedException
rowInserted - throws SQLFeatureNotSupportedException
rowUpdated - throws SQLFeatureNotSupportedException
setFetchDirection - throws SQLFeatureNotSupportedException
update* - throws SQLFeatureNotSupportedException

Not Supported

not Supported

Not Supported

not Supported

Not Supported

170

Incompatible Classes and Methods in "javax.sql"

Class name Methods

RowSet* Not Supported

ODBC compatibility

Open Database Connectivity (ODBC) is a standard database access method developed by the SQL Access group in 1992. ODBC,
just like JDBC in Java, allows consistent client access regardless of which database management system (DBMS) is handling the
data. ODBC uses a driver to translate the application’s data queries into commands that the DBMS understands. For this to work,
both the application and the DBMS must be ODBC-compliant — that is, the application must be capable of issuing ODBC

commands and the DBMS must be capable of responding to them.

Teiid can provide ODBC access to deployed VDBs in the Teiid runtime through PostgreSQL’s ODBC driver. This is possible

because Teiid has a PostgreSQL server emulation layer accessible via socket clients.
Note By default, ODBC is enabled and running on on port 35432.

The pg emulation is not complete. The intention of the ODBC access is to provide non-JDBC connectivity to issue Teiid queries -
not pgsql queries. Although you can use many PostgreSQL constructs, the default behavior for queries matches Teiid’s

expectations. See System Properties for optional properties that further emulate pgsql handling.

Handling names with underscore (" ") in ODBC. By default Teiid does not have a default like escape character.
Depending upon the ODBC client however there may be an expectation that backslash is used by default - which
is the behavior of PostgreSQL. This may cause metadata queries to be issued against objects with "" in their name
Note to return no or incorrect results. You may globally emulate the behavior of PostgreSQL by setting the
org.teiid.backslashDefaultMatchEscape System property to true . To alter the property just for the current
session then have your ODBC client issue select cast(teiid_session_set('backslashDefaultMatchEscape',
true) as boolean) statement before any other statement.

Postgres ODBC drivers 9.5 and later do not require this special property as the client will use an E escaped literal instead.

Compatibility was last ensured with the 9.6 Postgres ODBC driver. You are encouraged to use later client versions when needed

and report any issues to the community.

Known Limitations:

Updateable cursors are not supported. You will receive parsing errors containing the pg system column ctid if this feature is
not disabled.

e 1O support is not available. LOBs will be returned as string or bytea as appropriate using the transport max lob size setting.

e The Teiid object type will map to the PostgreSQL. UNKNOWN type, which cannot be serialized by the ODBC layer.
Cast/Convert should be used to provide a type hint when appropriate - for example teiid_session_set returns an object value.

"SELECT teiid_session_set('x', 'y")" will fail, but "SELECT cast(teiid_session_set('x', 'y') as string)" will succeed.

e Multi-dimensional arrays are not supported.

Installation

Before an application can use ODBC, you must first install the ODBC driver on same machine that the application is running on

and then create a Data Source Name (DSN) that represents a connection profile for your Teiid VDB.

For a Windows client, see the Windows Installation Guide.

Configuration

http://www.postgresql.org/

Warning By default, clients use plain text password authentication in Teiid for pg/ODBC interfaces. If the client/server
are not configured to use SSL or GSS authentication, the password will be sent in plain text over the network.

For a Windows client, see Configuring the Data Source Name.

See also DSN Less Connection.

Connection Settings

All the available pg driver connection options with their descriptions that can be used are defined here
https://odbc.postgresqgl.org/docs/config.html. When using these properties on the connection string, their property names are

defined here https://odbc.postgresql.org/docs/config-opt.html.

However Teiid does not honor all properties, and some, such as Updatable Cursors, will cause query failures.

Table 1. Primary ODBC Settings For Teiid

Name Description
Updateable Cursors & Row Versioning Should not be used.
Use serverside prepare & Parse Statements & Disallow It is recommended that "Use serverside prepare" is enabled
Premature and "Parse Statements"/"Disallow Premature" are disabled

May be needed if you are connecting to a secured pg

SSL mode transport port. See Security Guide

Should be used to better manage resources when large

Use Declare/Fetch cursors & Fetch Max Count
result sets are used

Logging/debug settings can be utilized as needed.

Settings that manipulate datatypes, metadata, or optimizations such as "Show SystemTables", "True is -1", "Backend genetic
optimizer", "Bytea as LongVarBinary", "Bools as Char", etc. are ignored by the Teiid server and have no client side effect. If there

is a need for these or any other settings to have a defined affect, please open an issue with the product/project.

Any other setting that does have a client side affect, such as "LF < CR/LF conversion", may be used if desired but there is

currently no server side usage of the setting.

Teiid Connection Settings

Most Teiid specific connection properties do not map to ODBC client connection settings. If you find yourself in this situation and
cannot use post connection SET statements, then you can set default ODBC connection properties for the virtual database. Use

VDB properties of the form connection.xxx to control things like partial results mode, result set caching, etc.

The application name may be set by some clients. If not, you may use a SET statement - "SET application_name name" - to set

the name even after the connection is made.

https://odbc.postgresql.org/docs/config.html
https://odbc.postgresql.org/docs/config-opt.html

Installing the ODBC Driver Client

A PostgreSQL ODBC driver needed to make the ODBC connection to Teiid is not bundled with the Teiid distribution. The
appropriate driver needs be downloaded directly from the PostgreSQL web site. The 8.04.200 version of the ODBC driver was

extensively tested for compatibility.

Microsoft Windows

1. Download at least the ODBC 8.4 driver from the PostgreSQL download site. If you are looking for 64-bit Windows driver
download the driver from here. Later versions of the driver may be used the 9.0-9.5 clients have been used extensively by the
Teiid community. There are no active issues against 9.6 and later, but they have not yet seen as much use - if you encounter

an issue, please create a JIRA.
2. Extract the contents of the ZIP file into a temporary location on your system. For example: "c:\temp\pgodbc"
3. Double click on "psqlodbc.msi" file or (.exe file in the case of 64 bit) to start installation of the driver.

4. The Wizard appears as

- 0X)

i psqlODBC Setup

@ Welcome to the psglODBC Setup Wizard

The Setup Wizard allows ywou ko change the way psqlODEC
features are installed on your computer or ko remove it From
wour compuker, Click Mext bo continue or Cancel to exit the
Setup Wizard,

Back. o Mext | [Cancel

Click "Next". 5. The next step of the wizard displays.

http://www.postgresql.org/ftp/odbc/versions/
http://ftp.postgresql.org/pub/odbc/versions/msi
http://code.google.com/p/visionmap/wiki/psqlODBC

i psqlODBC Setup

End-User License Agreement

Please read the Following license agreement carefully

MU LESSER GEMERAL PUBLIC LICEMSE
Yersion 2.1, February 1999

105

Copyright (C) 1991, 1999 Free Software Foundsation, Inc.

58 Temple Place, Sute 330, Boston, WA 02111-1307F US4
Everyone is permitted to copy and distribute verbatim copies
of thiz license document, but changing it is not allowed.

[Thiz is the first releazed verzion of the Leszer GPL. | alzo counts
az the successor of the GRU Library Public License, version 2, hence
the version number 2.1]

Preamble

[£

[11 accept the terms in the License Agreement

it] [Back] e

Carefully read it, and check the "I accept the terms in the License Agreement", if you are agreeing to the licensing terms. Then

click "Next". 6. The next step of the wizard displays.

i psqlODBC Setup

Custom Setup '
Select the way wou want Features to be installed. -

lick the icons in the tree below to change the way Features will be installed.

B3
Y

E psglCDEC psgICDBC - The PastareSQL ODBC
QODEC Driver Ditiver
¥ = | Documentation

This Feature requires OKE on wour
hard drive, It has 1 of 2
subfeatures selected. The
subfeatures require 4332KE on your
hard drive.

Locakion: Z:\Program Files\psglODEC),

Feset][Disk. Usage][Back, ” Mext ” Zancel]

If you want to install in a different directory than the default that is already selected, click the "Browse" button and select a

directory. Click "Next" to start installing in the selected directory. 7. The next step of the wizard displays.

i psqlODBC Setup

Ready to install psqlODBC

Click. Install to begin the installation. Click Back to review or change any of wour
installation settings. Click Cancel ko exit the wizard.

Back.]| Inskall i [Cancel

This step summarizes the choices you have made in the wizard. Review this information. If you need to change anything, you can
use the Back button to return to previous steps. Click "Install" to proceed. 8. 1.The installation wizard copies the necessary files to
the location you specified. When it finishes, the following screen displays.

i psqlODBC Setup

A=
@ Completed the psglCDBC Setup Wizard

lick the Finish button ko exit the Setup Wizard.

Back " Finish ¢ Cancel

Click "Finish" to complete.

Other *nix Platform Installations

For all other platforms other than Microsoft Windows, the ODBC driver needs built from the source files provided. Download the
ODBC driver source files from the PostgreSQL download site. Untar the files to a temporary location. For example:

"~/tmp/pgodbc". Build and install the driver by running the commands below.

Note You should use super user account or use "sudo" command for running the "make install" command.

% tar -zxvf psqlodbc-xx.xx.xxxx.tar.gz
% cd psqglodbc-xx.XxX.XXXX

% ./configure

% make

% make install

Some *nix distributions may already provide binary forms of the appropriate driver, which can be used as an alternative to

building from source.

http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/src/psqlodbc-08.04.0200.tar.gz

Configuring the Data Source Name (DSN)

See Teiid compatible options for a description of the available client configuration options.

Windows Installation
Once you have installed the ODBC Driver Client software on your workstation, you have to configure it to connect to a Teiid
Runtime. Note that the following instructions are specific to the Microsoft Windows Platform.

To do this, you must have logged into the workstation with administrative rights, and you need to use the Control Panel’s Data

Sources (ODBC) applet to add a new data source name.

Each data source name you configure can only access one VDB within a Teiid System. To make more than one VDB available,

you need to configure more than one data source name.
Follow the below steps in creating a data source name (DSN)
1. From the Start menu, select Settings > Control Panel.
2. The Control Panel displays. Double click Administrative Tools.
3. Then Double-click Data Sources (ODBC).
4. The ODBC Data Source Administrator applet displays. Click the tab associated with the type of DSN you want to add.

5. The Create New Data Source dialog box displays. In the Select a driver for which you want to set up a data source table,
select PostgreSQL Unicode.

6. Click Finish

7. The PostgreSQL ODBC DSN Setup dialog box displays.

PostgreSOL Unicode ODBC Driver, (psglODBC) Setup

Data Source || Diescription |
Database | 551 Mode | disable -l
Server | Port W
User Name | Fazzword |

Optionz e
el
D atazource | Global
| Cancel |

In the Data Source Name edit box, type the name you want to assign to this data source. In the Database edit box, type the

name of the virtual database you want to access through this data source. In the Server edit box, type the host name or IP
address of your Teiid runtime. If connecting via a firewall or NAT address, the firewall address or NAT address should be
entered. In the Port edit box, type the port number to which the Teiid System listens for ODBC requests. By default, Teiid
listens for ODBC requests on port 35432 In the User Name and Password edit boxes, supply the user name and password for

the Teiid runtime access. Provide any description about the data source in the Description field.

8. Click on the Datasource button, you will see this below figure. Configure options as shown.

Advanced Options (PostgreSOL 354 172

Fage 1 | FPage 2 |

[Disable Genetic Optirmizer
[ESQO[Eeyset Query Optimization)

v Recogrize Unigue |ndexes

[Use Declare/Fetch [MyLog [C:Mmplog_sxxslog)
Unknown Sizes

* M aximum " Don't Enow " Longest

[ata Type Options
[v TextazLongWarChar | Unknowns az LongWarChar W Bools as Char

Mizcelaneous

b aw Warchar: 255 bl ax LongarChar: a14an

Bl Ii'l o0 SysT able Prefikes: ||:||:|_;

)4 | Cancel | Apply | Defaults

Click on "page2" and make sure the options are selected as shown

Advanced Options (PostgreSOL 35 272

Fage 1 | FPage 2 |
[~ Bead Only [Row Yersioning
[Show System T ables [Dizallow Premature
W LF <-» CR/LF conversion [Trueis -1
[Updatable Cursars [v Server side prepare
T b 0
Ints As Extra Opts

* default © bigint © numerc O warchar O double O int4 | |0x0

Protocol Level of rollback on ermars
74+ O B4+ O B3 (O B2 (™ Mop " Tranzaction Statement

010 Options
[ShowColumn [

Connect Settings:

(] | Cancel | Apply

9. Click "save" and you can optionally click "test" to validate your connection if the Teiid is running. You have configured a

Teiid’s virtual database as a data source for your ODBC applications. Now you can use applications such as Excel, Access to
query the data in the VDB

Other *nix Platform Installations

Before you can access Teiid using ODBC on any *nix platforms, you need to either install a ODBC driver manager or verify that
one already exists. As the ODBC Driver manager Teiid recommends unixODBC. If you are working with RedHat Linux or
Fedora you can check the graphical "yum" installer to search, find and install unixODBC. Otherwise you can download the
unixODBC manager here. To install, simply untar the contents of the file to a temporary location and execute the following

commands as super user.

./configure
make
make install

Check unixODBC website site for more information, if you run into any issues during the installation.

Now, to verify that PostgreSQL driver installed correctly from earlier step, execute the following command

odbcinst -q -d

That should show you all the ODBC drivers installed in your system. Now it is time to create a DSN. Edit "/etc/odbc.ini" file and
add the following

[<DSN name>]

Driver = /usr/lib/psqglodbc.so
Description = PostgreSQL Data Source
Servername = <Teiid Host name or ip>
Port = 35432

Protocol = 7.4-1

UserName = <user-name>

Password = <password>

Database = <vdb-name>

ReadOnly
ServerType = Postgres

ConnSettings =

UseServerSidePrepare=1

Debug=0

Fetch = 10000

enable below when dealing large resultsets to enable cursoring
#UseDeclareFetch=1

no

Note that you need "sudo" permissions to edit the "/etc/odbc.ini" file. For all the available configurable options that you can use in

defining a DSN can be found here on postgreSQL ODBC page.

Once you are done with defining the DSN, you can verify your DSN using the following command

isql <DSN-name> [<user-name> <password>] < commands.sql

where "commands.sql" file contains the SQL commands you would like to execute. You can also omit the commands.sql file, then

you will be provided with a interactive shell.

You can also use languages like Perl, Python, C/C++ with ODBC ports to Postgres, or if they have direct Postgres

Tip
connection modules you can use them too to connect Teiid and issue queries an retrieve results.

http://www.unixodbc.org/
http://www.unixodbc.org/unixODBC-2.3.0.tar.gz
http://www.unixodbc.org/
http://psqlodbc.projects.postgresql.org/config.html

Configuring the Data Source Name (DSN)

181

DSN Less Connection

You can also connect to Teiid VDB using ODBC with out explicitly creating a DSN. However, in these scenarios your application

needs, what is called as "DSN less connection string". The below is a sample connection string

For Windows:

ODBC; DRIVER={PostgreSQL Unicode}; DATABASE=<vdb-name>; SERVER=<host-name>; PORT=
<port>;Uid=<username>; Pwd=<password>;c4=0;c8=1;

For *nix:

ODBC; DRIVER={PostgreSQL}; DATABASE=<vdb-name>; SERVER=<host-name>; PORT=<port>;Uid=
<username>; Pwd=<password>;c4=0;c8=1;

See the available Teiid ODBC connection settings.

Configuring Connection Properties with ODBC

When working with ODBC connections, you can set the URL connection properties that are available in Teiid by running a

command such as the following:

SET <property-name> TO <property-value>

For example, to turn on result set caching you can run the following command:

SET resultSetCacheMode TO 'true'

Another option is to use VDB properties in the vdb file to configure the connection, as in the following example:
CREATE DATABASE vdb OPTIONS ('"connection.partialResultsMode")3
Or in an XML VDB:

<vdb name="...">
<property name="connection.resultSetCacheMode" value="true"/>

</vdb>

OData compatibility

What is OData

The Open Data Protocol (OData) is a Web protocol for querying and updating data that provides a way to unlock your data and
free it from silos that exist in applications today. OData does this by applying and building upon Web technologies such as HTTP,
Atom Publishing Protocol (AtomPub) and JSON to provide access to information from a variety of applications, services, and
stores. The protocol emerged from experiences implementing AtomPub clients and servers in a variety of products over the past
several years. OData is used to expose and access information from a variety of sources including, but not limited to, relational

databases, file systems, content management systems and traditional Web sites.

OData is consistent with the way the Web works - it makes a deep commitment to URIs for resource identification and commits to
an HTTP-based, uniform interface for interacting with those resources (just like the Web). This commitment to core Web
principles allows OData to enable a new level of data integration and interoperability across a broad range of clients, servers,

services, and tools.

copied from http://odata.org

Teiid compatibility for OData

Teiid is compatible with OData Version 4.0.

When a user successfully deploys a VDB into a Teiid Server, the OData protocol compatibility is implicitly provided by the Teiid

server without any further configuration.
OData support is currently not available in the Teiid Embedded profile.

OData support is implemented and deployed through WAR file(s). Access is similar to accessing to any web resources deployed

on the container. The war file(s) are located at <container root>/modules/org/jboss/teiid/deployments/*.war.

Legacy OData Version 2.0 support has been removed, but could be maintained as it’s own project - please contact the community

if you still need this feature and want to maintain it.

http://odata.org

OData Version 4.0 compatibility

Teiid strives to be compliant with the OData specification. The rest of this chapter highlight some specifics of OData and Teiid’s

compatibility, but you should also consult the specification.

Table of Contents

e How to Access the data?

e Query Basics
o How to execute a stored procedure?
o Not seeing all the rows?
o "EntitySet Not Found" error?

e How to update your data?

e Security

e Configuration

e Limitations

e Client Tools for Access

e OData Metadata (How Teiid interprets the relational schema into OData’s $metadata)
o Functions And Actions

e OpenAPI Metadata

How to Access the data?

For example, if you have a vdb by name northwind deployed that has a customers table in a NW model, then you can access that
table with an HTTP GET via the URL:

All users are granted an odata role by default, which allows all authenticated users to access odata end points. In previous versions
of Teiid this role had to be manually assigned. If you still want that behavior remove the Identity login module from the teiid-

security security domain that is granting the odata role.

http://localhost:8080/0odata4/northwind/NwW/customers

this would be akin to making a JDBC/ODBC connection and issuing the SQL:

SELECT * FROM NW.customers

Note Use correct case (upper or lower) in the resource path. Unlike SQL, the names used in the URI as case-sensitive.

The returned results from OData query can be in Atom/AtomPub XML or JSON format. JSON results are returned by default.

Query Basics

Users can submit predicates with along their query to filter the results:

http://localhost:8080/odata4/northwind/NwW/customers?$filter=name eq 'bob'

Spaces around 'eq' are for readability of the example only; in real URLs they must be percent-encoded as %20.
Note OData mandates percent encoding for all spaces in URLs. http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-
part2-url-conventions.html

http://www.odata.org/documentation/
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

this would be similar to making a JDBC/ODBC connection and issuing the SQL

SELECT * FROM NW.customers where name = 'bob'

To request the result to be formatted in a specific format, add the query option $format

http://localhost:8080/0data4/northwind/NW/customers?$format=JSON

Query options can be combined as needed. For example format with a filter:

http://localhost:8080/0data4/northwind/NW/customers?$filter=name eq 'bob'&$format=xml

OData allows for querying navigations from one entity to another. A navigation is similar to the foreign key relationships in

relational databases.

For example, if the customers table has an exported key to the orders table on the customers primary key called the customer_fk,
then an OData GET could be issued like:

http://localhost:8080/0data4/northwind/NwW/customers(1234)/customer_fk?$filter=orderdate gt datetime'2012-12-31T
21:23:38Z'

this would be akin to making a JDBC/ODBC connection and issuing the SQL:

SELECT o0.* FROM NW.orders o join NW.customers c on o.customer_id = c.id where c.id= and o.orderdate > {ts
2012-12-31 21:23:38'}

More Comprehensive Documentation about ODATA - For detailed protocol access you can read the
Note specification at http://odata.org. You can also read this very useful web resource for an example of accessing an
OData server.

How to execute a stored procedure?

Odata allows you to call your exposed stored procedure methods via odata.

http://localhost:8080/0datad4/northwind/NwW/getcustomersearch(id=120, firstname="'miche
al')

Not seeing all the rows?

See the configuration section below for more details. Generally batching is being utilized, which tooling should understand

automatically, and additional queries with a $skiptoken query option specified are needed:

http://localhost:8080/o0data4/northwind/NW/customers?$skiptoken=xxx

"EntitySet Not Found" error?

When you issue the above query are you seeing a message similar to below?

"error":{"code": ,"message":"Cannot find EntitySet, Singleton, ActionImport or FunctionImport with name 'xx

X' "3}

http://odata.org
http://msdn.microsoft.com/en-us/library/ff478141.aspx

Then, it means that either you supplied the model-name/table-name combination wrong, check the spelling and case.

It is possible that the entity is not part of the metadata, such as when a table does not have any PRIMARY KEY or UNIQUE
KEY(s).

How to update your data?

Using the OData protocol it is possible to perform CREATE/UPDATE/DELETE operations along with READ operations shown
above. These operations use different HTTP methods.

INSERT/CREATE is accomplished through an HTTP method "POST".

Example POST

POST /service.svc/Customers HTTP/1.1
Host: host
Content-Type: application/json
Accept: application/json
{
"CustomerID": "AS123X",
"CompanyName": "Contoso Widgets",
"Address" : {
"Street": "58 Contoso St",
"City": "Seattle"

An UPDATE is performed with an HTTP "PUT".

Example PUT Update of Customer

PUT /service.svc/Customers('ALFKI') HTTP/1.1
Host: host

Content-Type: application/josn

Accept: application/json

{
"CustomerID": "AS123X",
"CompanyName": "Updated Company Name",
"Address" : {
"Street": "Updated Street"
}
}

The DELETE operation uses the HTTP "DELETE" method.

Example Delete

DELETE /service.svc/Customers('ALFKI') HTTP/1.1
Host: host

Content-Type: application/json

Accept: application/json

Security

By default OData access is secured using HTTPBasic authentication. The user will be authenticated against Teiid’s default

security domain "teiid-security".

However, if you wish to change the security domain use a deployment-overlay to override the web.xml file in the odata4 file in the

<modules>/org/jboss/teiid/main/deployments directory.

OData WAR is also compatible with Kerberos, SAML and OAuth2 authentications. For information about configuring these

security schemes, see Security Guide

Configuration

The OData WAR file can be configured with following properties in the web.xml file.

Property Name

batch-size

skiptoken-cache-time

invalid-xml10-character-replacement

local-transport-name

invalid-xml10-character-replacement

proxy-base-uri

connection. XXX

explicit-vdb-version

Description

Number of rows to send back each
time, -1 returns all rows

Time interval between the results
being recycled/expired between
$skiptoken requests

XML 1.0 replacement character for
non UTF-8 characters.

Teiid Local transport name for
connection

Replacement string if an invalid
XML 1.0 character appears in the
data - note that this replacement will
occur even if JSON is requested. No
value (the default) means that an
exception will be thrown with XML
results if such a character is
encountered.

Defines the proxy server’s URI to be
used in OData responses. Only needs
to be set for proxies that do not
support the Forwarded nor the X-
Forwarded headers.

Sets XXX as an execution property
on the local connection. Can be used
for example to enable result set cache
mode.

When explicit-vdb-version is true, an
explicit vdb version needs to be part
of the url to use anything other than
the default version 1 vdb. When
explicit-vdb-version is false, the
odata vdb version will be determined
just like a JDBC connection.

Default Value

256

300000

odata

n/a

n/a

true

"Behind Proxy or In Cloud Environments?" - If the Teiid server is configured behind a proxy server or
deployed in cloud environment, or using a load-balancer that does not support the Forwarded nor X-Forwarded
Note headers, then the URI of the server which is handling the OData request is different from URI of proxy. To
generate valid links in the OData responses configure "proxy-base-uri" property in the web.xml. If this value is
available as system property then define the property value like below

<init-param>

<param-name>proxy-base-uri</param-name>

<param-value>${system-property-name}</param-value>

</init-param>

To modify the web.xml, create a deployment-overlay using the cli with the modified contents:

deployment-overlay add --name=myOverlay --content=/WEB-INF/web.xml=/modified/web.xml --deployments=teiid-odata-
odata4.war --redeploy-affected

Teiid OData server implements cursoring logic when the result rows exceed the configured batch size. On every request, only
batch-size number of rows are returned. Each such request is considered an active cursor, with a specified amount of idle time
specified by skip-token-cache-time. After the cursor is timed out, the cursor will be closed and remaining results will be cleaned
up, and will no longer be available for further queries. Since there is no session based tracking of these cursors, if the request for
skiptoken comes after the expired time, the original query will be executed again and tries to reposition the cursor to relative
absolute position, however the results are not guaranteed to be same as the underlying sources may have been updated with new

information meanwhile.

Limitations

The OData4 interface is subject to some feature limitations. You cannot use the following features.
e Search.
e Delta processing.
e Data-aggregation extension of the OData specification.

e $it usage is limited to only primitive collection properties.

Client Tools for Access

OData access is really where the user comes in, depending upon your programming model and needs there are various ways you

write your access layer into OData. The following are some suggestions:
e Your Browser: The OData Explorer is an online tool for browsing an OData data service.

e Olingo: Is a Java framework that supports OData V4, has both consumer and producer framework.

Microsoft has various .Net based libraries, see http://odata.github.io/

Windows Desktop: LINQPad is a wonderful tool for building OData queries interactively. See https://www.lingpad.net/

Shell Scripts: use CURL tool

For latest information other frameworks and tools available please see http://www.odata.org/ecosystem/

OData Metadata (How Teiid interprets the relational schema into
OData’s $metadata)

OData defines its schema using Conceptual Schema Definition Language (CSDL). A VDB in an ACTIVE state in Teiid exposes

its visible metadata in CSDL format. For example if you want retrieve metadata for your vdb, you need to issue a request like:

http://localhost:8080/0data4/northwind/NwW/$metadata

https://docs.wildfly.org/19/Admin_Guide.html#Deployment_Overlays
http://odata.github.io/
https://www.linqpad.net/
http://www.odata.org/ecosystem/

Since OData schema model is not a relational schema model, Teiid uses the following semantics to map its relational schema

model to OData schema model.

Relational Entity

Model Name

Table/View

Table Columns

Primary Key

Foreign Key

Procedure/Function

Procedure’s Table Return

Mapped OData Entity

Schema Namespace, EntityContainer Name

EntityType, EntitySet

EntityType’s Properties

EntityType’s Key Properties

Navigation Property on EntityType

FunctionImport, ActionImport

ComplexType

Teiid by design does not define any "embedded" ComplexType in the EntityType.

Since OData access is more key based, it is MANDATORY that every table Teiid exposes through OData must have a PK or at

least one UNIQUE key. A table which does not either of these will be dropped out of the $metadata.

Since all data roles are not consulted in the construction of the OData metadata there are times when tables or procedures will

need to be specifically hidden. This can be done in the vdb via a "teiid_odata:visible" extension metadata property on the object.

create foreign table HIDDEN (id long primary key,

...) OPTIONS ("teiid_odata:visible");

With teiid_odata:visible set to false the OData layer will not expose the given object.

Datatype Mapping

Teiid Type

STRING

BOOLEAN

BYTE

SHORT

INTEGER

LONG

FLOAT

DOUBLE

BIG_INTEGER

BIG_DECIMAL

OData Type

Edm.String

Edm.Boolean

Edm.SByte

Edm.Int16

Edm.Int32

Edm.Int64

Edm.Single

Edm.Double

Edm.Decimal

Edm.Decimal

DATE Edm.Date

TIME Edm.TimeOfDay
TIMESTAMP Edm.DateTimeOffset
BLOB Edm.Stream

CLOB Edm.Stream

XML Edm.Stream
VARBINARY Edm.Binary

Geography and Geometry will be mapped to the corresponding Edm.GeometryXXX and Edm.GeographyXXX types based upon
the associated {http://www.teiid.org/translator/spatial/2015 }type property. A general mapping to Edm.Geometry or

EdmGeography will fail to serialize the values correctly.

Where possible, array types will be mapped to a collection type. However you cannot include multidimensional arrays. Also

array/collection values cannot be used as parameters nor in comparisons.

Functions And Actions

The mapping of entities and their properties is relatively straight-forward. The mapping of Teiid procedures/functions to OData
Functions and Actions is more involved. Virtual procedures, source procedure, and virtual functions defined by DDL (not a Java
class) are all eligible to be mapped. Source functions or virtual functions defined by a Java class are currently not mapped to
corresponding OData constructs - please create a virtual procedure that invokes the desired function if calling through odata is
needed. OData does not have an out parameter concept, thus OUT parameters are ignored, and INOUT parameters are treated only
as IN. VARIADIC support is not yet enabled. If there is a VARIADIC parameter it will be represented by single parameter. A

result set is mapped to a complex type collection result. An array result will be mapped to a simple type collection.
An OData Function will be used if:
e The procedure/function has a return value - either scalar or a result set.

e The procedure/function has no LOB input parameters - currently Clob, Blob, XML, Geometry, Geography, and JSON are
considered LOB types.

e The procedure/function is side effect free - this is determined by an explicit value of 0 for the update count. For example:
CREATE VIRTUAL PROCEDURE ... OPTIONS (UPDATECOUNT 0) AS BEGIN ...

If any one of those conditions are not met the procedure/function is represented instead by an OData Action. However if there is a

result set that has a LOB value, then the procedure is not mapped at all as multiple streaming values cannot be returned.

Note that OData Functions and Actions are called differently. A Function is called by a GET request where the parameter values

are included in the URI. An Action is called by a POST where the content provides the parameter values.
Currently only unbounded Functions and Actions are compatible.

You should always consult the $metadata about Functions and Actions to validate how the procedures/functions were mapped.

OpenAPI Metadata

An experimental feature is available to automatically provide a Swagger 2.0 / OpenAPI metadata via [swagger|openapi].json

rather than $metadata.

Example OpenAPI 2.0 URLs

http://localhost:8080/0data4/northwind/NW/swagger.json
http://localhost:8080/0data4/northwind/NwW/openapi.json
http://localhost:8080/0data4/northwind/NW/openapi.json?version=2

Example OpenAPI 3.0 URL

http://localhost:8080/0data4/northwind/NW/openapi.json?version=3

Due to all of the possible query options and expansions this metadata will be significantly larger than the

Warning OData EDM representation.

https://issues.redhat.com/browse/TEIID-5555
https://www.openapis.org/

Using Teiid with Hibernate

Configuration

For the most part, interacting with Teiid VDBs (Virtual Databases) through Hibernate is no different from working with any other
type of data source. First, depending on where your Hibernate application will reside, either in the same VM as the Teiid Runtime

or on a separate VM, will determine which jar’s are used.

e Running in same VM in the WildFly server, then the teiid-client-{version}.jar and teiid-hibernate-dialect-{version}.jar

already reside in <jboss-install>/modules/org/jboss/teiid/client

e Running separate VM’s,you need the Teiid JDBC Driver JAR and Teiid’s Hibernate Dialect JAR in the Hibernate’s
classpath. The Hibernate JAR can be found in <jboss-install>/modules/org/jboss/teiid/client, teiid-hibernate-dialect-
{version}.jar and the Teiid JDBC Driver JAR needs to be downloaded.

These JAR files have the org.teiid.dialect.TeiidDialect and org.teiid.jdbc.Teiidbriver and

org.teiid.jdbc.TeiidDataSource classes.
You configure Hibernate (via hibernate.cfg.xml) as follows:

e Specify the Teiid driver class in the connection.driver_class property:

<property name="connection.driver_class">
org.teiid.jdbc.TeiidDriver
</property>

e Specify the URL for the VDB in the connection.url property (replacing terms in angle brackets with the appropriate

values):

<property name="connection.url">
jdbc:teiid:<vdb-name>@mm://<host>:<port>;user=<user-name>;password=<password>
</property>

Tip Be sure to use a Local JDBC Connection if Hibernate is in the same VM as the application server.

e Specify the Teiid dialect class in the dialect property:

<property name="dialect">
org.teiid.dialect.TeiidDialect
</property>

Alternatively, if you put your connection properties in hibernate.properties instead of hibernate.cfg.xml , they would look
like this:

hibernate.connection.driver_class=org.teiid.jdbc.TeiidDriver
hibernate.connection.url=jdbc:teiid:<vdb-name>@mm://<host>:<port>
hibernate.connection.username=<user-name>
hibernate.connection.password=<password>
hibernate.dialect=org.teiid.dialect.TeiidDialect

Note also that since your VDBs will likely contain multiple source and view models with identical table names, you will need to

fully qualify table names specified in Hibernate mapping files:

http://www.jboss.org/teiid/downloads.html

<class name="<Class name>" table="<Source/view model name>.[<schema name>.]<Table name>">
</class>
Example Mapping

<class name="org.teiid.example.Publisher" table="BOOKS.BOOKS.PUBLISHERS">

</class>

Identifier Generation

SEQUENCE Based Identity Generation

If you want to use SEQUENCE based Identity generation with Teiid, you can do so through the TeiidDialect. When you define a
JPA Entity

public class Customer {

@GeneratedValue(strategy = GenerationType.SEQUENCE, generator =
"customer_generator")

@SequenceGenerator (name="customer_generator", sequenceName =
"customer_seq")

@1d

Long id;

In the Teiid VDB, define a virtual function as below example. Note, "_nextval" appended to the sequence name on the name of
the function.

CREATE VIRTUAL FUNCTION customer_seg_nextval() RETURNS long

AS

BEGIN
-- Your code to retrieve the sequence from source database
-- or generate one in Teiid.

END;

Given the above template, if for example you are working with Oracle would like to use the Oracle sequence you already defined

as "customer_seq" in your Oracle database, then create View procedure in Teiid as

CREATE VIRTUAL FUNCTION customer_seqg_nextval() RETURNS long
AS
BEGIN
SELECT OracleDB.mySequence_nextval();
END;

Stating with Teiid 10.0, for some sources, including DB2, Oracle, H2, PostgreSQL, DB2, you can automatically import sequence
information. For other sources you need to add source functions to represent the sequence calls. For example assuming you

wanted to do this manually for Oracle, then in your OracleDB source model, create a source function:

CREATE FOREIGN FUNCTION mySequence_nextval() RETURNS long

OPTIONS ("teiid_rel:native-query" 'SELECT customer_seq.NEXTVAL FROM dual',
DETERMINISM 'NONDETERMINISTIC');

Then when the Customer entity is inserted, the sequence is used.

TABLE Based Idenity Generation

If you want use TABLE based Identity generation with Teiid, you can do so through the TeiidDialect. When you define a JPA
Entity like

public class Customer {

@TableGenerator (name = "customer",
table = "id_generator",
pkColumnName = "idkey",
valueColumnName = "idvalue",
pkColumnvalue = "customer",
allocationSize = 1)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "customer")
@1d
Long id;

Then create a virtual table in Teiid’s view model as

CREATE VIEW id_generator (
idkey string(255) NOT NULL,
idvalue long,
CONSTRAINT id_generatorPK PRIMARY KEY(idkey)
) OPTIONS (UPDATABLE TRUE)
AS
SELECT IDKEY, IDVALUE FROM OracleDB.IDGENERATOR;

Where in OracleDB, you have a physical Table called "IDGENERATOR" and with above shown columns. When you use this

technique, please make sure you have seed content like below to begin with

INSERT INTO IDGENERATOR(IDKEY, IDVALUE) VALUES ('customer', 100);

such that the IDKEY matches and IDVALUE has a initializer value.

IDENTITY Based identity generation

e Teiid provides for GUID and Identity (using generated key retrieval) identifier generation strategy.

Limitations

e Many Hibernate use cases assume a data source has the ability (with proper user permissions) to process Data Definition
Language (DDL) statements like CREATE TABLE and DROP TABLE as well as Data Manipulation Language (DML)
statements like SELECT, UPDATE, INSERT and DELETE. Teiid can handle a broad range of DML, but does not directly
handle DDL against a particular source.

e Sequence generation is not directly supported.

Using Teiid with EclipseLink

Overview

We can use Teiid with Hibernate, we also have a quick start to show how: Hibernate on top of Teiid. Both Hibernate and
Eclipselink fully support JSR-317 (JPA 2.0). The primary purpose of this document is demonstrate how use Teiid with
EclipseLink.

Configuration

For the most part, interacting with Teiid VDBs (Virtual Databases) through Eclipselink is no different from working with any
other type of data source. First, depending on where your Eclipselink application will reside, either in the same VM as the Teiid

Runtime or on a separate VM, will determine which jar’s are used.

e Running in same VM in the WildFly server, the teiid-client-{version}.jar and teiid-eclipselink-platform-{version}.jar are

needed

e Running separate VM’s,you need the Teiid JDBC Driver JAR(Download Teiid JDBC Driver JAR) and Teiid’s Eclipselink
Platform JAR(teiid-eclipselink-platform {version}.jar) in the Eclipselink’s classpath.

These JAR files have the org.teiid.eclipselin.platform.TeiidPlatform and org.teiid.jdbc.TeiidDriver classes.
You configure EclipseLink (via persistence.xml) as follows:

e Specify the Teiid driver class, connection url

<property name="javax.persistence.jdbc.driver" value="org.teiid.jdbc.TeiidDriver" />

<property name="javax.persistence.jdbc.url" value="jdbc:teiid:<vdb-name>@mm://<host>:<port>" />
<property name="javax.persistence.jdbc.user" value="<username>" />

<property name="javax.persistence.jdbc.password" value="<password>" />

e Specify the Teiid platform class

<property name="eclipselink.target-database" value="org.teiid.eclipselink.platform.TeiidPlatform"/>

Limitations

e Many Eclipselink use cases assume a data source has the ability (with proper user permissions) to process Data Definition
Language (DDL) statements like CREATE TABLE and DROP TABLE as well as Data Manipulation Language (DML)
statements like SELECT, UPDATE, INSERT and DELETE. Teiid can handle a broad range of DML, but does not directly

support DDL against a particular source.

e Sequence generation is not directly supported.

https://github.com/teiid/teiid-wildfly-quickstarts/tree/master/hibernate-on-top-of-teiid
http://www.jboss.org/teiid/downloads.html

GeoServer Integration

GeoServer is an open source server for geospatial data. It can be integrated with Teiid to serve geospatial data from a variety of

sources.

Prerequisites

e Have GeoServer installed. By default this will be in a different container than the Teiid WildFly instance, but it should be
possible to deploy into the same WildFly instance. Teiid integration was initially tested with GeoServer version 2.6.x, and is
compatible with versions 2.8.x and 2.12.x. See TEIID-5236

e Your Teiid installation should already be setup for pg/ODBC access. This allows the built-in compatibility with GeoServer
for PostGIS/PostgreSQL to be used.

e Have a VDB deployed that exposes one or more tables containing an appropriate Geometry column.

a. The Teiid system table GEOMETY_COLUMNS will be used by GeoServer. Please ensure that the relevant geometry
columns have the appropriate srid and coord_dimensions, which may require setting the
{http://www.teiid.org/translator/spatial/2015}srid and {http://www.teiid.org/translator/spatial/2015}coord_dimension

extension property on the geometry column.

GeoServer Configuration

This process will need to be repeated for each VDB schema you are exposing that contains geospatial data.
1. Using the GeoServer admin web application, select Stores — Add new Store. Under Vector Data Sources, select PostGIS.

2. Using the non-JNDI connection, fill in the Teiid server host, ODBC port, database (VDB Name with optional version), user,

and password, schema (schema/model from the target VDB).

i. If your VDBs contain target schema or table names with % or _, Teiid must be configured to use the same default like
escape character '\' as PostgreSQL to properly respond to metadata queries. Either the system property
org.teiid.backslashDefaultMatchEscape must be set to true or the Teiid session variable backslashDefaultMatchEscape
must be set to true - for example enter "select cast(teiid_session_set(‘backslashDefaultMatchEscape', true) as boolean)"

in the "Session startup SQL" to configure just this GeoServer connection pool.
3. Follow the typical GeoServer instructions for creating a Layer based upon the Teiid store.

i. Note that Teiid is not compatible with the PostGIS function ST_Estimated_Extent and attempts to compute the

bounding box from the data, result in log errors.

Additional Considerations

e If you are integrating a PostgreSQL source, you must not re-expose the geometry_columns or geography_columns tables.
This is because GeoServer makes unqualified queries that reference geometry_columns and the query should resolve against

the Teiid system table instead.

e Teiid does not by default expose a GT_PK_METADATA, which is optionally used by GeoServer

http://geoserver.org/
https://issues.redhat.com/browse/TEIID-5236

GeoServer Integration

199

QGIS Integration

QGIS is an open source geospatial platform. It can be integrated with Teiid to serve geospatial data from a variety of sources.

Prerequisites

Have QGIS installed. Teiid integration was last tested with version 2.14.

Your Teiid installation should already be setup for ODBC access. This allows the built-in compatibility of QGIS for
PostGIS/PostgreSQL to be used.

Have a VDB deployed that exposes one or more tables containing an appropriate Geometry column.

a. The Teiid system table GEOMETY COLUMNS will be used by QGIS. Please ensure that the relevant geometry
columns have the appropriate srid and coord_dimensions, which may require setting the
{http://www.teiid.org/translator/spatial/2015}srid and {http://www.teiid.org/translator/spatial/2015}coord_dimension

extension property on the geometry column.

QGIS Configuration

This process will need to be repeated for each VDB schema you are exposing that contains geospatial data.

1.

In the QGIS GUI browser panel right click on PostGIS and select "New Connection".

. Fill in the Teiid server host, ODBC port, database (VDB Name with optional version), user, and password.

i. If your VDBs contain target schema or table names with % or _, Teiid must be configured to use the same default like
escape character '\' as PostgreSQL to properly respond to metadata queries. Either the system property

org.teiid.backslashDefaultMatchEscape must be set to true.

. Follow the typical QGIS instructions for creating a Layer by browsing to the appropriate schema and selecting a table that

exposes a geometry.

Additional Considerations

If you are integrating a PostgreSQL source, you must not re-expose the postgres system tables including the PostGIS
geometry_columns or geography_columns tables. This is because QGIS makes unqualified references to these tables, which

may then be ambiguous.
Operations involving creating or deleting schemas or tables will not work.

The logs might contain messages related to information_schema.tables - this is to determine if the qgis_editor_widget_styles

table exists. Teiid is not compatible with QGIS editor widget styles.

http://www.qgis.org/

SQLAIchemy Integration

SQLAIlchemy is an open source SQL toolkit and ORM for Python.

Prerequisites

e Have SQLAlchemy installed installed. Teiid integration was last tested with version 1.1.6.

e Your Teiid installation should already be setup for ODBC access. This allows the built-in compatibility with SQLAlchemy
for PostgreSQL to be used.

Usage

You should be able to use a SQLAIchemy engine for querying. Reflective import of most table metadata is also provided.

Sample Usage

import sqlalchemy

from sqlalchemy import create_engine, Table, MetaData

engine = create_engine("postgresql+psycopg2://user :password@host:35432/vdb")
engine.connect()

result = connection.execute("select * from some_table")

meta = MetaData()
test = Table('public.test', meta, autoload=True, autoload_with=engine,postgresql_ignore_search_path=True)

Limitations
Only a subset of the PostgreSQL dialect is available. The primary intent is to allow querying through Teiid. If there are additional
features that are needed, please log an enhancement request.

Column metadata will not be available for tables that contain the period '.' character. Depending upon your needs, you may need

import settings that use simple Teiid names and not source schema qualified names.

Application compatibility

Superset

Superset is an open source data visualization and dashboard builder. It uses SQLAlchemy to access relational sources.
Once you have followed the above instructions, you may access a Teiid VDB by adding a Database under the Sources menu.

The URL will be of the same form shown in the SQL Alchemy integration:
postgresql+psycopg2://user:password@host:35432/vdb

Basic usage scenarios involving aggregation and all basic types have been tested. If there are additional features that are needed,

please log an enhancement request

http://www.sqlalchemy.org/
http://airbnb.io/superset/

SQLAIchemy Integration

202

Node.js Integration

Node.js is an open source event driven runtime that can be integrated with Teiid.

Prerequisites

e Have Node.js installed. The npm pagckage pg is also required. Use "

e Your Teiid installation should already be setup for ODBC access. This allows the optional compatibility with Node.js for
PostGIS/PostgreSQL to be used.

Usage

For example if you have VDB called "northwind" deployed on your Teiid server, and it has table called "customers" and you are

using default configuration such as
user = 'user' password = 'user' host = 127.0.0.1 port = 35432

Simple Access Example

const { Client } = ('pg")
const client = new Client({
user: 'user',
host: 'localhost',
database: 'northwind',
password: 'secretpassword',
port: ,
1

client.connect()

client.query('SELECT CustomerID, ContactName, ContactTitle FROM Customers', (err, res) => {
.log(err, res)
client.end()

)]

you do not have to programmatically specify the connection information in the code as it can be obtained from

Note . . .
environment variables and other mechanisms - see https://node-postgres.com

For more information please refer to: https://npmjs.org/package/pg

https://nodejs.org
https://node-postgres.com
https://npmjs.org/package/pg

ADO.Net Integration

Npgsql is an open source ADO.NET Data Provider for PostgreSQL. It can be integrated with Teiid to provide access from

programs written in C#, Visual Basic, F#.

Prerequisites

e Install the Npgsql using the .msi Windows installer. Teiid integration was last tested with version 3.2.6.
e Your Teiid installation should already be setup for pg/ODBC access.

e Have a VDB deployed.

Npgsql Configuration

For information about the available connection parameters, see the Npgsql documentation. Not all configuration parameters have

been tested for use with Teiid.

Known Limitations

e TEIID-5220 prevents displaying the metadata of tables and views, but does not affect querying. Certain tools, such as

PowerBi, may have options to turn of the need to perform metadata introspection.

http://www.npgsql.org/
http://www.npgsql.org/doc/connection-string-parameters.html
https://issues.redhat.com/browse/TEIID-5220

Reauthentication

Teiid allows for connections to be reauthenticated so that the identity on the connection can be changed rather than creating a
whole new connection. If using JDBC, see the changeUser Connection extension. If using ODBC, or simply need a statement
based mechanism for reauthentication, see also the SET Statement for SESSION AUTHORIZATION.

Execution Properties

Execution properties may be set on a per statement basis through the Teiidstatement interface or on the connection via the SET

Statement. For convenience, the property keys are defined by constants on the org.teiid.jdbc.ExecutionProperties interface.

Table 1. Execution Properties

Property Name/String Constant Description
PROP_TXN_AUTO_WRAP / autoCommitTxn Same as the connection property.
PROP_PARTIAL_RESULTS_MODE / partialResultsMode See the Partial Results Mode
RESULT_SET_CACHE_MODE / resultSetCacheMode Same as the connection property.
SQL_OPTION_SHOWPLAN / SHOWPLAN Same as the connection property.
NOEXEC / NOEXEC Same as the connection property.

JDBC4COLUMNNAMEANDLABELSEMANTICS /

useJDBC4ColumnNameAndLabelSemantics Same as the connection property.

SET Statement

Execution properties may also be set on the connection by using the SET statement. The SET statement is not yet a language
feature of Teiid and is handled only in the JDBC client. Since a JDBC clients backs the pg/ODBC transport, it will work there as

well.
SET Syntax:
e SET [PAYLOAD] (parameter|SESSION AUTHORIZATION) value

e SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL (READ UNCOMMITTED|READ
COMMITTED|REPEATABLE READ|SERIALIZABLE)

Syntax Rules:
e The parameter must be an identifier - it can contain spaces or other special characters only if quoted.
e The value may be either a non-quoted identifier or a quoted string literal value.

e If payload is specified, e.g. "SET PAYLOAD x y", then a session scoped payload properties object will have the
corresponding name value pair set. The payload object is not fully session scoped. It will be removed from the session when
the XAConnection handle is closed/returned to the pool (assumes the use of TeiidDataSource). The session scoped payload

is superseded by the usage of TeiidStatement.setPayload.

e Using SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL is equivalent to calling

Connection.setTransactionIsolation with the corresponding level.
The SET statement is most commonly used to control planning and execution.
e SET SHOWPLAN (ON|DEBUG|OFF)
e SET NOEXEC (ON|OFF)

Enabling Plan Debug

Statement s = connection.createStatement();
s.execute("SET SHOWPLAN DEBUG");

Statement s1 = connection.createStatement();
ResultSet rs = sl.executeQuery("select col from table");

ResultSet planRs = sl.exeuteQuery("SHOW PLAN");
planRs.next();
String debuglLog = planRs.getString("DEBUG_L0OG");

Query Plan without executing the query

s.execute("SET NOEXEC ON");
s.execute("SET SHOWPLAN DEBUG");

e.execute("SET NOEXEC OFF");

The SET statement may also be used to control authorization. A SET SESSION AUTHORIZATION statement will perform a
Reauthentication given the credentials currently set on the connection. The connection credentials may be changed by issuing a
SET PASSWORD statement. A SET PASSWORD statement does not perform a reauthentication.

Changing Session Authorization

Statement s = connection.createStatement();
s.execute("SET PASSWORD 'someval'");

SET Statement

s.execute("SET SESSION AUTHORIZATION 'newuser'™);

208

SHOW Statement

The SHOW statement can be used to see a varitey of information. The SHOW statement is not yet a language feature of Teiid and
is handled only in the JDBC client.

SHOW Usage:

o SHOW PLAN- returns a resultset with a clob column PLAN_TEXT, an xml column PLAN_XML, and a clob column
DEBUG_LOG with a row containing the values from the previously executed query. If SHOWPLAN is OFF or no plan is
available, no rows are returned. If SHOWPLAN is not set to DEBUG, then DEBUG_LOG will return a null value.

e SHOW ANNOTATIONS- returns a resultset with string columns CATEGORY, PRIORITY, ANNOTATION,
RESOLUTION and a row for each annotation on the previously executed query. If SHOWPLAN is OFF or no plan is

available, no rows are returned.

e SHOW <property> - the inverse of SET, shows the property value for the given property, returns a resultset with a single

string column with a name matching the property key.

e SHOW ALL- returns a resultset with a NAME string column and a VALUE string column with a row entry for every

property value. The SHOW statement is most commonly used to retrieve the query plan, see the plan debug example.

Transactions

Teiid provides three types of transactions from a client perspective:
1. Global
2. Local
3. Request Level

All are implemented by Teiid logically as XA transactions. See the JTA specification for more on XA Transactions.

http://java.sun.com/javaee/technologies/jta/index.jsp

Local Transactions

A Local transaction from a client perspective affects only a single resource, but can coordinate multiple statements.

JDBC Specific

The connection class uses the autocommit flag to explicitly control local transactions. By default, autoCommit is set to

true , which indicates request level or implicit transaction control.
An example of how to use local transactions by setting the autoCommit flag to false.

Local transaction control using autoCommit

// Set auto commit to false and start a transaction

connection.setAutoCommit(false);
try {
// Execute multiple updates
Statement statement = connection.createStatement();
statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (10, 'Mike')");
statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (15, 'John')");

statement.close();

// Commit the transaction
connection.commit();

} catch(SQLException e) {

// If an error occurs, rollback the transaction
connection.rollback();

This example demonstrates several things:
1. Setting autoCommit flag to false. This will start a transaction bound to the connection.
2. Executing multiple updates within the context of the transaction.
3. When the statements are complete, the transaction is committed by calling commit().
4. If an error occurs, the transaction is rolled back using the rollback() method.
Any of the following operations will end a local transaction:
1. Connection.setAutoCommit(true) — if previously set to false
2. Connection.commit()
3. Connection.rollback()

4. A transaction will be rolled back automatically if it times out.

Turning Off JDBC Local Transaction Controls

In some cases, tools or frameworks above Teiid will call setAutoCommit(false), commit() and rollback() even when all access is
read-only and no transactions are necessary. In the scope of a local transaction Teiid will start and attempt to commit an XA

transaction, possibly complicating configuration or causing performance degradation.

In these cases, you can override the default JDBC behavior to indicate that these methods should perform no action regardless of

the commands being executed. To turn off the use of local transactions, add this property to the JDBC connection URL

disablelLocalTxn=true

Turning off local transactions can be dangerous and can result in inconsistent results (if reading data) or
Tip inconsistent data in data stores (if writing data). For safety, this mode should be used only if you are certain that the
calling application does not need local transactions.

Transaction Statements

Transaction control statements, which are also applicable to ODBC clients, explicitly control the local transaction boundaries. The

relevant statements are:
e START TRANSACTION- synonym for connection.setAutoCommit(false)
e COMMIT- synonym for connection.setAutoCommit(true)

e ROLLBACK- synonym for connection.rollback() and returning to auto commit mode.

Request Level Transactions

Request level transactions are used when the request is not in the scope of a global or local transaction, which implies
"autoCommit" is "true". In a request level transaction, your application does not need to explicitly call commit or rollback, rather

every command is assumed to be its own transaction that will automatically be committed or rolled back by the server.

The Teiid Server can perform updates through virtual tables. These updates might result in an update against multiple physical
systems, even though the application issues the update command against a single virtual table. Often, a user might not know

whether the queried tables actually update multiple sources and require a transaction.

For that reason, the Teiid Server allows your application to automatically wrap commands in transactions when necessary.

Because this wrapping incurs a performance penalty for your queries, you can choose from a number of available wrapping modes
to suit your environment. You need to choose between the highest degree of integrity and performance your application needs. For
example, if your data sources are not transaction-compliant, you might turn the transaction wrapping off (completely) to maximize

performance.
You can set your transaction wrapping to one of the following modes:

1. ON: This mode always wraps every command in a transaction without checking whether it is required. This is the safest

mode.

2. OFF: This mode never automatically wraps a command in a transaction or check whether it needs to wrap a command. This
mode can be dangerous as it will allow multiple source updates outside of a transaction without an error. This mode has best

performance for applications that do not use updates or transactions.

3. DETECT: This mode assumes that the user does not know to execute multiple source updates in a transaction. The Teiid
Server checks every command to see whether it is a multiple source update and wraps it in a transaction. If it is single source
then uses the source level command transaction. You can set the transaction mode as a property when you establish the
Connection or on a per-query basis using the execution properties. For more information on execution properties, see the

section Execution Properties

Multiple Insert Batches

When issuing an INSERT with a query expression (or the deprecated SELECT INTO), multiple insert batches handled by separate
source INSERTS may be processed by the Teiid server. Be sure that the sources that you target support XA or that compensating

actions are taken in the event of a failure.

Using Global Transactions

Global or client XA transactions are only applicable to JDBC clients. They all the client to coordinate multiple resources in a
single transaction. To take advantage of XA transactions on the client side, use the Teiidbatasource (or Teiid Embedded with

transaction detection enabled).

When an XAConnection is used in the context of a UserTransaction in an application server, such as JBoss, WebSphere, or
Weblogic, the resulting connection will already be associated with the current XA transaction. No additional client JDBC code is

necessary to interact with the XA transaction.

Usage with UserTransaction

UserTransaction ut = context.getUserTransaction();
try {

ut.begin();

Datasource oracle = lookup(...)

Datasource teiid = lookup(...)

Connection c1 = oracle.getConnection();
Connection c2 = teiid.getConnection();

cl.close();
c2.close();
ut.commit();

} catch (Exception ex) {
ut.rollback();

In the case that you are not running in a JEE container environment and you have your own transaction manger to co-ordinate the

XA transactions, code will look some what like below.

Manual Usage of XA transactions

XAConnection xaConn = null;
XAResource xaRes = null;
Connection conn = null;
Statement stmt = null;

try {
xaConn = <XADataSource instance>.getXAConnection();
xaRes = xaConn.getXAResource();
Xid xid = <new Xid instance>;
conn = xaConn.getConnection();
stmt = conn.createStatement();

xaRes.start(xid, XAResource.TMNOFLAGS);

stmt.executeUpdate("insert into ..");

<other statements on this connection or other resources enlisted in this transaction>
xaRes.end(xid, XAResource.TMSUCCESS);

if (xaRes.prepare(xid) == XAResource.XA_OK) {
xaRes.commit(xid, false);

}
catch (XAException e) {

xaRes.rollback(xid);
}
finally {

<clean up>

With the use of global transactions multiple Teiid XAConnections may participate in the same transaction. The Teiid JDBC
XAResource "isSameRM" method returns "true" only if connections are made to the same server instance in a cluster. If the Teiid
connections are to different server instances then transactional behavior may not be the same as if they were to the same cluster
member. For example, if the client transaction manager uses the same XID for each connection (which it should not since
isSameRM will return false), duplicate XID exceptions may arise from the same physical source accessed through different cluster
members. More commonly if the client transaction manager uses a different branch identifier for each connection, issues may

arise with sources that lock or isolate changes based upon branch identifiers.

Restrictions

Application Restrictions

The use of global, local, and request level transactions are all mutually exclusive. Request level transactions only apply when not

in a global or local transaction. Any attempt to mix global and local transactions concurrently will result in an exception.

Enterprise Information System (EIS) compatibility

The underlying data source that represents the EIS system and the EIS system itself must support XA transactions if they want to
participate in distributed XA transaction through Teiid. If source system does not support the XA, then it can not fully participate

in the distributed transaction. However, the source is still eligible to participate in data integration without the XA support.

The participation in the XA transaction is automatically determined based on the source XA capability. It is user’s responsibility to

make sure that they configure a XA resource when they require them to participate in distributed transaction.

Developer’s Guide

This guide contains information for developers creating custom solutions with Teiid. It covers creating JEE JCA connectors with

the Teiid framework, Teiid Translators, Teiid User Defined Functions (UDFs) as well as related topics.
Integrating data from a Enterprise Information System (EIS) into Teiid, is separated into two parts.
1. A Translator, which is required.
2. An optional Resource Adapter, which will typically be a JCA Resource Adapter (also called a JEE Connector)
A Translator is used to:
e Translate a Teiid-specific command into a native command
e Execute the command
e Return batches of results translated to expected Teiid types.
A Resource Adapter is used to:

e Handles all communications with individual enterprise information system (EIS), which can include databases, data feeds,

flat files, etc.

e Can be a JCA Connector or any other custom connection provider. The reason Teiid recommends and uses JCA is this
specification defines how one can write, package, and configure access to EIS system in consistent manner. There are also
various commercial/open source software vendors already providing JCA Connectors to access a variety of back-end

systems. Refer to http://java.sun.com/j2ee/connector/.

e Abstracts Translators from many common concerns, such as connection information, resource pooling, or authentication. +
Given a combination of a Translator + Resource Adapter, one can connect any EIS system to Teiid for their data integration

needs.

Do You Need a New Translator?

Teiid provides several translators for common enterprise information system types. If you can use one of these enterprise

information systems, you do not need to develop a custom one.
Teiid offers numerous built-in translators, including:

e JDBC Translator - Works with many relational databases. The JDBC translator is validated against the following database
systems: Oracle, Microsoft SQL Server, IBM DB2, MySQL, Postgres, Derby, Sybase, SQP-IQ, H2, and HSQL. In addition,
the JDBC Translator can often be used with other 3rd-party drivers and provides a wide range of extensibility options to

specialize behavior against those drivers.
e File Translator - Provides a procedural way to access the file system to handle text files.
o WS Translator - Provides procedural access to XML content using Web Services.
e LDAP Translator - Accesses to LDAP directory services.
e Salesforce Translator - Works with Salesforce interfaces.

To see a full list of available translators, see Translators

http://java.sun.com/j2ee/connector/

If there’s not an available translator that meets your need, Teiid provides the framework for developing your own custom
translator. See the Translator Development section, as it will describe how to develop, package and deploy a custom developed

translator.

Do You Need a New Resource Adapter?

As mentioned above, for every Translator that needs to gather data from external source systems, it requires a resource adapter.
The following are some of resource adapters that are available to Teiid:

e DataSource: This is provided by the WildFly container. This is used by the JDBC Translator.

e File: Provides a JEE JCA based Connector to access defined directory on the file system. This is used by the File Translator

e WS: Provides JEE JCA Connector to invoke Web Services using WildFly Web services stack. This is used by the WS
Translator

e LDAP: Provides JEE JCA connector to access LDAP; Used by the LDAP Translator.

e Salesforce: Provides JEE JCA connector to access Salesforce by invoking their Web Service interface. Used by the
SalesForce Translator.

To see a full list, see Deploying VDB Dependencies

If there’s not an available resource-adapter that meets your need, Teiid provides the framework for developing your own JEE JCA

Connector. See the Developing JEE Connectors section, as it will describe how to develop, package and deploy a resource adapter.

Other Teiid Development

Teiid is highly extensible in other ways:
e You may add User Defined Functions. Refer to User Defined Functions.

e You may adapt logging to your needs, which is especially useful for custom audit or command logging. Refer to Custom

Logging.

e You may change the subsystem for custom authentication and authorization. Refer to Custom Login Modules.

Developing JEE Connectors

Developing (Custom) JEE Connectors (Resource Adapters)

This chapter examines how to use facilities provided by the Teiid API to develop a JEE JCA Connector. Please note that these are
standard JEE JCA connectors, nothing special needs to be done for Teiid. As an aid to our Translator developers, we provided a
base implementation framework. If you already have a JCA Connector or some other mechanism to get data from your source
system, you can skip this chapter.

If you are not familiar with JCA API, please read the JCA 1.5 Specification at http://java.sun.com/j2ee/connector/. There are lot of
online tutorials on how to design and build a JCA Connector. The below are high-level steps for creating a very simple connector,

however building actual connector that supports transactions, security can get much more complex.

1. Understand the JEE Connector specification to have basic idea about what JCA connectors are how they are developed and

packaged. Refer to http://java.sun.com/j2ee/connector/.
2. Gather all necessary information about your Enterprise Information System (EIS). You will need to know:
o API for accessing the system
o Configuration and connection information for the system
o Expectation for incoming queries/metadata
o The processing constructs, or capabilities, supported by information system.
o Required properties for the connection, such as URL, user name, etc.

3. Base classes for all of the required supporting JCA SPI classes are provided by the Teiid API. The JCA CCI support is not

provided from Teiid, since Teiid uses the Translator API as it’s common client interface. You will want to extend:
o BasicConnectionFactory — Defines the Connection Factory
o BasicConnection — represents a connection to the source.
o BasicResourceAdapter — Specifies the resource adapter class
4. Package your resource adapter. Refer to Packaging the Adapter.
5. Deploy your resource adapter. Refer to Packaging the Adapter.
For sample resource adapter code refer to the Teiid Source code at https://github.com/teiid/teiid/tree/master/connectors/.

Refer to the JBoss Application Server Connectors documentation at

http://docs.jboss.org/jbossas/jbossdguide/r4/html/ch7.chapt.html.

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
https://github.com/teiid/teiid/tree/master/connectors/
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html

Archetype Template Connector Project

One way to start developing a custom connector (resource-adapter) is to create a project using the Teiid archetype template. When
the project is created from the template, it will contain the essential classes and resources for you to begin adding your custom

logic. Additionally, the maven dependencies are defined in the pom.xml so that you can begin compiling the classes.

The project will be created as an independent project and has no parent maven dependencies. It’s designed to be

Note built independent of building Teiid.

You have 2 options for creating a connector project; in Eclipse by creating a new maven project from the arche type or by using

the command line to generate the project.

Create Project in Eclipse

To create a Java project in Eclipse from an arche type, perform the following:
e Open the JAVA perspective
e From the menu select File — New —> Other
e In the tree, expand Maven and select Maven Project, press Next
e On the "Select project name and Location" window, you can accept the defaults, press Next
e On the "Select an Archetype" window, select Configure button
e Add the remote catalog: link:http://central.maven.org/maven2/ then click OK to return
e Enter "teiid" in the filter to see the Teiid arche types.
e Select the connector-archetype, then press Next
e Enter all the information (i.e., Group ID, Artifact ID, etc.) needed to generate the project, then click Finish

The project will be created and name according to the *ArtifactID*.

Create Project using Command Line

Note make sure the link:http://central.maven.org/maven2/ repository is accessible via your maven settings.

To create a custom connector project from the command line, you can use the following template command:

o TEMPLATE

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=connector-archetype \
-DarchetypeVersion=${archetypeVersion} \
-DgroupId=${groupId} \

-DartifactId=connector-${connector-type} \
-Dpackage=${package} \
-Dversion=${version} \

-Dconnector -type=${connector-type} \

-Dconnector-name=${connector-name} \
-Dvendor -name=${vendor -name} \
-Dteiid-version=${teiid-version}

e where:

-DarchetypeGroupId - 1is the group ID for the arche type to use to generate
-DarchetypeArtifactId - 1is the artifact ID for the arche type to use to generate
-DarchetypeVersion - 1is the version for the arche type to use to generate
-DgroupId - (user defined) group ID for the new connector project pom.xml
-DartifactId - (user defined) artifact ID for the new connector project
pom.xml

-Dpackage - (user defined) the package structure where the java and resource
files will be created

-Dversion - (user defined) the version that the new connector project pom.xml
will be

-Dconnector-type - (user defined) the type of the new connector project, used in
defining the package name

-Dconnector-name - (user defined) the name of the new connector project, used as
the prefix to creating the java class names

-Dvendor -name - name of the Vendor for the data source, updates the rar
-Dteiid-version - the Teiid version the connector will depend upon

¢ EXAMPLE

e this is an example of the template that can be run:

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=connector-archetype \
-DarchetypeVersion=12.0.0 \
-DgroupId=org.example \
-Dpackage=org.example.adapter.type \
-DartifactId=adapter-type \
-Dversion=0.0.1-SNAPSHOT \
-Dconnector-type=type \
-Dconnector-name=Type \
-Dvendor -name=Vendor \
-Dteiid-version=15.0.0

When executed, you will be asked to confirm the package property

Confirm properties configuration: groupld: org.example artifactld: adapter-type version: 0.0.1-SNAPSHOT package:

org.example.adapter.type connector-type: type connector-name: Type vendor-name: Vendor teiid-version: 15.0.0 Y: :
type Y (yes) and press enter, and the creation of the connector project will be done

Upon creation, a directory based on the *artifactld* will be created, that will contain the project. Note: The project will not
compile because the ${connector-name} Connection interface in the ConnectionImpl has not been added as a dependency in the

pom.xml. This will need to be done.

Now you are ready to start adding your custom code.

Archetype Template Connector Project

222

Implementing the Teiid Framework

If you are going to use the Teiid framework for developing a JCA connector, follow these steps. The required classes are in

org.teiid.resource.api package. Please note that Teiid framework does not make use JCA’s CCI framework, only the JCA’s

SPI interfaces.
e Define Managed Connection Factory
e Define the Connection Factory class
e Define the Connection class

e Define the configuration properties in a "ra.xml" file

Define Managed Connection Factory

Extend the BasicManagedConnectionFactory , and provide a implementation for the "createConnectionFactory()" method. This

method defines a factory method that can create connections.

This class also defines configuration variables, like user, password, URL etc to connect to the EIS system. Define an attribute for

each configuration variable, and then provide both "getter" and "setter" methods for them. Note to use only "java.lang" objects as

the attributes, DO NOT use Java primitives for defining and accessing the properties. See the following code for an example.

public class MyManagedConnectionFactory extends BasicManagedConnectionFactory

{
@override
public Object createConnectionFactory throws ResourceException
{
return new MyConnectionFactory();
}
// config property name (metadata for these are defined inside the ra.xml)
String userName;
public String getUserName { return this.userName; }
public void setUserName { this.userName = name; }
// config property count (metadata for these are defined inside the ra.xml)
Integer count;
public Integer getCount { return this.count; }
public void setCount { this.count = value; }
}

Define the Connection Factory class

Extend the BasicConnectionFactory class, and provide a implementation for the "getConnection()" method.

public class MyConnectionFactory extends BasicConnectionFactory

{
@override
public MyConnection getConnection throws ResourceException

{

return new MyConnection();

Since the Managed connection object created the "ConnectionFactory" class it has access to all the configuration parameters, if
"getConnection" method needs to do pass any of credentials to the underlying EIS system. The Connection Factory class can also

get reference to the calling user’s javax.security.auth.Subject during "getConnection" method by calling

Subject subject = ConnectionContext.getSubject();

This "Subject" object can give access to logged-in user’s credentials and roles that are defined. Note that this may be null.

Note that you can define "security-domain" for this resource adapter, that is separate from the Teiid defined "security-domain" for
validating the JDBC end user. However, it is the user’s responsibility to make the necessary logins before the Container’s thread

accesses this resource adapter, and this can get overly complex.

Define the Connection class

Extend the BasicConnection class, and provide a implementation based on your access of the Connection object in the
Translator. If your connection is stateful, then override "isAlive()" and "cleanup()" methods and provide proper implementations.

These are called to check if a Connection is stale or need to flush them from the connection pool etc. by the Container.

public class extends

{

public void

{

}

@override
public boolean

{

return true;

}

@override
public void

{

}

XA Transactions

If your EIS source can participate in XA transactions, then on your Connection object, override the "getX AResource()" method
and provide the "XAResource" object for the EIS system. Refer to Define the Connection class. Also, You need to extend the
"BasicResourceAdapter" class and provide implementation for method "public XAResource[] getX AResources(ActivationSpec|]

specs)" to participate in crash recovery.

Note that, only when the resource adapters are XA capable, then Teiid can make them participate in a distributed transactions. If
they are not XA capable, then source can participate in distributed query but will not participate in the transaction. Transaction

semantics are defined by how you you configured "connection-factory" in a "resource-adapter". i.e. jta=true/false.

Define the configuration properties in a "ra.xml" file

Define a "ra.xml" file in "META-INF" directory of your RAR file. An example file is provided in ra.xml file Template.

For every attribute defined inside the your ManagedConnectionFactory class, define the following XML configuration for that
attribute inside the "ra.xml" file. These properties are used by user to configure instance of this Connector inside a Container.
Also, during the startup the Container reads these properties from this file and knows how to inject provided values in the
datasource definition into an instance of "ManagedConnectionFactory" to create the Connection. Refer to Developing JEE

Connectors#Define Managed Connection Factory.

<config-property>
<description>
{$display:"${display-name}", $description:"${description}", $allowed="${allowed}",
$required="${true|false}", $defaultvValue="${default-value}"}
</description>
<config-property-name>${property-name}</config-property-name>
<config-property-type>${property-type}</config-property-type>
<config-property-value>${optioal-property-value}</config-property-value>
</config-property>

The format and contents of "<description>" element may be used as extended metadata for tooling. The special format must begin
and end with curly braces e.g. {...}. This use of the special format and all properties is optional. Property names begin with '$' and
are separated from the value with ":'. Double quotes identifies a single value. A pair of square brackets, e.g. [...], containing

comma separated double quoted entries denotes a list value.
Extended metadata properties
e $display: Display name of the property

e S$description: Description about the property

$required: The property is a required property; or optional and a default is supplied

$allowed: If property value must be in certain set of legal values, this defines all the allowed values

$masked: The tools need to mask the property; Do not show in plain text; used for passwords

$advanced: Notes this as Advanced property
e S$editable: Property can be modified; or read-only

Note that all these are optional properties; however in the absence of this metadata, Teiid tooling may not work as expected.

ra.xml file Template

This appendix contains an example of the ra.xml file that can be used as a template when creating a new Connector.

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd" version="1.5">

<vendor -name>${comapany-name}</vendor -name>
<eis-type>${type-of-connector}</eis-type>
<resourceadapter-version>1.0</resourceadapter-version>
<license>
<description>${license text}</description>
<license-required>true</license-required>
</license>

<resourceadapter>
<resourceadapter-class>org.teiid.resource.spi.BasicResourceAdapter</resourceadapter-class>
<outbound-resourceadapter>
<connection-definition>
<managedconnectionfactory-class>${connection-factory}</managedconnectionfactory-class>

<!-- repeat for every configuration property -->
<config-property>
<description>
{$display:"${short-name}", $description:"${description}", $allowed: [${value-list}],
$required:"${required-boolean}", $defaultvValue:"${default-value}"}
</description>
<config-property-name>${property-name}</config-property-name>
<config-property-type>${property-type}</config-property-type>
<config-property-value>${optional-property-value}</config-property-value>
</config-property>

<!-- use the below as is if you used the Connection Factory interface -->
<connectionfactory-interface>

javax.resource.cci.ConnectionFactory
</connectionfactory-interface>

<connectionfactory-impl-class>
org.teiid.resource.spi.WrappedConnectionFactory
</connectionfactory-impl-class>

<connection-interface>
javax.resource.cci.Connection
</connection-interface>

<connection-impl-class>
org.teiid.resource.spi.WrappedConnection
</connection-impl-class>

</connection-definition>
<transaction-support>NoTransaction</transaction-support>

<authentication-mechanism>
<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>
javax.resource.spi.security.PasswordCredential
</credential-interface>
</authentication-mechanism>
<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

</resourceadapter>

</connector>

${...} indicates a value to be supplied by the developer.

Packaging the Adapter

Once all the required code is developed, it is time to package them into a RAR artifact, that can be deployed into a Container. A

RAR artifact is similar to a WAR. To put together a RAR file it really depends upon the build system you are using.
e Eclipse: You can start out with building Java Connector project, it will produce the RAR file
e Ant: If you are using "ant" build tool, there is "rar" build task available

e Maven: If you are using maven, use <packaging> element value as "rar". Teiid uses maven, you can look at any of the

"connector" projects for sample "pom.xml" file. See Build Environment for an example of a pom.xml file.

Make sure that the RAR file, under its "META-INF" directory has the "ra.xml" file. If you are using maven refer to
http://maven.apache.org/plugins/maven-rar-plugin/. In the root of the RAR file, you can embed the JAR file containing your

connector code and any dependent library JAR files.

http://maven.apache.org/plugins/maven-rar-plugin/

Adding Dependent Libraries

Add MANIFEST.MF file in the META-INF directory, and the following line to add the core Teiid API dependencies for resource
adapter.

Dependencies: org.jboss.teiid.common-core,org.jboss.teiid.api, javax.api

If your resource adapter depends upon any other third party jar files, .dll or .so files they can be placed at the root of the rar file. If
any of these libraries are already available as modules in WildFly, then you can add the module name to the above
MANIFEST.MF file to define as dependency.

Deploying the Adapter

Once the RAR file is built, deploy it by copying the RAR file into "deploy" directory of WildFly’s chosen profile. Typically the
server does not need to be restarted when a new RAR file is being added. Alternatively, you can also use "admin-console", a web

based monitoring and configuration tool, to deploy this file into the container.

Once the Connector’s RAR file is deployed into the WildFly container, now you can create an instance of this connector to be
used with your Translator. Creating an instance of this Connector is no different than creating a "Connection Factory" in WildFly.

Again, you have two ways to create a ""ConnectionFactory".

Edit standalone.xml or domain.xml file, and add following XML in the "resource-adapters" subystem.

<!-- If susbsytem is already defined, only copy the contents under it and edit to suit your needs -->
<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">
<resource-adapters>
<resource-adapter>
<archive>teiid-connector-sample.rar</archive>
<transaction-support>NoTransaction</transaction-support>
<connection-definitions>
<connection-definition class-name="org.teiid.resource.adapter.MyManagedConnectionFactory" jndi
-name="${jndi-name}"
enabled="true"
use-java-context="true"
pool-name="sample-ds">
<config-property name="UserName">jdoe</config-property>
<config-property name="Count">12</config-property>
</connection-definition>
</connection-definitions>
</resource-adapter>
</resource-adapters>
</subsystem>

There are lot more properties that you can define for pooling, transactions, security, etc., in this file. Check the WildFly

documentation for all the available properties.

nn

Alternatively, you can use the web based ""admin-console" configuration and monitoring program, to create a new Connection
Factory. Have your RAR file name and needed configuration properties handy and fill out web form to create the

ConnectionFactory.

Translator (Custom) Development

Below are the high-level steps for creating custom Translators, which is described in this section. This section will cover how to

do each of the following steps in detail. It also provides additional information for advanced topics, such as streaming large

objects.

For sample Translator code, refer to the Teiid source code at https://github.com/teiid/teiid/tree/master/connectors/.

1.

Create a new or reuse an existing Resource Adapter for the EIS system, to be used with this Translator. Refer to Custom

Resource Adapters.

. Decide whether to use the Teiid archetype template to create your initial custom translator project and classes or manually

create your environment. Refer to Environment Setup.

. Implement the required classes defined by the Translator API. Refer to Implementing the Framework.

1) Create an ExecutionFactory — Extend the org.teiid.translator.ExecutionFactory class 2) Create relevant Executions

(and sub-interfaces) — specifies how to execute each type of command

. Define the template for exposing configuration properties. Refer to Packaging.
. Deploy your Translator. Refer to Deployment.
. Deploy a Virtual Database (VDB) that uses your Translator.

. Execute queries via Teiid.

https://github.com/teiid/teiid/tree/master/connectors/

Translator Environment Setup

To setup the environment for developing a custom translator, you have 2 options;
1. Manually setup the build environment - structure, framework classes, and resources.

2. Use the Teiid Translator Archetype template to generate the initial project.

Setting up the build environment

non

For Eclipse users (without maven integration), create a java project and add dependencies to "teiid-common-core", "teiid-api" and

JEE "connector-api" jars.

For maven users add the following as your dependencies:

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-bom</artifactId>
<version>${teiid-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-api</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-resource-spi</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-common-core</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.resource</groupId>
<artifactId>connector-api</artifactId>
<scope>provided</scope>
</dependency>
</dependencies>

Where the ${teiid-version} property should be set to the expected version, such as 15.0.0. You can find Teiid artifacts in the

Maven Central Repository.

Archetype Template Translator Project

One way to start developing a custom translator is to create a project using the Teiid archetype template. When the project is
created from the template, it will contain the essential classes (i.e., ExecutionFactory) and resources for you to begin adding your
custom logic. Additionally, the maven dependencies are defined in the pom.xml so that you can begin compiling the classes.

Note

You have 2 options for creating a translator project; in Eclipse by creating a new maven project from the arche type or by using

built independent of building Teiid.

the command line to generate the project.

Create Project in Eclipse

To create a Java project in Eclipse from an arche type, perform the following:

Open the JAVA perspective

From the menu select File —> New —> Other

In the tree, expand Maven and select Maven Project, press Next

On the "Select project name and Location" window, you can accept the defaults, press Next
On the "Select an Archetype" window, select Configure button

Add the remote catalog: link:http://central. maven.org/maven2/ then click OK to return
Enter "teiid" in the filter to see the Teiid arche types.

Select the translator-archetype v12.0.0, then press Next

Enter all the information (i.e., Group ID, Artifact ID, etc.) needed to generate the project, then click Finish

The project will be created and name according to the *ArtifactID*.

Create Project using Command Line

Note make sure the link:http://central.maven.org/maven2/ repository is accessible via your maven settings.

To create a custom translator project from the command line, you can use the following template command:

TEMPLATE

mvn archetype:generate \

-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=translator-archetype \
-DarchetypeVersion=${archetypeVersion} \
-DgroupId=${groupId} \
-DartifactId=translator-${translator-type} \
-Dpackage=${package} \

-Dversion=${version} \
-Dtranslator-type=${translator-type} \
-Dtranslator-name=${translator-name}
-Dteiid-version=${teiid-version}

The project will be created as an independent project and has no parent maven dependencies. It’s designed to be

e where:

-DarchetypeGroupId - 1is the group ID for the arche type to use to generate
-DarchetypeArtifactId - 1is the artifact ID for the arche type to use to generate
-DarchetypeVersion - 1is the version for the arche type to use to generate
-DgroupId - (user defined) group ID for the new translator project pom.xml
-DartifactId - (user defined) artifact ID for the new translator project pom.xml
-Dpackage - (user defined) the package structure where the java and resource files will be created
-Dversion - (user defined) the version that the new connector project pom.xml will be
-Dtranslator-type - (user defined) the translator type that's used by Teiid when mapping the physical source
to the translator to use
-Dtranslator-name - (user defined) the translator name thats used for name the java class names
-Dteiid-version - the Teiid version the connector will depend upon
o EXAMPLE

e this is an example of the template that can be run:

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=translator-archetype \
-DarchetypeVersion= \
-DgroupId=org.example \
-DartifactId=translator-type \
-Dpackage=org.example.translator.type \
-Dversion= .1-SNAPSHOT \
-Dtranslator-type=type \
-Dtranslator-name=Type \
-Dteiid-version= .0

When executed, you will be asked to confirm the properties

Confirm properties configuration: groupld: org.example artifactId: translator-type version: 0.0.1-SNAPSHOT package:

org.example.translator.type teiid-version: 15.0.0 translator-name: Type translator-type: type Y: : y
type Y (yes) and press enter, and the creation of the translator project will be done

Upon creation, a directory based on the *artifactld* will be created, that will contain the project. 'cd' into that directory and

execute a test build to confirm the project was created correctly:

mvn clean install

This should build successfully, and now you are ready to start adding your custom code.

Implementing the Framework

Caching API

Translators may contribute cache entries to the result set cache by the use of the cachebirective object. Translators wishing to
participate in caching should return a cachebirective from the ExecutionFactory.getCacheDirective method, which is called
prior to execution. The command passed to getCacheDirective will already have been vetted to ensure that the results are

eligible for caching. For example update commands or commands with pushed dependent sets will not be eligible for caching.

If the translator returns null for the cachedirective , which is the default implementation, the engine will not cache the translator
results beyond the current command. It is up to your custom translator or custom delegating translator to implement your desired

caching policy.

In special circumstances where the translator has performed it’s own caching, it can indicate to the engine that the

Note .
results should not be cached or reused by setting the scope to Scope.NONE .

The returned cachebirective will be set on the Executioncontext and is available via the
ExecutionContext.getCacheDirective() method. Having ExeuctionFactory.getCacheDirective called prior to execution
allows the translator to potentially be selective about which results to even attempt to cache. Since there is a resource overhead
with creating and storing the cached results it may not be desirable to attempt to cache all results if it’s possible to return large
results that have a low usage factor. If you are unsure about whether to cache a particular command result you may return an
initial cachebirective then change the Scope to Scope.NONE at any time prior to the final cache entry being created and the

engine will give up creating the entry and release it’s resources.

If you plan on modifying the cachebirective during execution, just make sure to return a new instance from the

ExecutionFactory.getCacheDirective call, rather than returning a shared instance.

The cachebirective readAll Boolean field is used to control whether the entire result should be read if not all of the results were
consumed by the engine. If readAll is false then any partial usage of the result will not result in it being added as a cache entry.
Partial use is determined after any implicit or explicit limit has been applied. The other fields on the cachebirective object map

to the cache hint options. See the table below for the default values for all options.

option default
scope Session
ttl rs cache ttl
readAll true
updatable true

prefersMemory false

Command Language

Language

Teiid sends commands to your Translator in object form. These classes are all defined in the "org.teiid.language" package. These

objects can be combined to represent any possible command that Teiid may send to the Translator. However, it is possible to

n

notify Teiid that your Translator can only accept certain kinds of constructs via the capabilities defined on the "ExecutionFactory

class. Refer to Translator Capabilities for more information.

The language objects all extend from the Languageobject interface. Language objects should be thought of as a tree where each

node is a language object that has zero or more child language objects of types that are dependent on the current node.

All commands sent to your Translator are in the form of these language trees, where the root of the tree is a subclass of command .

Command has several sub-classes, namely:
® QueryExpression
e Insert -alsorepresents an upsert, see the isUpsert flag.
® Update
® Delete
® BatchedUpdates
e Call

Important components of these commands are expressions, criteria, and joins, which are examined in closer detail below. For
more on the classes and interfaces described here, refer to the Teiid JavaDocs https://docs.jboss.org/teiid/15.0.0/apidocs/.

Expressions

An expression represents a single value in context, although in some cases that value may change as the query is evaluated. For
example, a literal value, such as 5 represents an integer value. An column reference such as "table. EmployeeName" represents a

column in a data source and may take on many values while the command is being evaluated.
e Expression —base expression interface
® ColumnReference —represents an column in the data source
e Literal —represents a literal scalar value.

e Parameter —representsa parameter with multiple values. The command should be an instance of BulkCommand, which

provides all values via getParameterValues.
e Function —represents a scalar function with parameters that are also Expressions
® AggregateFunction —represents an aggregate function which can hold a single expression

e windowFunction — represents an window function which holds an AggregateFunction (which is also used to represent

analytical functions) and a WindowSpecification
e scalarSubquery —represents a subquery that returns a single value

® SearchedCase, SearchedwhenClause — represents a searched CASE expression. The searched CASE expression evaluates

the criteria in WHEN clauses till one evaluates to TRUE, then evaluates the associated THEN clause.

https://docs.jboss.org/teiid/15.0.0/apidocs/

e Array —represents an array of expressions, currently only used by the engine in multi-attribute dependent joins - see the

supportsArrayType capability.

Condition
A criteria is a combination of expressions and operators that evaluates to true, false, or unknown. Criteria are most commonly
used in the WHERE or HAVING clauses.
e condition - the base criteria interface
e Not —used to NOT another criteria
e Andor —used to combine other criteria via AND or OR
e SubugeryComparison —represents a comparison criteria with a subquery including a quantifier such as SOME or ALL
e Comparison —represents a comparison criteria with =, >, <, etc.
e BaseInCondition — base class for an IN criteria
e 1n —represents an IN criteria that has a set of expressions for values
e subqueryIn —represents an IN criteria that uses a subquery to produce the value set
e IsNull —represents an IS NULL criteria
e Exists —represents an EXISTS criteria that determines whether a subquery will return any values

e Like —represents a LIKE/SIMILAR TO/LIKE_REGEX criteria that compares string values

The FROM Clause

The FROM clause contains a list of TableReference ’s.
® NamedTable — represents a single Table
e Join —hasaleft and right TablerReference and information on the join between the items
e DerivedTable —represents a table defined by an inline QueryExpression

Alist of TableReference are used by default, in the pushdown query when no outer joins are used. If an outer join is used
anywhere in the join tree, there will be a tree of Join s with a single root. This latter form is the ANSI preferred style. If you
wish all pushdown queries containing joins to be in ANSI style have the capability "useAnsiJoin" return true. Refer to Command

Form for more information.

QueryExpression Structure

QueryExpression is the base for both SELECT queries and set queries. It may optionally take an orderBy (representing a SQL
ORDER BY clause), a Limit (represent a SQL LIMIT clause), ora with (represents a SQL WITH clause).

Select Structure

Each queryExpression canbea select describing the expressions (typically columnReference's) being selected and an
“TableReference specifying the table or tables being selected from, along with any join information. The select may

optionally also supply an condition (representing a SQL WHERE clause), a GroupBy (representing a SQL GROUP BY

clause), an an condition (representing a SQL HAVING clause).

SetQuery Structure
A QueryExpression canalsobea setquery that represents on of the SQL set operations (UNION, INTERSECT, EXCEPT) on

two QueryExpression . The all flag may be set to indicate UNION ALL (currently INTERSECT and EXCEPT ALL are not

allowed in Teiid)

With Structure

A with clause contains named QueryExpressions held by withItems that can be referenced as tables in the main

QueryExpression .

Insert Structure
Each 1nsert will have a single NamedTable specifying the table being inserted into. It will also has a list of columnrReference

specifying the columns of the NamedTable that are being inserted into. It also has InsertvaluesSource , which will be a list of

Expressions (ExpressionvalueSource) Or a QueryExpression

Update Structure

Each update will have a single NamedTable specifying the table being updated and list of setclause entries that specify
ColumnReference and Expression pairs for the update. The Update may optionally provide a criteria condition specifying

which rows should be updated.

Delete Structure

Each pelete will have asingle NamedTable specifying the table being deleted from. It may also optionally have a criteria

specifying which rows should be deleted.

Call Structure

Each call has zero or more Argument objects. The Argument objects describe the input parameters, the output result set, and

the output parameters.

BatchedUpdates Structure

Each Batchedupdates has a list of command objects (which must be either 1nsert , uUpdate or Delete) that compose the
batch.

Language Utilities

This section covers utilities available when using, creating, and manipulating the language interfaces.

Data Types
The Translator API contains an interface TypeFacility that defines data types and provides value translation facilities. This
interface can be obtained from calling "getTypeFacility()" method on the "ExecutionFactory" class.

The TypeFacitlity interface has methods that support data type transformation and detection of appropriate runtime or JDBC
types. The TypeFacility RUNTIME_TYPES and TypeFacility. RUNTIME_NAMES interfaces defines constants for all Teiid
runtime data types. All Expression instances define a data type based on this set of types. These constants are often needed in

understanding or creating language interfaces.

Language Manipulation

In Translators that support a fuller set of capabilities (those that generally are translating to a language of comparable to SQL),
there is often a need to manipulate or create language interfaces to move closer to the syntax of choice. Some utilities are

provided for this purpose:

Similar to the TypeFacility, you can call "getLanguageFactory()" method on the "ExecutionFactory" to get a reference to the
LanguageFactory instance for your translator. This interface is a factory that can be used to create new instances of all the

concrete language interface objects.

Some helpful utilities for working with condition objects are provided in the Languageutil class. This class has methods to
combine condition with AND or to break an condition apart based on AND operators. These utilities are helpful for

breaking apart a criteria into individual filters that your translator can implement.

Runtime Metadata

Teiid uses a library of metadata, known as "runtime metadata" for each virtual database that is deployed in Teiid. The runtime
metadata is a subset of metadata as defined by models in the Teiid models that compose the virtual database. Extension metadata
may be associated via the OPTIONS clause. At runtime, using this runtime metadata interface, you get access to those set

properties defined during the design time, to define/hint any execution behavior.

Translator gets access to the RuntimeMetadata interface at the time of Excecution creation. Translators can access runtime
metadata by using the interfaces defined in org.teiid.metadata package. This package defines API representing a Schema,

Table, Columns and Procedures, and ways to navigate these objects.

Metadata Objects

All the language objects extend AbstractMetadataRecord class
e Column - returns Column metadata record
e Table - returns a Table metadata record
e Procedure - returns a Procedure metadata record
e ProcedureParameter - returns a Procedure Parameter metadata record

Once a metadata record has been obtained, it is possible to use its metadata about that object or to find other related metadata.

Access to Runtime Metadata

The RuntimeMetadata interface is passed in for the creation of an "Execution". See "createExecution" method on the

"ExecutionFactory" class. It provides the ability to look up metadata records based on their fully qualified names in the VDB.

The process of getting a Table’s properties is sometimes needed for translator development. For example to get the

"NameInSource" property or all extension properties:

Obtaining Metadata Properties

Table table = runtimeMetadata.getTable("table-name'");
String contextName = table.getNameInSource();

Map<String, String> props = table.getProperties();

Language Visitors

Framework

The API provides a language visitor framework in the org.teiid.language.visitor package. The framework provides utilities

useful in navigating and extracting information from trees of language objects.

The visitor framework is a variant of the Visitor design pattern, which is documented in several popular design pattern references.
The visitor pattern encompasses two primary operations: traversing the nodes of a graph (also known as iteration) and performing
some action at each node of the graph. In this case, the nodes are language interface objects and the graph is really a tree rooted at

some node. The provided framework allows for customization of both aspects of visiting.

The base AbstractLanguagevisitor class defines the visit methods for all leaf language interfaces that can exist in the tree. The
LanguageObject interface defines an acceptVisitor() method — this method will call back on the visit method of the visitor to
complete the contract. A base class with empty visit methods is provided as AbstractLanguageVisitor. The

AbstractLanguageVisitor is just a visitor shell — it performs no actions when visiting nodes and does not provide any iteration.

The Hierarchyvisitor provides the basic code for walking a language object tree. The Hierarchyvisitor performs no action
as it walks the tree — it just encapsulates the knowledge of how to walk it. If your translator wants to provide a custom iteration
that walks the objects in a special order (to exclude nodes, include nodes multiple times, conditionally include nodes, etc) then

you must either extend HierarchyVisitor or build your own iteration visitor. In general, that is not necessary.

The DelegatingHierarchyvisitor is a special subclass of the HierarchyVisitor that provides the ability to perform a different
visitor’s processing before and after iteration. This allows users of this class to implement either pre- or post-order processing
based on the HierarchyVisitor. Two helper methods are provided on DelegatingHierarchyvisitor to aid in executing pre- and

post-order visitors.

Provided Visitors

The sqLstringvisitor is a special visitor that can traverse a tree of language interfaces and output the equivalent Teiid SQL.
This visitor can be used to print language objects for debugging and logging. The sqLstringvisitor does not use the
Hierarchyvisitor described in the last section; it provides both iteration and processing type functionality in a single custom

visitor.

The collectorvisitor is a handy utility to collect all language objects of a certain type in a tree. Some additional helper

methods exist to do common tasks such as retrieving all *“ColumnReference’s in a tree, retrieving all groups in a tree, and so on.

Writing a Visitor

Writing your own visitor can be quite easy if you use the provided facilities. If the normal method of iterating the language tree is

sufficient, then just follow these steps:

Create a subclass of AbstractLanguageVisitor. Override any visit methods needed for your processing. For instance, if you
wanted to count the number of columnReference's in the tree, you need only override the “visit(ColumnReference)

method. Collect any state in local variables and provide accessor methods for that state.

Decide whether to use pre-order or post-order iteration. Note that visitation order is based upon syntax ordering of SQL clauses -
not processing order.

Write code to execute your visitor using the utility methods on DelegatingHierarchy Visitor:

// Get object tree
LanguageObject objectTree = ..

// Create your visitor initialize as necessary
MyVisitor visitor = new MyVisitor();

// Call the visitor using pre-order visitation
DelegatingHierarchyVisitor.preOrderVisit(visitor, objectTree);

// Retrieve state collected while visiting
int count = visitor.getCount();

Connections to Source

Obtaining connections

The extended "ExecutionFactory" must implement the getConnection() method to allow the Connector Manager to obtain a

connection.

Releasing Connections

Once the Connector Manager has obtained a connection, it will use that connection only for the lifetime of the request. When the
request has completed, the closeConnection() method called on the "ExecutionFactory". You must also override this method to

properly close the connection.

In cases (such as when a connection is stateful and expensive to create), connections should be pooled. If the resource adapter is
JEE JCA connector based, then pooling is automatically provided by the WildFly container. If your resource adapter does not

implement the JEE JCA, then connection pooling semantics are left to the user to define on their own.

Dependent Join Pushdown

Dependent joins are a technique used in federation to reduce the cost of cross source joins. Join values from one side of a join are
made available to the other side which reduces the number of tuples needed to preform the join. Translators may indicate support
for dependent join pushdown via the supportsDependentJoin and supportsFullDependentJoin capabilities. The handling of

pushdown dependent join queries can be complicated.

See the JDBC Translator for the reference implementation of dependent join pushdown handling based up the

Note .
creation temporary tables.

Key Pushdown

The more simplistic mode of dependent join pushdown is to push only the key (equi-join) values to effectively evaluate a semi-
join - the full join will still be processed by the engine after the retrieval. The ordering (if present) and all of the non-dependent
criteria constructs on the pushdown command must be honored. The dependent criteria, which will be a comparison with a

Parameter (possibly in Array form), may be ignored in part or in total to retrieve a superset of the tuples requested.

Pushdown key dependent join queries will be instances of select with the relevant dependent values available via
Select.getDependentvalues() . A dependent value tuple list is associated to Parameters by id via the
Parameter.getDepenentvalueId() identifier. The dependent tuple list provide rows that are referenced by the column positions

(available via Parameter.getvalueIndex()). Care should be taken with the tuple values as they may guaranteed to be ordered,

but will be unique with respect to all of the Parameter references against the given dependent value tuple list.

Full Pushdown

In some scenarios, typically with small independent data sets or extensive processing above the join that can be pushed to the
source, it is advantageous for the source to handle the dependent join pushdown. This feature is marked as supported by the
supportsFullDependentJoin capability. Here the source is expected to process the command exactly as specified - the dependent

join is not optional

Full pushdown dependent join queries will be instances of QueryExpression with the relevant dependent values available via
special common table definitions using QueryExpression.getwith() . The independent side of a full pushdown join will appear
as a common table withitem with a dependent value tuple list available via withitem.getbDependentvalues() . The dependent
value tuples will positionally match the columns defined by withItem.getColumns() . The dependent value tuple list is not

guaranteed to be in any particular order.

Executing Commands

Execution Modes

The Teiid query engine uses the "ExecutionFactory" class to obtain the "Execution" interface for the command it is executing. The
actual queries themselves are sent to translators in the form of a set of objects, which are further described in Command

Language. Refer to Command Language. Translators are allowed to support any subset of the available execution modes.

Execution Interface Command interface(s) Description

A query corresponding to a SQL

ResultSetExecution QueryExpression
SELECT or set query statement.

An insert, update, or delete,
Insert, Update, Delete,

UpdateExecution BatchedUpdates corresponding to a SQL INSERT,
UPDATE, or DELETE command
A procedure execution that may

ProcedureExecution Call return a result set and/or output

values.

Types of Execution Modes

All of the execution interfaces extend the base Execution interface that defines how executions are cancelled and closed.

ProcedureExecution also extends ResultSetExecution, since procedures may also return resultsets.

ExecutionContext

The org.teiid.translator.ExecutionContext provides a considerable amount of information related to the current execution.
An ExecutionContext instance is made available to each Execution . Specific usage is highlighted in this guide where
applicable, but you may use any informational getter method as desired. Example usage would include calling

ExecutionContext.getRequestId() , ExecutionContext.getSession() , etc. for logging purposes.

CommandContext

A org.teiid.CommandContext is available via the ExecutionContext.getCommandContext() method. The CommandContext
contains information about the current user query, including the vpB , the ability to add client warnings - addwarning , or handle

generated keys - isReturnAutoGeneratedKeys , returnGeneratedKeys , and getGeneratedKeys .

Generated Keys

To see if the user query expects generated keys to be returned, consult the commandContext.isReturnAutoGeneratedKeys()
method. If you wish to return generated keys, you must first create a Generatedkeys instance to hold the keys with the
returnGeneratedkeys method passing the column names and types of the key columns. Only one Generatedkeys may be

associated with the commandContext at any given time.

Source Hints

The Teiid source meta-hint is used to provide hints directly to source executions via user or transformation queries. See the
reference for more on source hints. If specified and applicable, the general and source specific hint will be supplied via the
ExecutionContext methods getGeneralHint and getSourceHint . See the source for the oracleExecutionFactory for an

example of how this source hint information can be utilized.

ResultSetExecution

Typically most commands executed against translators are QueryExpression. While the command is being executed, the translator
provides results via the ResultSetExecution’s "next" method. The "next" method should return null to indicate the end of results.
Note: the expected batch size can be obtained from the ExecutionContext.getBatchsize() method and used as a hint in fetching
results from the EIS.

Update Execution

Each execution returns the update count(s) expected by the update command. If possible BatchedUpdates should be executed
atomically. The ExecutionContext.isTransactional() method can be used to determine if the execution is already under a

transaction.

Procedure Execution

Procedure commands correspond to the execution of a stored procedure or some other functional construct. A procedure takes
zero or more input values and can return a result set and zero or more output values. Examples of procedure execution would be a

stored procedure in a relational database or a call to a web service.

If a result set is expected when a procedure is executed, all rows from it will be retrieved via the ResultSetExecution interface

first. Then, if any output values are expected, they will be retrieved via the getOutputParameterValues() method.

Asynchronous Executions

In some scenarios, a translator needs to execute asynchronously and allow the executing thread to perform other work. To allow
asynchronous execution, you should throw a DataNotAvailableExecption during a retrieval method, rather than explicitly
waiting or sleeping for the results. The DataNotAvailableException may take a delay parameter or a Date in its constructor to
indicate when to poll next for results. Any non-negative delay value indicates the time in milliseconds until the next polling
should be performed. The DpataNotAvailableException.NO_POLLING exception (or any DataNotAvailableException with a
negative delay) can be thrown to indicate that the execution will call ExecutionContext.dataAvailable() to indicate processing

should resume.

A DataNotAvailableException should not be thrown by the execute method, as that can result in the execute

Note method being called multiple times.

Since the execution and the associated connection are not closed until the work has completed, care should be

Note e . .
taken if using asynchronous executions that hold a lot of state.

A positive retry delay is not a guarantee of when the translator will be polled next. If the DataNotAvailableException is
consumed while the engine thinks more work can be performed or there are other shorter delays issued from other translators, then
the plan may be re-queued earlier than expected. You should simply rethrow a DataNotAvailableException if your execution is
not yet ready. Alternatively the DataNotAvailableException may be marked as strict, which does provide a guarantee that the

execution will not be called until the delay has expired or the given pate has been reached. Using the pate constructor

makes the DataNotAvailableException automatically strict. Due to engine thread pool contention, platform time resolution, etc.
astrict DataNotAvailableException is not a real-time guarantee of when the next poll for results will occur, only that it will not

occur before then.

If your ExecutionFactory returns only asynch executions that perform minimal work, then consider having
Note ExecutionFactory.isForkable return false so that the engine knows not to spawn a separate thread for
accessing your Execution .

Reusable Executions

A translator may return instances of ReusableExecutions for the expected Execution objects. There can be one
ReusableExecution per query executing node in the processing plan. The lifecycle of a ReusableExecution is different that a
normal Execution . After a normal creation/execute/close cycle the ReusableExecution.reset is called for the next execution
cycle. This may occur indefinitely depending on how many times a processing node executes its query. The behavior of the
close method is no different than a regular Execution , it may not be called until the end of the statement if lobs are detected
and any connection associated with the Execution will also be closed. When the user command is finished, the

ReusableExecution.dispose() method will be called.

In general ReusableExecutions are most useful for continuous query execution and will also make use of the
ExecutionCotext.dataAvailable() method for Asynchronous Executions. See the Client Developer’s Guide for executing
continuous statements. In continuous mode the user query will be continuously re-executed. A ReusableExecution allows the
same Execution object to be associated with the processing plan for a given processing node for the lifetime of the user query.
This can simplify asynch resource management, such as establishing queue listeners. Returning a null result from the next()
method ReusableExecution justas with normal Executions indicates that the current pushdown command results have ended.

Once the reset() method has been called, the next set of results should be returned again terminated with a null result.

Bulk Execution

Non batched 1Insert, Update, Delete commands may have multi-valued Parameter objects if the capabilities shows support
for BulkUpdate. Commands with multi-valued pParameters represent multiple executions of the same command with different

values. As with BatchedUpdates, bulk operations should be executed atomically if possible.

Command Completion

All normal command executions end with the calling of close() on the Execution object. Your implementation of this method

should do the appropriate clean-up work for all state created in the Execution object.

Command Cancellation

Commands submitted to Teiid may be aborted in several scenarios:
e C(Client cancellation via the JDBC API (or other client APIs)
e Administrative cancellation
e Clean-up during session termination

e Clean-up if a query fails during processing Unlike the other execution methods, which are handled in a single-threaded

manner, calls to cancel happen asynchronously with respect to the execution thread.

Your connector implementation may choose to do nothing in response to this cancellation message. In this instance, Teiid will call
close() on the execution object after current processing has completed. Implementing the cancel() method allows for faster

termination of queries being processed and may allow the underlying data source to terminate its operations faster as well.

Extending the ExecutionFactory Class

The main class in the translator implementation is ExecutionFactory. A base class is provided in the Teiid API, so a custom
translator must extend org.teiid.translator.ExecutionFactory to connect and query an enterprise data source. This extended
class must provide a no-arg constructor that can be constructed using Java reflection. This Execution Factory will look similar to

the following:

package org.teiid.translator.custom;

@Translator(name="custom", description="Connect to My EIS")
public class CustomExecutionFactory extends ExecutionFactory<MyConnectionFactory, MyConnection> {

public CustomExecutionFactory {

}

Define the annotation @Translator on extended "ExecutionFactory" class. This annotation defines the name, which is used as
the identifier during deployment, and the description of your translator. This name is what you will be using in the VDB and else

where in the configuration to refer to this translator.

ConnectionFactory

Defines the "ConnectionFactory" interface that is defined in resource adapter. This is defined as part of class definition of

extended "ExecutionFactory" class. Refer to "MyConnectionFactory" sample in the Developing JEE Connectors chapter.

Connection

Defines the "Connection" interface that is defined in the resource adapter. This is defined as part of class definition of extended

"ExecutionFactory" class. Refer to "MyConnection" class sample invthe Developing JEE Connectors chapter.

Configuration Properties

If the translator requires external configuration, that defines ways for the user to alter the behavior of a program, then define an
attribute variable in the class and define "get" and "set" methods for that attribute. Also, annotate each "get" method with

@TranslatorProperty annotation and provide the metadata about the property.

For example, if you need a property called "foo", by providing the annotation on these properties, the Teiid tooling can

automatically interrogate and provide a graphical way to configure your Translator while designing your VDB.

private String foo = "blah";
@TranslatorProperty(display="Foo property", description="description about Foo")
public String getFoo

{

return foo;

public void setFoo

{

return this.foo = value;

The @TranslatorpProperty defines the following metadata that you can define about your property
e display: Display name of the property
e description: Description about the property
e required: The property is a required property

e advanced: This is advanced property; A default value must be provided. A property can not be "advanced" and "required" at

same time.
e masked: The tools need to mask the property; Do not show in plain text; used for passwords

Only java primitive (int, boolean), primitive object wrapper (java.lang.Integer), or Enum types are supported as Translator
properties. Complex objects are not supported. The default value will be derived from calling the getter method, if available, on a
newly constructed instance. All properties should have a default value. If there is no applicable default, then the property should

be marked in the annotation as required . Initialization will fail if a required property value is not provided.

Initializing the Translator

Override and implement the start method (be sure to call "super.start()") if your translator needs to do any initializing before it
is used by the Teiid engine. This method will be called by Teiid, once after all the configuration properties set above are injected

into the class.

Extended Translator Capabilities

These are various methods that typically begin with method signature "supports" on the "ExecutionFactory" class. These methods
need to be overridden to describe the execution capabilities of the Translator. Refer to Translator Capabilities for more on these

methods.

Execution (and sub-interfaces)

Based on types of executions you are supporting, the following methods need to be overridden to provide implementations for

their respective return interfaces.
e createResultSetExecution - Override if you are doing read based operation that is returning a rows of results. For ex: select
e createUpdateExecution - Override if you are doing write based operations. For ex:insert, update, delete

e createProcedureExecution - Overide if you are doing procedure based operations. For ex; stored procedures. This works
well for non-relational sources. You can choose to implement all the execution modes or just what you need. See more details

on this below.

Metadata

Override and implement the method getMetadataProcessor() , if you want to expose the metadata about the source for use in
VDBs. This defines the tables, column names, procedures, parameters, etc. for use in the query engine. A sample

MetadataProcessor may look like

public class implements < > {

public void {
Object somedata = connection.getSomeMetadata();

Table table = mf.addTable(tableName);
Column coll = mf.addColumn("coll", TypeFacility.RUNTIME_NAMES.STRING, table);
column col2 = mf.addColumn('"col2", TypeFacility.RUNTIME_NAMES.STRING, table);

//add a pushdown function that can also be evaluated in the engine
Method method = ...
Function f = mf.addFunction("func", method);

//add a pushdown aggregate function that can also be evaluated in the engine
Method aggMethod = ...

Function af = mf.addFunction("agg", aggMethod);
af.setAggregateAttributes(new AggregateAttributes());

If your MetadataProcessor needs external properties that are needed during the import process, you can define them on
MetadataProcessor. For example, to define a import property called "Column Name Pattern", which can be used to filter which

columns are defined on the table, can be defined in the code like the following

@TranslatorProperty(display="Column Name Pattern", category=PropertyType.IMPORT, description="Pattern to de
rive column names")
public String getColumnNamePattern {
return columnNamePattern;

}

public void setColumnNamePattern {
this.columnNamePattern = columnNamePattern;

}

Note the category type. The configuration property defined in the previous section is different from this one. Configuration
properties define the runtime behavior of translator, where as "IMPORT" properties define the metadata import behavior, and aid

in controlling what metadata is exposed by your translator.

These properties can be automatically injected through "import" properties that can be defined under the <model> construct in the
vdb.xml file, like

<vdb name="myvdb" version="1">
<model name="legacydata" type="PHYSICAL">
<property name="importer.ColumnNamePattern" value="col*"/>

<source name = .../>
</model>
</vdb>

Extension Metadata Properties

There may be times when implementing a custom translator, the built in metadata about your schema is not enough to process the
incoming query due to variance of semantics with your source query. To aid this issue, Teiid provides a mechanism called
"Extension Metadata", which is a mechanism to define custom properties and then add those properties on metadata object (table,
procedure, function, column, index etc.). For example, in my custom translator a table represents a file on disk. I could define a

extension metadata property as

public class MyMetadataProcessor implements MetadataProcessor<Connection> {
public static final String NAMESPACE = "{http://my.company.corp}";

@ExtensionMetadataProperty(applicable={Table.class}, datatype=String.class, display="File name'", descript
ion="File Name", required=true)
public static final String FILE_PROP = NAMESAPCE+"FILE";

public void {
Object somedata = connection.getSomeMetadata();

Table table = mf.addTable(tableName);
table.setProperty(FILE_PROP, somedata.getFileName());

Column coll = mf.addColumn('"coll", TypeFacility.RUNTIME_NAMES.STRING, table);
column col2 = mf.addColumn("col2", TypeFacility.RUNTIME_NAMES.STRING, table);

The @ExtensionMetadataProperty defines the following metadata that you can define about your property
e applicable: Metadata object this is applicable on. This is array of metadata classes like Table.class, Column.class.
e datatype: The java class indicating the data type
e display: Display name of the property
e description: Description about the property

e required: Indicates if the property is a required property

How this is used?

When you define an extension metadata property like above, during the runtime you can obtain the value of that property. If you
get the query object which contains "'SELECT * FROM MyTable', MyTable will be represented by an object called

"NamedTable". So you can do the following

for (TableReference tr:query.getFrom()) {
NamedTable t = (NameTable) tr;
Table table = t.getMetadataObject();
String file = table.getProperty(FILE_PROP);

Now you have accessed the file name you set during the construction of the Table schema object, and you can use this value
however you seem feasible to execute your query. With the combination of built in metadata properties and extension metadata

properties you can design and execute queries for a variety of sources.

Logging
Teiid provides org.teiid.logging.LogManager class for logging purposes. Create a logging context and use the LogManager to

log your messages. These will be automatically sent to the main Teiid logs. You can edit the "jboss-log4j.xml" inside "conf"

directory of the WildFly’s profile to add the custom context. Teiid uses Log4J as its underlying logging system.

Exceptions

If you need to bubble up any exception use org.teiid.translator.TranslatorException class.

Implementing the Framework

254

Large Objects

This section examines how to use facilities provided by the Teiid API to use large objects such as blobs, clobs, and xml in your

Translator.

Data Types

Teiid supports three large object runtime data types: blob, clob, and xml. A blob is a "binary large object", a clob is a "character
larg object", and "xml" is a "xml document”. Columns modeled as a blob, clob, or xml are treated similarly by the translator

framework to support memory-safe streaming.

Why Use Large Object Support?
Teiid allows a Translator to return a large object through the Teiid translator API by just returning a reference to the actual large
object. Access to that LOB will be streamed as appropriate rather than retrieved all at once. This is useful for several reasons:
1. Reduces memory usage when returning the result set to the user.
2. Improves performance by passing less data in the result set.
3. Allows access to large objects when needed rather than assuming that users will always use the large object data.

4. Allows the passing of arbitrarily large data values. However, these benefits can only truly be gained if the Translator itself
does not materialize an entire large object all at once. For example, the Java JDBC API supports a streaming interface for
blob and clob data.

Handling Large Objects

The Translator API automatically handles large objects (Blob/Clob/SQLXML/Geometry/JSON) through the creation of special

purpose wrapper objects when it retrieves results.

Once the wrapped object is returned, the streaming of LOB is automatically supported. These LOB objects then can for example

appear in client results, in user defined functions, or sent to other translators.

A Execution is usually closed and the underlying connection is either closed/released as soon as all rows for that execution have
been retrieved. However, LOB objects may need to be read after their initial retrieval of results. When LOBs are detected the

default closing behavior is prevented by setting a flag via the Executioncontext.keepAlive method.

When the "keepAlive" alive flag is set, then the execution object is only closed when user’s Statement is closed.

executionContext.keepExecutionAlive(true);

Inserting or Updating Large Objects

LOBs will be passed to the Translator in the language objects as Literal containing a java.sql.Blob, java.sql.Clob, or

java.sq.SQLXML. You can use these interfaces to retrieve the data in the large object and use it for insert or update.

Implementing the Framework

256

Translator Capabilities

The ExecutionFactory class defines all the methods that describe the capabilities of a Translator. These are used by the

Connector Manager to determine what kinds of commands the translator is capable of executing. A base ExecutionFactory class

implements all the basic capabilities methods, which says your translator does not support any capabilities. Your extended
ExecutionFactory class must override the the necessary methods to specify which capabilities your translator supports. You

should consult the debug log of query planning (set showplan debug) to see if desired pushdown requires additional capabilities.

Capability Scope

Note capabilities are determined and cached for the lifetime of the translator. Capabilities based on connection/user are not

supported.

Capabilities

The following table lists the capabilities that can be specified in the ExecutionFactory class.

Table 1. Available Capabilities

Capability Requires Description
SelectDistinct Tran§lator can support SELECT DISTINCT in
queries.
SeleciBxpression Translator can support SELECT of more than

just column references.

SelectExpression, Translator can support SELECT of array

SelectExpressionArrayType ArrayType expressions.

Translator can support a SELECT of scalar

SRR o values without a FROM clause

AliasedTable Translator can supporF Tables in the FROM
clause that have an alias.

InnerJoins Translator can support inner and cross joins

SelfJoins ?I?:Zﬁ}?‘:(.)ss tan(i at least Translator can support a self join between two

J yp aliased versions of the same Table.
supports.

OuterJoins Translator can support LEFT and RIGHT
OUTER JOIN.

FullOuterJoins Translator can support FULL OUTER JOIN.
Translator supports key set dependent join
pushdown. See Dependent Join Pushdown.

Dependentloins Base join and criteria When set the MaxDependentInPredicates and

P support MaxInCriteriaSize values are not used by the

engine, rather all independent values are made
available to the pushdown command.

FullDependentJoins

LateralJoin

LateralJoinCondition

OnlyLateralJoinProcedure

SubqueryInOn

InlineViews

ProcedureTable

ProcedureParameterExpression

BetweenCriteria

CompareCriteriaEquals

CompareCriteriaOrdered

CompareCriteriaOrderedExclusive

LikeCriteria

LikeCriteriaEscapeCharacter

SimilarTo

LikeRegexCriteria

InCriteria

InCriteriaSubquery

Base join and criteria
support

LateralJoin

LateralJoin

Join and base subquery
support, such as
ExistsCriteria

AliasedTable

LikeCriteria

MaxInCriteria

Translator supports full dependent join
pushdown. See Dependent Join Pushdown.
When set the MaxDependentInPredicates and
MaxInCriteriaSize values are not used by the
engine, rather the entire independent dataset is
made available to the pushdown command.

Translator supports lateral join pushdown with
sideways correlation.

Translator supports lateral join pushdown with
a join condition.

Translator supports only lateral join to a
procedure or table valued function.

Translator can support subqueries in the ON
clause. Defaults to true.

Translator can support a named subquery in
the FROM clause.

Translator can support a table that returns a
table in the FROM clause.

Translator can support an expression, not just a
literal, as a procedure parameter.

Not currently used - between criteria is
rewriten as compound comparisions.

Translator can support comparison criteria
with the operator = .

Translator can support comparison criteria
with the operator - or - .

Translator can support comparison criteria
with the operator > or < . Defaults to
CompareCriteriaOrdered

Translator can support LIKE criteria.

Translator can support LIKE criteria with an
ESCAPE character clause.

Translator can support SIMILAR TO criteria.

Translator can support LIKE_REGEX criteria.

Translator can support IN predicate criteria.

Translator can support IN predicate criteria
where values are supplied by a subquery.

IsNullCriteria

OrCriteria

NotCriteria

ExistsCriteria

QuantifiedCompareCriteriaAll

QuantifiedCompareCriteriaSome

OnlyLiteralComparison

Convert(int fromType, int toType)

OrderBy

OrderByUnrelated

OrderByNullOrdering

OrderByWithExtendedGrouping

GroupBy

GroupByRollup

GroupByMultipleDistinctAggregates

OrderBy

OrderBy

OrderBy

GroupBy

GroupBy

Translator can support IS NULL predicate
criteria.

Translator can support the OR logical criteria.

Translator can support the NOT logical
criteria. IMPORTANT: This capability also
applies to negation of predicates, such as
specifying IS NOT NULL, < (not =), >
(not <), etc.

Translator can support EXISTS predicate
criteria.

Translator can support a quantified comparison
criteria using the ALL quantifier.

Translator can support a quantified comparison
criteria using the SOME or ANY quantifier.

If only Literal comparisons (equality, ordered,
like, etc.) are supported for non-join
conditions.

Used for fine grained control of convert/cast

pushdown. The
ExecutionFactory.getSupportedFunctions()

should contain

SourceSystemFunctions.CONVERT . This
method can then return false to indicate a lack
of specific support. See

TypeFacility.RUNTIME_CODES for the
possible type codes. The engine will does not
care about an unnecessary conversion where
fromType == toType. By default lob
conversion is disabled.

Translator can support the ORDER BY clause
in queries.

Translator can support ORDER BY items that
are not directly specified in the select clause.

Translator can support ORDER BY items with
NULLS FIRST/LAST.

Translator can support ORDER BY directly
over a GROUP BY with an extended grouping
element such as a ROLLUP.

Translator can support an explicit GROUP BY
clause.

Translator can support GROUP BY (currently
a single) ROLLUP.

Translator can support GROUP BY to create
multiple distinct aggregates (See IMPALA-
110).

Having GroupBy

AggregatesAvg

AggregatesCount

Ao
AggregatesCountStar

AggregatesDistinct ﬁltnlcet?cs):l:'ne of the aggregate
AggregatesMax

AggregatesMin

AggregatesSum

AggregatesEnhancedNumeric

StringAgg

ListAgg

ScalarSubqueries

ScalarSubqueryProjection ScalarSubqueries
CorrelatedSubqueries ﬁx&sfgztv:;liafaﬁiitsig?uery
CorrelatedSubqueryLimit CorrelatedSubqueries
CaseExpressions

Translator can support the HAVING clause.

Translator can support the AVG aggregate
function.

Translator can support the COUNT aggregate
function.

Translator supports a separate COUNT
function that returns a long value. If false
COUNT will be pushed instead.

Translator can support the COUNT(*)
aggregate function.

Translator can support the keyword
DISTINCT inside an aggregate function. This
keyword indicates that duplicate values within
a group of rows will be ignored.

Translator can support the MAX aggregate
function.

Translator can support the MIN aggregate
function.

Translator can support the SUM aggregate
function.

Translator can support the VAR_SAMP,
VAR_POP, STDDEV_SAMP, STDDEV_POP
aggregate functions.

Translator can support the string_agg
aggregate function.

Translator can support a restricted form
(matching Oracle’s listagg) of the string_agg
aggregate function.

Translator can support the use of a subquery in
a scalar context (wherever an expression is
valid).

Translator can support the use of a projected
scalar subquery.

Translator can support a correlated subquery
that refers to an elementin the outer query.

Defaults to CorrelatedSubqueries support.
Translator can support a correlated subquery
with a limit clause.

Not currently used - simple case is rewriten as
searched case.

SearchedCaseExpressions

Unions

Intersect

Except

SetQueryOrderBy

SetQueryLimitOffset

RowLimit

RowOffset

FunctionsInGroupBy

InsertWithQueryExpression

BatchedUpdates

BulkUpdate

CommonTableExpressions

SubqueryCommonTableExpressions

RecursiveCommonTableExpressions

ElementaryOlapOperations

WindowFrameClause

WindowOrderByWithAggregates

Unions, Intersect, or Except

(Unions, Intersect, or
Except) and (RowLimit or
RowOffset)

GroupBy

CommonTableExpressions

CommonTableExpressions

ElementaryOlapOperations

ElementaryOlapOperations

Translator can support searched CASE
expressions anywhere that expressions are
accepted.

Translator support UNION and UNION ALL

Translator supports INTERSECT

Translator supports Except

Translator supports set queries with an
ORDER BY

Translator supports set queries with a LIMIT
and/or OFFSET which is determined by the
respective RowLimit and RowOffset
capability. Defaults to true if RowLimit or
RowOffset is supported.

Translator can support the limit portion of the
limit clause

Translator can support the offset portion of the
limit clause

Translator can support non-column reference
grouping expressions.

Translator supports INSERT statements with
values specified by an QueryExpression.

Translator supports a batch of INSERT,
UPDATE and DELETE commands to be
executed together.

Translator supports updates with multiple
value sets

Translator supports the WITH clause.

Translator supports a WITH clause in
subqueries.

Translator supports recursive common table
expressions

Translator supports window functions and
analytic functions RANK, DENSE_RANK,
and ROW_NUMBER.

Translator supports window frame
RANGE/ROWS clause. Defaults to
ElementaryOlapOperations support value.

Translator supports windowed aggregates with
a window order by clause.

WindowDistinctAggregates ElementaryOlapOperations,
AggregatesDistinct
AdvancedOlapOperations ElementaryOlapOperations

WindowFunctionCumeDist

WindowFunctionPercentDist

WindowFunctionNtile

WindowFunctionNthValue

function support for a
parse/format function and an

OnlyFormatLiterals implementation of the
supportsFormatLiteral
method.

FormatLiteral(String literal, Format

OnlyFormatLiterals
type) Y
ArrayType
OnlyCorrelatedSubqueries CorrelatedSubqueries
SelectWithoutFrom SelectExpressions
Upsert

function support for a

OnlyTimestampAddLiteral timestampadd function.

MultipleOpenExecutions

GeographyType

Translator supports windowed distinct
aggregates.

Translator supports aggregate conditions.

Translator supports CUME_DIST window
function. Defaults to the support value for
ElementaryOlapOperations

Translator supports PERCENT_DIST window
function. Defaults to the support value for
ElementaryOlapOperations

Translator supports NTILE window function.
Defaults to the support value for
ElementaryOlapOperations

Translator supports NTH_VALUE window
function. Defaults to the support value for
ElementaryOlapOperations

Translator supports only literal format patterns
that must be validated by the
supportsFormatLiteral method.

Translator supports the given literal format
string.

Translator supports the push down of array
values.

Translator ONLY supports correlated
subqueries. Uncorrelated scalar and exists
subqueries will be pre-evaluated prior to push-
down.

Translator supports selecting values without a
FROM clause, e.g. SELECT 1.

Translator supports an upsert style insert.

Translator supports only a literal interval
value.

Translator supports multiple open executions
against a single connection. If false, in
transactional scenarios the execution will be
thread bound.

Translator supports the geograpy type
variations of ST_ geospatial functions.

Note that any pushdown subquery must itself be compliant with the Translator capabilities.

Command Form

The method ExecutionFactory.useAnsiJoin() should return true if the Translator prefers the use of ANSI style join structure

for join trees that contain only INNER and CROSS joins.

The method ExecutionFactory.requirescriteria() should return true if the Translator requires criteria for any Query, Update,

or Delete. This is a replacement for the model support property where All .

Scalar Functions

The method ExecutionFactory.getSupportedFunctions() can be used to specify which system/user defined scalar and user
defined aggregate functions the Translator supports. The constants interface org.teiid.translator.SourceSystemFunctions
contains the string names of all possible built-in pushdown functions, which includes the four standard math operators: +, -, *, and
/.

Not all system functions appear in SourceSystemFunctions, since some system functions will always be evaluated in Teiid, are

simple aliases to other functions, or are rewritten to a more standard expression.

This documentation for system functions can be found at Scalar Functions. If the Translator states that it supports a function, it

must support all type combinations and overloaded forms of that function.

A translator may also indicate support for scalar functions that are intended for pushdown evaluation by that translator, but are not

registered as user defined functions via a model/schema. These pushdown functions are reported to the engine via the
ExecutionFactory.getPushDownFunctions() listas FunctionMethod metadata objects. The FuncitonMethod representation

allow the translator to control all of the metadata related to the function, including type signature, determinism, varargs, etc. The

simplest way to add a pushdown function is with a call to ExecutionFactory.addPushDownFunction :

FunctionMethod addPushDownFunction

This resulting function will be known as sys.qualifier.name, but can be called with just name as long as the function name is
unique. The returned FunctionMethod object may be further manipulated depending upon the needs of the source. An example

of adding a custom concat vararg function in an ExecutionFactory subclass:

public void start throws TranslatorException {
super.start();
FunctionMethod func = addPushDownFunction('"oracle", "concat", "string", "string", "string");
func.setVarArgs(true);

Physical Limits

The method ExecutionFactory.getMaxInCriteriaSize() can be used to specify the maximum number of values that can be
passed in an IN criteria. This is an important constraint as an IN criteria is frequently used to pass criteria between one source and

another using a dependent join.

The method ExecutionFactory.getMaxDependentInPredicates() is used to specify the maximum number of IN predicates (of at
most MaxInCriteriaSize) that can be passed as part of a dependent join. For example if there are 10000 values to pass as part of
the dependent join and a MaxInCriteriaSize of 1000 and a MaxDependentInPredicates setting of 5, then the dependent join logic

will form two source queries each with 5 IN predicates of 1000 values each combined by OR.

The method ExecutionFactory.getMaxFromGroups() can be used to specify the maximum number of FROM Clause groups that

can used in a join. -1 indicates there is no limit.

The method ExecutionFactory.getMaxProjectedColumns() can be used to specify the maximum number of columns or

expressions in the select clause. -1 indicates there is no limit.

Update Execution Modes
The method ExecutionFactory.supportsBatchedUpdates() can be used to indicate that the Translator supports executing the
BatchedUpdates command.

The method ExecutionFactory.supportsBulkupdate() can be used to indicate that the Translator accepts update commands

containg multi valued Literals.

Note that if the translator does not support either of these update modes, the query engine will compensate by issuing the updates

individually.

Default Behavior
The method ExecutionFactory.getDefaultNullorder() specifies the default null order. Can be one of UNKNOWN, LOW,
HIGH, FIRST, LAST. This is only used if ORDER BY is supported, but null ordering is not.

The method ExecutionFactory.getCollation() specifies the default collation. If set to a value that does not match the collation

locale defined by org.teiid.collationLocale, then some ordering may not be pushed down.

The method ExecutionFactory.getRequiredLikeEscape() specifies the required like escape character. Used only when a source

supports a specific escape.

Use of Connections

Method Description Default

True indicates a source connection is
is/setSourceRequired required for fetching the metadata of true
the source or executing queries.

True indicates a source connection is
is/setSourceRequiredForMetadata required for fetching the metadata of SourceRequired
the source.

Transaction Behavior

ExecutionFactory.get/setTransactionSupport specifies the highest level of transaction supported by connections to the source. This

is used as a hint to the engine for deciding when to start a transaction in the autoCommitTxn=DETECT mode. Defaults to XA.

Translator Properties

During translator development, a translator developer can define three (3) different types of property sets that can help customize

the behavior of the translator. The sections below describes each one.

Translator Override Properties

On the "ExecutionFactory" class a translator developer can define any number of "getter/setter" methods with the
@TranslatorProperty annotation. These properties (also referred to a execution properties) can be used for extending the
capabilities of the translator. It is important to define default values for all these properties, as these properties are being defined to
change the default behavior of the translator. If needed, the values for these properties are supplied in the vdb during the deploy

time when the translator is used to represent vdb’s model. A sample example is given below:

@TranslatorProperty(display="Copy LOBs",description="If true, returned LOBs will be copied, rather than streame
d from the source",advanced=true)
public boolean isCopyLobs {

return copyLobs;

public void setCopyLobs(boolean {
this.copyLobs = copyLobs;

at runtime these properties can be defined in the vdb as

CREATE DATABASE vdb;

USE DATABASE vdb;

CREATE FOREIGN DATA WRAPPER "my-translator-override" TYPE "my-translator" OPTIONS (CopyLobs 'true');
CREATE SERVER connector FOREIGN DATA WRAPPER "my-translator-override";

CREATE SCHEMA PM1 SERVER connector;

SET SCHEMA PM1;

IMPORT FROM SERVER connector INTO PM1;

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="vdb" version="1">
<model name="PM1">
<source name="connector" translator-name="my-translator-override" />
</model>
<translator name="my-translator-override" type="my-translator">
<property name="CopyLobs" value="true" />
</translator>
</vdb>

Metadata Import Properties

If a translator is defining schema information based on the physical source (i.e. implementing getMetadata method on
ExecutionFactory) it is connected to, then import properties provide a way to customize the behavior of the import process. For
example, in the JDBC translator users can exclude certain tables that match a regular expression etc. To define a import property,
the @TranslatorPropery annotation is used on any getter/setter method on the "ExecutionFactory" class or any class that

implements the "MetadataProcessor" interface, with category property defined as "PropertyType.IMPORT". For example.

@Translator(name = "my-translator", description = "My Translator")
public class MyExecutionFactory extends ExecutionFactory<ConnectionFactory, MyConnection> {

public MetadataProcessor<C> getMetadataProcessor {
return MyMetadataProcessor();

public MyMetadataProcessor implements MetadataProcessor<MyConnection> {
public void process throws TranslatorException{

// schema generation code here

@TranslatorProperty(display="Header Row Number", category=PropertyType.IMPORT, description="Row number that
contains the header information")

public int getHeaderRowNumber {
return headerRowNumber;

}

public void setHeaderRowNumber (int {
this.headerRowNumber = headerRowNumber;

}

Below is an example showing how to use import properties with a vdb file

CREATE DATABASE vdb;

USE DATABASE vdb;

CREATE SERVER connector FOREIGN DATA WRAPPER "my-translator";

CREATE SCHEMA PM1 SERVER connector OPTIONS ("importer.HeaderRowNumber" '12');
SET SCHEMA PM1;

IMPORT FROM SERVER connector INTO PM1 OPTIONS ("importer.HeaderRowNumber" '12');

Note that the import properties in DDL may be on either the SERVER or the IMPORT statement.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="vdb" version="1">
<model name="PM1">
<property name="importer.HeaderRowNumber" value="12"/>
<source name="connector" translator-name="my-translator" />
</model>
</vdb>

Extension Metadata Properties

During the execution of the command in translator, a translator is responsible to convert Teiid supplied SQL command into data
source specific query. Most of times this conversion is not a trivial task can be converted from one form to another. There are
many cases built-in metadata is not sufficient and additional metadata about source is useful to form a request to the underlying
physical source system. Extension Metadata Properties one such mechanism to fill the gap in the metadata. These can be defined

specific for a given translator.

A translator is a plugin, that is communicating with Teiid engine about it’s source with it’s metadata. Metadata in this context is
definitions of Tables, Columns, Procedures, Keys etc. This metadata can be decorated with additional custom metadata and fed to
Teiid query engine. Teiid query engine keeps this extended metadata intact along with its schema objects, and when a user query

is submitted to the the translator for execution, this extended metadata can be retrieved for making decisions in the translator code.

Extended properties are defined using annotation class called @ExtensionMetadataProperty on the fields in your

"MetadataProcessor" or "ExcutionFactory" classes.

For example, say translator requires a "encoding" property on Table, to do the correct un-marshaling of data, this property can be

defined as

public class MyMetadataProcessor implements MetadataProcessor<MyConnection> {
public static final String URI = "{http://www.teiid.org/translator/mytranslator/2014}";

@ExtensionMetadataProperty(applicable=Table.class, datatype=String.class, display="Encoding", description="
Encoding", required=true)
public static final String ENCODING = URI+"encode";

public void process(MetadataFactory mf, FileConnection conn) throws TranslatorException {

Table t = mf.addTable(tableName);
t.setProperty(ENCODING, "UTF-16");

// add columns etc.

Now during the execution, on the COMMAND object supplied to the "Execution” class, user can

Select select = (Select)command;

NamedTable tableReferece = select.getFrom().get(0);

Table t = tableReference.getMetadataObject();

String encoding = t.getProperty(MyMetadataProcessor.ENCODING, false);

// use the encoding value as needed to marshal or unmarshal data

Extending The JDBC Translator

The JDBC Translator can be extended to handle new JDBC drivers and database versions. This is one of the most common needs
of custom Translator development. This chapter outlines the process by which a user can modify the behavior of the JDBC

Translator for a new source, rather than starting from scratch.

To design a JDBC Translator for any RDMS that is not already provided by the Teiid, extend the
org.teiid.translator.jdbc.JDBCExecutionFactory class in the "translator-jdbc" module. There are three types of methods that

you can override from the base class to define the behavior of the Translator.

Extension Purpose

Capabilities Specify the SQL syntax and functions the source supports.

Customize what SQL syntax is used, how source-specific

SQL Translation a
Q functions are supported, how procedures are executed.

Customize how results are retrieved from JDBC and

Results Translation
translated.

Table of Contents
e (apabilities Extension
o SQL Translation Extension
e Results Translation Extension
e Adding Function Support
e Using FunctionModifiers

e Installing Extensions

Capabilities Extension
This extension must override the methods that begin with "supports" that describe translator capabilities. Refer to Command
Language#Translator Capabilities for all the available translator capabilities.

The most common example is adding support for a scalar function — this requires both declaring that the translator has the

capability to execute the function and often modifying the SQL Translator to translate the function appropriately for the source.

Another common example is turning off unsupported SQL capabilities (such as outer joins or subqueries) for less sophisticated
JDBC sources.

SQL Translation Extension

The JDBCExcecutionFactory provides several methods to modify the command and the string form of the resulting syntax before

it is sent to the JDBC driver, including:

e Change basic SQL syntax options. See the useXXX methods, e.g. useSelectLimit returns true for SQLServer to indicate that

limits are applied in the SELECT clause.
e Register one or more FunctionModifiers that define how a scalar function should be modified or transformed.

e Modify a LanguageObject. - see the translate, translateXXX, and FunctionModifiers.translate methods. Modify the passed in

object and return null to indicate that the standard syntax output should be used.

e Change the way SQL strings are formed for a LanguageObject. - - see the translate, translateXXX, and
FunctionModifiers.translate methods. Return a list of parts, which can contain strings and LanguageObjects, that will be
appended in order to the SQL string. If the in coming LanguageObject appears in the returned list it will not be translated

again. Refer to Using FunctionModifiers.

Results Translation Extension

The JDBCExecutionFactory provides several methods to modify the java.sql.Statement and java.sql.ResultSet interactions,

including:

1. Overriding the createXXXExecution to subclass the corresponding JDBCXXXExecution. The JDBCBaseExecution has
protected methods to get the appropriate statement (getStatement, getPreparedStatement, getCallableStatement) and to bind
prepared statement values bindPreparedStatementValues.

2. Retrieve values from the JDBC ResultSet or CallableStatement - see the retrieveValue methods.

Adding Function Support
Refer to User Defined Functions for adding new functions to Teiid. This example will show you how to declare support for the
function and modify how the function is passed to the data source.
Following is a summary of all coding steps in supporting a new scalar function:
1. Override the capabilities method to declare support for the function (REQUIRED)

2. Implement a FunctionModifier to change how a function is translated and register it for use (OPTIONAL) There is a

capabilities method getSupportedFunctions() that declares all supported scalar functions.

An example of an extended capabilities class to add support for the "abs" absolute value function:

package my.connector;

import java.util.Arraylist;
import java.util.List;

public class extends

{
@Ooverride
public List

{
List supportedFunctions = new ArrayList();
supportedFunctions.addAll(super.getSupportedFunctions());
supportedFunctions.add("ABS");
return supportedFunctions;

}

In general, it is a good idea to call super.getSupportedFunctions() to ensure that you retain any function support provided by the

translator you are extending.

This may be all that is needed to support a Teiid function if the JDBC data source supports the same syntax as Teiid. The built-in

SQL translation will translate most functions as: "function(argl, arg2,...)".

Using FunctionModifiers

In some cases you may need to translate the function differently or even insert additional function calls above or below the

function being translated. The JDBC translator provides an abstract class FunctionModifier for this purpose.

During the start method a modifier instance can be registered against a given function name via a call to

JDBCExecutionFactory.registerFunctionModifier .
The FunctionModifier has a method called translate . Use the translate method to change the way the function is represented.

An example of overriding the translate method to change the MOD(a, b) function into an infix operator for Sybase (a % b). The
translate method returns a list of strings and language objects that will be assembled by the translator into a final string. The

strings will be used as is and the language objects will be further processed by the translator.

public class ModFunctionModifier extends FunctionModifier
{
public List translate
{
List parts = new ArrayList();
parts.add("(");
Expression[] args = function.getParameters();
parts.add(args[0]);
parts.add(" % ");
parts.add(args[1]);
parts.add(")");
return parts;

In addition to building your own FunctionModifiers, there are a number of pre-built generic function modifiers that are provided

with the translator.

Modifier Description
AliasModifier Handles simply renaming a function ("ucase" to "upper
for example)
BrenpeSmisa e Wraps a function in the standard JDBC escape syntax for

functions: {fn xxxx()}

To register the function modifiers for your supported functions, you must call the

ExecutionFactory.registerFunctionModifier(String name, FunctionModifier modifier) method.

public class ExtendedJDBCExecutionFactory extends JDBCExecutionFactory

{
@Ooverride
public void start
{
super.start();
// register functions.
registerFunctionModifier("abs", new MyAbsModifier());
registerFunctionModifier("concat", new AliasModifier('"concat2"));
}
}

Support for the two functions being registered ("abs" and "concat") must be declared in the capabilities as well. Functions that do

not have modifiers registered will be translated as usual.

Installing Extensions

Once you have developed an extension to the JDBC translator, you must install it into the Teiid Server. The process of packaging
or deploying the extended JDBC translators is exactly as any other other translator. Since the RDMS is accessible already through
its JDBC driver, there is no need to develop a resource adapter for this source as WildFly provides a wrapper JCA connector
(DataSource) for any JDBC driver.

Refer to Packaging and Deployment for more details.

Delegating Translator

In some instances you may wish to extend several different kinds of translators with the same functionality. Rather than create
separate subclasses for each extension, you can use the delegating translator framework which provides you with a proxying
mechanism to override translator behavior. It implement a delegating translator, your common translator logic should be added to
a subclass of BaseDelegatingExecutionFactory where you can override any of the delegation methods to perform whatever logic

you want.

Example BaseDelegatingExecutionFactory Subclass

@Translator(name="custom-delegator™)
public class MyTranslator extends BaseDelegatingExecutionFactory<Object, Object> {

@override
public Execution createExecution

throws TranslatorException {

if (command instanceof Select) {
//modify the command or return a different execution

}
//the super call will be to the delegate instance
return super.createExecution(command, executionContext, metadata, connection);

You will bundle and deploy your custom delegating translator is just like any other custom translator development. To you use

your delegating translator in a vdb, you define a translator override that wires in the delegate.

Example Translator Override

<translator type="custom-delegator" name="my-translator'">
<property value="delegateName" name="name of the delegate instance"/>
<!-- any custom properties you may have on your custom translator -->

</translator>

From the previous example the translator type is custom-delegator. Now my-translator can be used as a translator-name on a

source and will proxy all calls to whatever delegate instance you assign.

Note that the delegate instance can be any translator instance, whether configured by it’s own translator entry or

Note .
just the name of a standard translator type.

Packaging

Once the "ExecutionFactory" class is implemented, package it in a JAR file. Then add the following named file in "META-
INF/services/org.teiid.translator.ExecutionFactory" with contents specifying the name of your main Translator file. Note that, the
name must exactly match to above. This is java’s standard service loader pattern. This will register the Translator for deployment

when the jar is deployed into WildFly.

org.teiid.translator.custom.CustomExecutionFactory

Adding Dependent Modules

Add a MANIFEST.MF file in the META-INF directory, and the core Teiid API dependencies for resource adapter with the

following line.

Dependencies: org.jboss.teiid.common-core,org.jboss.teiid.api, javax.api

If your translator depends upon any other third party jar files, ensure a module exists and add the module name to the above
MANIFEST.MF file.

Deployment

A translator JAR file can be deployed into Teiid Server in two different ways

As WildFly module

Create a module under "jboss-as/modules" directory and define the translator name and module name in the teiid subsystem in
standalone-teiid.xml file or domain-teiid.xml file and restart the server. The dependent Teiid or any other java class libraries must

be defined in module.xml file of the module. For production profiles this is recommended.

As JAR deployment

For development time or quick deployment you can deploy the translator JAR using the CLI or AdminAPI or admin console
programs. When you deploy in JAR form the dependencies to Teiid java libraries and any other third party libraries must be
defined under META-INF/MANIFEST.MF file.

User Defined Functions

If you need to extend Teiid’s scalar or aggregate function library, then Teiid provides a means to define custom or User Defined
Functions(UDF).

The following are used to define a UDF.
e Function Name When you create the function name, keep these requirements in mind:
o You cannot overload existing Teiid System functions.

o The function name must be unique among user-defined functions in its model for the number of arguments. You can use
the same function name for different numbers of types of arguments. Hence, you can overload your user-defined

functions.
o The function name cannot contain the ".' character.
o The function name cannot exceed 255 characters.
e Input Parameters- defines a type specific signature list. All arguments are considered required.
e Return Type- the expected type of the returned scalar value.

e Pushdown- can be one of REQUIRED, NEVER, ALLOWED. Indicates the expected pushdown behavior. If NEVER or
ALLOWED are specified then a Java implementation of the function should be supplied. If REQUIRED is used, then user

must extend the Translator for the source and add this function to its pushdown function library.
e invocationClass/invocationMethod- optional properties indicating the method to invoke when the UDF is not pushed down.

e Deterministic- if the method will always return the same result for the same input parameters. Defaults to false. It is
important to mark the function as deterministic if it returns the same value for the same inputs as this will lead to better
performance. See also the Relational extension boolean metadata property "deterministic" and the DDL OPTION property
"determinism". Defaults to false. It is important to mark the function as deterministic if it returns the same value for the same
inputs as this will lead to better performance. See also the Relational extension boolean metadata property "deterministic"
and the DDL OPTION property "determinism".

Even Pushdown required functions need to be added as a UDF to allow Teiid to properly parse and resolve the function.
Pushdown scalar functions differ from normal user-defined functions in that no code is provided for evaluation in the engine. An

exception will be raised if a pushdown required function cannot be evaluated by the appropriate source.

Source Supported Functions

While Teiid provides an extensive scalar function library, it contains only those functions that can be evaluated within the query
engine. In many circumstances, especially for performance, a source function allows for calling a source specific function. The

semantics of defining the source function as similar or same to one of defining the UDF.

For example, suppose you want to use the Oracle-specific functions score and contains like:

SELECT score , ID, FREEDATA FROM Docs WHERE contains 'nick’ >0

The score and contains functions are not part of built-in scalar function library. While you could write your own custom scalar
function to mimic their behavior, it’s more likely that you would want to use the actual Oracle functions that are provided by
Oracle when using the Oracle Free Text functionality.

In order to configure Teiid to push the above function evaluation to Oracle, Teiid provides a few different ways one can configure

their instance.

Extending the Translator

The ExecutionFactory.getPushdownFunctions method can be used to describe functions that are valid against all instances of a
given translator type. The function names are expected to be prefixed by the translator type, or some other logical grouping, e.g.
salesforce.includes. The full name of the function once imported into the system will qualified by the SYS schema, e.g.

SYS.salesforce.includes.

Any functions added via these mechanisms do not need to be declared in ExecutionFactory.getSupportedFunctions. Any of the
additional handling, such as adding a FunctionModifier, covered above is also applicable here. All pushdown functions will have
function name set to only the simple name. Schema or other qualification will be removed. Handling, such as function modifiers,

can check the function metadata if there is the potential for an ambiguity.
For example, to extend the Oracle Connector

e Required- extend the OracleExecutionFactory and add SCORE and CONTAINS as supported pushdown functions by either
overriding or adding additional functions in "getPushDownFunctions" method. For this example, we’ll call the class

MyOracleExecutionFactory . Add the org.teiid.translator.Translator annotation to the class, e.g.
@Translator(name="myoracle")

e Optionally register new FunctionModifiers on the start of the ExecutionFactory to handle translation of these functions.
Given that the syntax of these functions is same as other typical functions, this probably isn’t needed - the default translation

should work.

e Create a new translator JAR containing your custom ExecutionFactory. Refer to Packaging and Deployment for instructions
on using the JAR file. Once this is extended translator is deployed in the Teiid Server, use "myoracle" as translator name

instead of the "oracle" in your VDB’s Oracle source configuration.

If you source handing of the function can be described by simple parameter substitution into a string, then you may not need to
extend the translator for a source specific function. You can use the extension property teiid_rel:native-query to define the syntax

handling - see also DDL Metadata for functions.

See defining the metadata using DDL, you can define your source function in the VDB as

CREATE DATABASE "{vdb-name}";

USE DATABASE "{vdb-name}";

CREATE SERVER AccountsDB FOREIGN DATA WRAPPER oracle OPTIONS ("resource-name" 'java:/oracleDS');
CREATE SCHEMA "{model-name}" SERVER AccountsDB;

SET SCHEMA "{model-name}";
CREATE FOREIGN FUNCTION SCORE (val) RETURNS 5

In an XML VDB:

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="PHYSICAL">
<source name="AccountsDB" translator-name="oracle" connection-jndi-name="java:/oracleDS"/>
<metadata type="DDL"><![CDATA[
CREATE FOREIGN FUNCTION SCORE (val integer) RETURNS integer;
(other tables, procedures etc)
11>
</metadata>
</model>
</vdb>

By default when a source can provide metadata, the Source model’s metadata is automatically retrieved from the source if they
were JDBC, File, WebService. The File and WebService sources are static, so one can not add additional metadata on them.
However on the JDBC sources you can retrieve the metadata from source and then user can append additional metadata on top of

them. For example

CREATE DATABASE "{vdb-name}";

USE DATABASE "{vdb-name}";

CREATE SERVER AccountsDB FOREIGN DATA WRAPPER oracle OPTIONS ("resource-name"
'java:/oracleDS');

CREATE SCHEMA "{model-name}" SERVER AccountsDB;

SET SCHEMA "{model-name}";

IMPORT FROM AccountsDB INTO "{model-name}";

CREATE FOREIGN FUNCTION SCORE (val integer) RETURNS integer;

In an XML VDB:

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="PHYSICAL">
<source name="AccountsDB" translator-name="oracle" connection-jndi-name="java:/oracleDS"/>
<metadata type="NATIVE"/>
<metadata type="DDL"><![CDATA[
CREATE FOREIGN FUNCTION SCORE (val integer) RETURNS integer;
11>
</metadata>
</model>
</vdb>

The above example uses NATIVE metadata type (NATIVE is the default for source/physical models) first to retrieve schema
information from source, then uses DDL metadata type to add additional metadata. Only metadata not available via the NATIVE

translator logic would need to be specified via DDL.

Alternatively, if you are using custom MetadataRepository with your VDB, then provide the "function" metadata directly from

your implementation. ex.

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="PHYSICAL">
<source name="AccountsDB" translator-name="oracle" connection-jndi-name="java:/oracleDS"/>
<metadata type="{metadata-repo-module}"></metadata>
</model>
</vdb>

In the above example, user can implement MetadataRepository interface and package the implementation class along with its
dependencies in a WildFly module and supply the module name in the above XML. For more information on how to write a

Metadata Repository refer to Custom Metadata Repository.

Support for User-Defined Functions (Non-Pushdown)

To define a non-pushdown function, a Java function must be provided that matches the VDB defined metadata. User Defined
Function (or UDF) and User Defined Aggregate Function (or UDAF) may be called at runtime just like any other function or

aggregate function respectively.

Function Metadata

See User Defined Functions. Make sure you provide the JAVA code implementation details in the properties dialog for the UDF.
You can define a UDF or UDAF (User Defined Aggregate Function) as shown below.

CREATE DATABASE "{vdb-name}";

USE DATABASE "{vdb-name}";

CREATE VIRTUAL SCHEMA "{model-name}";
SET SCHEMA "{model-name}";

CREATE VIRTUAL FUNCTION celsiusToFahrenheit(celsius) RETURNS OPTIONS (JAVA_CLASS 'org.something
.TempConv', JAVA_METHOD 'celsiusToFahrenheit');
CREATE VIRTUAL FUNCTION sumAll(arg) RETURNS OPTIONS (JAVA_CLASS 'org.something.SumAll', JAVA_M

ETHOD 'addInput', AGGREGATE 'true', VARARGS 'true', "NULL-ON-NULL" 'true')

As an XML VDB:

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="VIRTUAL">
<metadata type="DDL"><![CDATA[
CREATE VIRTUAL FUNCTION celsiusToFahrenheit(celsius decimal) RETURNS decimal OPTIONS (JAVA_CLASS '
org.something.TempConv', JAVA_METHOD 'celsiusToFahrenheit');
CREATE VIRTUAL FUNCTION sumAll(arg integer) RETURNS integer OPTIONS (JAVA_CLASS 'org.something.Sum
All', JAVA_METHOD 'addInput', AGGREGATE 'true', VARARGS 'true', "NULL-ON-NULL" 'true');]]> </metadata>
</model>
</vdb>

You must create a Java method that contains the function’s logic. This Java method should accept the necessary arguments, which

the Teiid System will pass to it at runtime, and function should return the calculated or altered value.

See DDL Metadata for all possible options related to functions defined via DDL.

Writing the Java Code required by the UDF

The number of input arguments and types must match the function metadata defined in the VDB metadata.
Code Requirements For UDFs

e The java class containing the function method must be defined public.
Note One implementation class can contain more than one UDF implementation methods.

e The function method must be public and static.

Code Requirements For UDAFs
e The java class containing the function method must be defined public and extend org.teiid.UserDefined Aggregate
e The function method must be public.

Other Considerations

e Any exception can be thrown, but Teiid will rethrow the exception as a FunctionExecutionException

e You may optionally add an additional org.teiid.CommandContext argument as the first parameter. The commandContext
interface provides access to information about the current command, such as the executing user, Subject, the vdb, the session

id, etc. This commandcontext parameter should not be declared in the function metadata.

Sample UDF code

package org.something;

public class TempConv
{
/o
* Converts the given Celsius temperature to Fahrenheit, and returns the
* value.
* @param doubleCelsiusTemp
* @return Fahrenheit
*/
public static Double celsiusToFahrenheit(Double doubleCelsiusTemp)
{
if (doubleCelsiusTemp == null)
{

return null;

}

return (doubleCelsiusTemp)*9/5 + 32;

Sample UDAF code

package org.something;
public static class SumAll implements UserDefinedAggregate<Integer> {

private boolean isNull = true;
private int result;

public void addInput(Integer... vals) {
isNull = false;
for (int i : vals) {
result += i;

@Ooverride
public Integer getResult(org.teiid.CommandContext commandContext) {
if (isNull) {
return null;

3

return result;
}
@override

public void reset() {
isNull = true;
result = 0;

Sample CommandContext Usage

package org.something;

public class SessionInfo

{

* @param context

* @return the created Timestamp

*/

public static Timestamp sessionCreated

{

return new Timestamp(context.getSession().getCreatedTime());

}

The corresponding UDF would be declared as Timestamp sessionCreated().

Post Code Activities

e After coding the functions you should compile the Java code into a Java Archive (JAR) file.

Zip Deployment

The JAR file may be placed in your VDB under the "/lib" directory. It will automatically be used for the VDB classloader
classpath when deployed.

AS Module

Create a WildFly module with the JAR file under <jboss-as>/modules directory and define the module on the -vdb.xml file as

shown below example

<vdb name="{vdb-name}" version="1">
<property name ="lib" value ="{module-name}"></property>

</vdb>

The lib property value may contain a space delimited list of module names if more than one dependency is needed.

Archetype Template UDF Project

One way to start developing a custom user defined function (UDF) is to create a project using the Teiid UDF archetype template.
When the project is created from the template, it will create a maven project that contains an example java class and the assembly

resources for packaging as a module or a CLI script for configuring via jboss-cli.

The project will be created as an independent project and has no parent maven dependencies. It’s designed to be

Note built independent of building Teiid.

You have 2 options for creating a UDF project; in Eclipse by creating a new maven project from the arche type or by using the

command line to generate the project.

Create Project in Eclipse

To create a Java project in Eclipse from an arche type, perform the following:
e Open the JAVA perspective
e From the menu select File — New —> Other
e In the tree, expand Maven and select Maven Project, press Next
e On the "Select project name and Location" window, you can accept the defaults, press Next
e On the "Select an Archetype" window, select Configure button
e Add the remote catalog: link:http://central.maven.org/maven2/ then click OK to return
e Enter "teiid" in the filter to see the Teiid arche types.
e Select the udf-archetype v12.0.0, then press Next

e Enter all the information (i.e., Group ID, Artifact ID, method-name, method-args, return-type etc.) needed to generate the

project, then click Finish

The project will be created and name according to the *ArtifactID*.

Create Project using Command Line

Note make sure the link:http://central.maven.org/maven2/ repository is accessible via your maven settings.

To create a custom translator project from the command line, you can use the following template command:

o TEMPLATE

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=udf-archetype \
-DarchetypeVersion=${archetypeVersion} \
-DgroupId=${groupId} \
-DartifactId=${udf-artifact-id} \
-Dpackage=${package} \
-Dversion= .1-SNAPSHOT \
-Dudf-name=${functionName} \
-Dmethod-name=${methodName} \
-Dmethod-args=${methodArguments} \
-Dreturn-type=${returnType} \

-Dteiid-version=${teiid-version}

o where:

-DarchetypeGroupId - 1is the group ID for the arche type to use to generate

-DarchetypeArtifactId - is the artifact ID for the arche type to use to generate

-DarchetypeVersion - 1is the version for the arche type to use to generate

-DgroupId - (user defined) group ID for the new udf project pom.xml

-DartifactId - (user defined) artifact ID for the new udf project pom.xml

-Dpackage - (user defined) the package structure where the java, module and resource files will be creat
ed

-Dversion - (user defined) the version that the new connector project pom.xml will be

-Dudf-name - (user defined) the name to give the new user defined function, will become the Class Nam
e

-Dmethod-name - (user defined) the name of the method that will be configured in the model procedure

-Dmethod-args - (user defined) the arguments the method will accept. 'Type name[, Type namel[,...]]

Example: 'String arg0@' or 'String arg®, integer argil'

-Dreturn-type - (user defined) the data type of the value returned by the method

-Dteiid-version - the Teiid version the connector will depend upon
o EXAMPLE

e this is an example of the template that can be run:

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=udf-archetype \
-DarchetypeVersion= \

-DgroupId=org.example \
-DartifactId=udf-function \

-Dpackage=org.example.function \
-Dversion= .1-SNAPSHOT \
-Dudf-name=Function \
-Dmethod-name=function \

-Dmethod-args="'String argl’ \
-Dreturn-type=String \
-Dteiid-version=${teiid-version}

When executed, you will be asked to confirm the package property

[INFO] Archetype repository not defined. Using the one from [org.teiid.arche-types:udf-archetype:9.0.1] found in catalog local

[INFO] Using property: groupld = org.example [INFO] Using property: artifactld = udf-function [INFO] Using property: version
=0.0.1-SNAPSHOT [INFO] Using property: package = org.example.function [INFO] Using property: method-args = String argl
[INFO] Using property: method-name = function [INFO] Using property: return-type = String [INFO] Using property: udf-name
= Function Confirm properties configuration: groupld: org.example artifactld: udf-function version: 0.0.1-SNAPSHOT package:

org.example.function method-args: String arg1 method-name: function return-type: String udf-name: Function Y: : y
type Y (yes) and press enter, and the creation of the udf project will be done
Upon creation, a directory based on the _*artifactId*_ will be created, that will
contain the project. 'cd' into that directory and execute a test build to confirm

the project was created correctly:

[source, java]

mvn clean install

This should build successfully, and now you are ready to start adding your custom
code.

AdminAPI

In most circumstances the admin operations will be performed through the admin console, but it is also possible to invoke admin

functionality directly in Java (or a Java scripting language) through the AdminAPI.

All classes for the AdminAPI are in the client jar under the org.teiid.adminapi package.

Connecting

An AdminAPI connection, which is represented by the org.teiid.adminapi.Admin interface, is obtained through the
org.teiid.adminapi.AdminFactory.createAdmin methods. AdminFactory is a singleton in the teiid-jboss-admin jar, see
AdminFactory.getInstance() . The Admin instance automatically tests its connection and reconnects to a server in the event of

a failure. The close method should be called to terminate the connection.

See your JBoss installation for the appropriate admin port - the default port is 9999.

Admin Methods

Admin methods exist for monitoring, server administration, and configuration purposes. Note that the objects returned by the
monitoring methods, such as getRequests, are read-only and cannot be used to change server state. See the JavaDocs for all of the

details

Custom Logging

The Teiid system provides a wealth of information using logging. To control logging level, contexts, and log locations, you should
be familiar with container’s standalone.xml or domain.xml configuration file and check out "logging" subsystem. Refer to the

Administrator’s Guide for more details about different Teiid contexts available.

If you want a custom log handler, follow the directions to write a custom java.util.logging.Handler. If you develop a custom
logging Handler, the implementation class along should be placed as a jar in "org.jboss.teiid" module and define its name in the

module.xml file as part of the module along with any dependencies it may need. See below.

Command Logging API

If you want to build a custom handler for command logging that will have access to java.util.logging L.ogRecords to the
"COMMAND_LOG" context, the handler will receive a instance of LogRecord message, this object will contain a parameter of
type org.teiid.logging.CommandLogMessage . The relevant Teiid classes are defined in the teiid-api-15.0.0.jar. The
CommmdLogMessage includes information about vdb, session, command sql, etc. CommandLogMessages are logged at the
DEBUG (user queries and source queries on the .SOURCE child context), and TRACE (query plan) levels.

Sample CommandLogMessage Usage

package org.something;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

public class CommandHandler extends Handler {
@override
public void publish {
CommandLogMessage msg = (CommandLogMessage)record.getParameters()[0];
//1log to a database, trigger an email, etc.

@override
public void flush {
}

@override
public void close throws SecurityException {

}

Audit Logging API

If you want to build a custom handler for command logging that will have access to java.util.logging I.ogRecords to the

"AUDIT_LOG" context, the handler will receive a instance of LogRecord message, this object will contain a parameter of type
org.teiid.logging.AuditMessage . The AuditMessage includes information about user, the action, and the target(s) of the

action. The relevant Teiid classes are defined in the teiid-api-15.0.0.jar. AuditMessages are logged at the DEBUG level.

AuditMessages are used for both data role validation and for logon/logoff events. Only logon events will contain LogonInfo .

Sample AuditMessage Usage

package org.something;
import java.util.logging.Handler;
import java.util.logging.LogRecord;

public class AuditHandler extends Handler {
@override

http://docs.oracle.com/javase/6/docs/api/java/util/logging/Handler.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/LogRecord.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/LogRecord.html

public void publish {
AuditMessage msg = (AuditMessage)record.getParameters()[0];
//1log to a database, trigger an email, etc.

@override
public void flush {

}

@override
public void close throws SecurityException {

}

Configuration

Now that you have developed a custom handler class, now package implementation in Jar file, then copy this Jar file into <jboss-

as7>/modules/org/jboss/teiid/main folder, and edit module.xml file in the same directory and add

<resource-root path="{your-jar-name}.jar" />

then use the cli to update the logging configuration, such as shown with the auditcommand scripts in the bin/scripts directory or

edit standalone-teiid.xml or domain.xml file by locating the "logging" subsystem and add the following entries:

<custom-handler name="COMMAND" class="org.teiid.logging.CommandHandler"
module="org.jboss.teiid">
</custom-handler>

..other entries

<logger category="org.teiid.COMMAND_LOG">
<level name="DEBUG"/>
<handlers>
<handler name='"COMMAND"/>
</handlers>
</logger>

Change the above configuration accordingly for AuditHandler, if you are working with Audit Messages.

Runtime Updates

Teiid supports several mechanisms for updating the runtime system.

Data Updates

Data change events are used by Teiid to invalidate result set cache entries. Result set cache entries are tracked by the tables that
contributed to their results. By default Teiid will capture internal data events against physical sources and distribute them across
the cluster. This approach has several limitations. First updates are scoped only to their originating VDB/version. Second updates
made out side of Teiid are not captured. To increase data consistency external change data capture tools can be used to send events
to Teiid. From within a Teiid cluster the org.teiid.events.EventDistributorFactory and

org.teiid.events.EventDistributor can be used to distribute change events. The EventDistributorFactory can be looked up

by its name "teiid/event-distributor-factory". See Programmatic Control for a dataModification example.

When externally capturing all update events, "detect-change-events" property in the teiid subsystem in can be set to false, to not

duplicate change events. By default, this property is set to true.

Using the org.teiid.events.EventDistributor interface you can also update runtime metadata. Please check

Note e APL

The use of the other Eventbistributor methods to manually distribute other events is not always necessary. Check the System

Procedures for SQL based updates.

Runtime Metadata Updates

Runtime updates via system procedures and DDL statements are by default ephemeral. They are effective across the cluster only
for the currently running vdbs. With the next vdb start the values will revert to whatever is stored in the vdb. Updates may be
made persistent though by configuring a org.teiid.metadata.MetadataRepository . An instance of a MetadataRepository can
be installed via the vdb.xml file in the META-INF directory or use a VDB file as below.

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="VIRTUAL">
<metadata type="{jboss-as-module-name}"></metadata>
</model>
</vdb>

In the above code fragment, replace the {jboss-as-module-name} with a WildFly module name that has library that implements
the org.teiid.metadata.MetadataRepository interface and defines file "META-

INF/services/org.teiid.metadata.MetadataRepository" with name of the implementation file.

The MetadataRepository repository instance may fully implement as many of the methods as needed and return null from any

unneeded getter.

It is not recommended to directly manipulate org.teiid.metadata.AbstractMetadataRecord instances. System procedures and
DDL statements should be used instead since the effects will be distributed through the cluster and will not introduce

inconsistencies.

org.teiid.metadata.AbstractMetadataRecord objects passed to the MetadataRepository have not yet been modified. If the
MetadataRepository cannot persist the update, then a RuntimeException should be thrown to prevent the update from being

applied by the runtime engine.

Runtime Updates

The MetadataRepository can be accessed by multiple threads both during load or at runtime with through DDL statements. Your

implementation should handle any needed synchronization.

Costing Updates

See the Reference for the system procedures SYSADMIN.setColumnstats and SYSADMIN.setTableStats . To make costing

updates persistent MetadataRepository implementations should be provided for:

TableStats getTableStats(String vdbName, String vdbVersion, Table table);

void setTableStats(String vdbName, String vdbVersion, Table table, TableStats tableStats);
ColumnStats getColumnStats(String vdbName, String vdbVersion, Column column);

void setColumnStats(String vdbName, String vdbVersion, Column column, ColumnStats columnStats);

Schema Updates

See the Reference for supported DDL statements. To make schema updates persistent implementations should be provided for:

String getViewDefinition(String vdbName, String vdbVersion, Table table);
void setViewDefinition(String vdbName, String vdbVersion, Table table, String viewDefinition);

String getInsteadOfTriggerDefinition(String vdbName, String vdbVersion, Table table, Table.TriggerEvent trigger

Operation);

void setInsteadOfTriggerDefinition(String vdbName, String vdbVersion, Table table, Table.TriggerEvent triggerOp

eration, String triggerDefinition);

boolean isInsteadOfTriggerEnabled(String vdbName, String vdbVersion, Table table, Table.TriggerEvent triggerOpe

ration);

void setInsteadOfTriggerEnabled(String vdbName, String vdbVersion, Table table, Table.TriggerEvent triggerOpera

tion, boolean enabled);
String getProcedureDefinition(String vdbName, String vdbVersion, Procedure procedure);

void setProcedureDefinition(String vdbName, String vdbVersion, Procedure procedure, String procedureDefinition)

’
LinkedHashMap<String, String> getProperties(String vdbName, String vdbVersion, AbstractMetadataRecord record);
void setProperty(String vdbName, String vdbVersion, AbstractMetadataRecord record, String name, String value);

290

Custom Metadata Repository

If the provided metadata facilities are not sufficient then a developer can extend the MetadataRepository class provided in the
org.teiid.api jar to plug-in their own metadata facilities into the Teiid engine. For example, a user can write a metadata facility that

is based on reading data from a database or a JCR repository.
See the arche-type for creating a custom metadata repository.
Or see setting up the build environment to start development. For Example:

Sample Java Code

import org.teiid.metadata.MetadataRepository;

package com.something;

public class CustomMetadataRepository implements MetadataRepository {
@override
public void loadMetadata

throws TranslatorException {
/* Provide implementation and fill the details in factory */

Then build a JAR archive with above implementation class and create file a named org.teiid.metadata. MetadataRepository in the
META-INF/services directory with contents:

com.something.CustomMetadataRepository

Once the JAR file has been built, it needs to be deployed in the WildFly as a module under <jboss-as>/modules directory. Follow

the below steps to create a module.
e Create a directory <jboss-as>/modules/com/something/main
e Under this directory create a "module.xml" file that looks like

Sample module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.something">
<resources>
<resource-root path="something.jar" />
</resources>
<dependencies>
<module name="javax.api'"/>
<module name="org.teiid.common-core"/>
<module name="org.teiid.teiid-api" />
</dependencies>
</module>

e Copy the jar file under this same directory. Make sure you add any additional dependencies if required by your

implementation class under dependencies.
e Restart the server

The below XML fragment shows how to configure the VDB with the custom metadata repository created

https://github.com/teiid/teiid-tools/tree/master/arche-types/metadatarepository-archetype

Sample vdb.xml file

<vdb name="{vdb-name}" version="1">
<model name="{model-name}" type="PHYSICAL">
<source name="AccountsDB" translator-name="oracle" connection-jndi-name="java:/oracleDS"/>
<metadata type="{metadata-repo-module}"></metadata>
</model>
</vdb>

Now when this VDB gets deployed, it will call the CustomMetadataRepository instance for metadata of the model. Using this you
can define metadata for single model or for the whole VDB pragmatically. Be careful about holding state and synchronization in

your repository instance.

Development Considerations

e MetadataRepository instances are created on a per vdb basis and may be called concurrently for the load of multiple

models.

e Seethe MetadataFactory andthe org.teiid.metadata package javadocs for metadata construction methods and objects.
For example if you use your own DDL, then call the MetadataFactory.parse(Reader) method. If you need access to files in

a VDB zip deployment, then use the MetadataFactory.getVvDBResources method.

e Usethe MetadataFactory.addPermission and add MetadataFactory.addColumnPermission method to grant permissions
on the given metadata objects to the named roles. The roles should be declared in your vdb.xml, which is also where they are

typically tied to container roles.

PreParser

If it is desirable to manipulate incoming queries prior to being handled by Teiid logic, then a custom pre-parser can be installed.

A PreParser may be set at a global level for all VDBs, or at a per VDB level. If both are specified the global PreParser will be
called first, then the per VDB PreParser.

Use the PreParser interface provided in the org.teiid.api jar to plug-in a pre-parser for the Teiid engine. See Setting up the build

environment to start development. For Example:

Sample Java Code

import org.teiid.PreParser;

package com.something;
public class CustomPreParser implements PreParser {

@override
public String preParse {
//manipulate the command

If this is intended to be a global PreParser, then create a file named org.teiid.PreParser in META-INF/services directory with

contents:

com.something.CustomPreParser

After the jar has been built, it needs to be deployed in the WildFly as a module under <jboss-as>/modules directory. Follow the
below steps to create a module.

e Create a directory <jboss-as>/modules/com/something/main
e Under this directory create a module.xml file that looks like

Sample module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.something">
<resources>
<resource-root path="something.jar" />
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.resource.api'"/>
<module name="org.teiid.common-core"/>
<module name="org.teiid.teiid.api" />
</dependencies>
</module>

e Copy the jar file under this same directory. Make sure you add any additional dependencies if required by your

implementation class under dependencies.

e If this is a global PreParser, then use the cli or modify the configuration to set the preparser-module in the Teiid subsystem

configuration to the appropriate module name.

e If this is a per VDB PreParser, then update the vdb property "preparser-class" to be the class name of your PreParser. The
VDB class path also needs to be updated to include the PreParser module, which can be done by adding the module name to

the "lib" property.
Sample vdb.xml properties
<vdb name="..." version="...">
<property name="1ib" value="preparser-module-name"/>
<property name="preparser-class" value="com.something.CustomPreParser"/>
</vdb>

e Restart the server for the module to become available.

Development Considerations

e Changing the incoming query to a different type of statement is not recommended as are any modifications to the number or

types of projected symbols.

e When using Teiid Embedded you just need to include the jar with the PreParser in the application class path - as modules are

not used.

Archetype Template PreParser Project

One way to start developing a custom preparser is to create a project using the Teiid archetype template. When the project is
created from the template, it will contain an example class and resources for you to begin adding your custom logic. Additionally,

the maven dependencies are defined in the pom.xml so that you can begin compiling the classes.

The project will be created as an independent project and has no parent maven dependencies. It’s designed to be

Note built independent of building Teiid.

You have 2 options for creating a translator project; in Eclipse by creating a new maven project from the arche type or by using

the command line to generate the project.

Create Project in Eclipse

To create a Java project in Eclipse from an arche type, perform the following:
e Open the JAVA perspective
e From the menu select File — New —> Other
e In the tree, expand Maven and select Maven Project, press Next
e On the "Select project name and Location" window, you can accept the defaults, press Next
e On the "Select an Archetype" window, select Configure button
e Add the remote catalog: link:http://central.maven.org/maven2/ then click OK to return
e Enter "teiid" in the filter to see the Teiid arche types.
e Select the preparser-archetype, then press Next
e Enter all the information (i.e., Group ID, Artifact ID, etc.) needed to generate the project, then click Finish

The project will be created and name according to the *ArtifactID*.

Create Project using Command Line

Note make sure the link:http://central.maven.org/maven2/ repository is accessible via your maven settings.

To create a custom preparser project from the command line, you can use the following template command:

o TEMPLATE

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=preparser-archetype \
-DarchetypeVersion=${archetypeVersion} \
-DgroupId=${groupId} \
-DartifactId=${preparser-artifact-id} \
-Dpackage=${package} \
-Dversion= .1-SNAPSHOT \
-Dclass-name=${className} \
-Dteiid-version=${teiidVersion}

e where:

-DarchetypeGroupId - 1is the group ID for the arche type to use to generate

-DarchetypeArtifactId - 1is the artifact ID for the arche type to use to generate

-DarchetypeVersion - 1is the version for the arche type to use to generate

-DgroupId - (user defined) group ID for the new preparser project pom.xml

-DartifactId - (user defined) artifact ID for the new example project pom.xml

-Dpackage - (user defined) the package structure where the java, module and resource files will be creat
ed

-Dversion - (user defined) the version that the new connector project pom.xml will be

-Dclass-name - (user defined) the class name to give the new user preparser, will become the Class Name

-Dteiid-version - the Teiid version the connector will depend upon
¢ EXAMPLE

e this is an example of the template that can be run:

mvn archetype:generate \
-DarchetypeGroupId=org.teiid.arche-types \
-DarchetypeArtifactId=preparser-archetype \
-DarchetypeVersion= .0 \
-DgroupId=org.example \
-DartifactId=preparser-mypreparser \
-Dpackage=org.example.mypreparser \
-Dversion= .1-SNAPSHOT \
-Dclass-name=MyPreParser \
-Dteiid-version= .0

When executed, you will be asked to confirm the package property

[INFO] Using property: groupId = org.example

[INFO] Using property: artifactId = preparser-mypreparser
[INFO] Using property: version = 0.0.1-SNAPSHOT

[INFO] Using property: package = org.example.mypreparser
[INFO] Using property: class-name = MyPreParser

[INFO] Using property: teiid-version = 15.0.0

Confirm properties configuration:

groupId: org.teiid.preparser

artifactId: preparser-myParser

version: 0.0.1-SNAPSHOT

package: org.example.mypreparser

class-name: MyPreParser

teiid-version: 15.0.0

Y: iy

type Y (yes) and press enter, and the creation of the preparser project will be done

Upon creation, a directory based on the *artifactId* will be created, that will contain the project. 'cd' into that directory and

execute a test build to confirm the project was created correctly:

mvn clean install

This should build successfully, and now you are ready to start adding your custom code.

Embedded Guide

Embedded is a light-weight version of Teiid for use in any Java 8+ JRE. WildFly nor any application server is not required. This
feature/kit are still evolving. Please consult the source examples and even unit tests utilizing the EmbeddedServer for a more

complete guide as to its use.

Table of Contents
e Configuration
e The Classpath
o Embedded Using Maven
e VDB Deployment
e Access from client applications
e Security
o Example
e Transactions
e AdminApi
e Logging
e Other Differences Between Teiid Embedded and an AS Deployment

Configuration

The primary way to configure Teiid Embedded is with the EmbeddedConfiguration class. It is provided to the EmbeddedServer
at start-up and dictates much of the behavior of the embedded instance. From there the running server instance may have
translators and VDBs deployed as needed. Additional modifications to the Embeddedconfiguration after the server is started will

not have an effect.

In many cases an EmbeddedConfiguration instance can just be instantiated and passed to the Embeddedserver without the need
to set additional properties. Many properties, including those used to configure the BufferManager, will be given a similar name to

their server side counter part - for example setProcessorBatchSize.

Most of the default configuration values for memory and threads assume that there is only one Teiid instance
Important in the vm. If you are using multiple Teiid Embedded instances in the same vm, then memory and thread
resources should be configured manually.

The Classpath

Embedded Using Maven

Your application is responsible for having the appropriate classpath to utilize Teiid embedded. Typically you will want all
transitive dependencies from referenced Teiid artifacts to be included. Optional dependencies, such as Hibernate core, will be

needed for specific features - such as utilizing the JDBC translator support for dependent joins using temp tables.

With Teiid 10+ the maven coordinate group for most Teiid artifacts changed from org.jboss.teiid to just org.teiid.

Note Please update your pom files accordingly.

Some of the Teiid transitive dependencies have known vulnerabilities. WildFly/Teiid addresses this by introducing managed
dependency overrides. It is recommended that you include these overrides in your usage of Teiid Embedded by importing the

Teiid parent pom in your dependency management section:

<dependencyManagement>

<dependencies>

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-parent</artifactId>
<version>${version.teiid}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

Dependencies

If you are trying run Teiid Embedded as a Maven based project, the

necessary are

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-runtime</artifactId>
</dependency>

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-admin</artifactId>
</dependency>

<dependency>
<groupId>org.teiid.connectors</groupId>
<artifactId>translator-SOURCE</artifactId>
</dependency>

<dependency>
<groupId>org.teiid.wildfly.connectors</groupId>

<artifactId>connector-SOURCE</artifactId>
</dependency>

You would include all translator/connectors needed by your project.

Optional Libraries

runtime , admin , connector , translator dependencies

If you include a dependency to org.teiid:teiid-data-quality, the osdq data quality functions will be available for use with

Embedded.

If you include a dependency to org.teiid:cache-infinispan, Infinispan will be used for caching.

If you do not need XML type support including XPath and SQL/XML functions like XMLTABLE, then you may also choose to

exclude saxon, xom, and nux from usage by the runtime by using excludes:

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-runtime</artifactId>
<exclusions>
<exclusion>
<groupId>org.teiid</groupId>
<artifactId>teiid-optional-xml</artifactId>
</exclusion>
</exclusions>
</dependency>

Some geospatial support requires additional dependencies. If you need no or minimal support (no geojson nor projection), then

you may also choose to exclude this from the runtime by using excludes:

<dependency>

<groupId>org.teiid</groupId>
<artifactId>teiid-runtime</artifactId>
<exclusions>
<exclusion>
<groupId>org.teiid</groupId>
<artifactId>teiid-optional-geo</artifactId>
</exclusion>
</exclusions>
</dependency>

Some json support requires additional dependencies. If you need no or minimal support (no jsonpath support), then you may also
choose to exclude this from the runtime by using excludes:

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-runtime</artifactId>
<exclusions>
<exclusion>
<groupId>org.teiid</groupId>
<artifactId>teiid-optional-json</artifactId>
</exclusion>
</exclusions>
</dependency>

VDB Deployment

VDBs may be deployed in several ways in Embedded.

VDB Metadata API

VDB deployment can be done directly through VDB metadata objects that are the underpinning of vdb.xml deployment. Models
(schemas) are deployed as a set to form a named vdb - see the EmbeddedServer.deployvbB method.

XML Deployment

Similar to a server based -vdb.xml deployment an InputStream may be given to a vdb.xml file - see the

EmbeddedServer.deployVDB(InputStream) method.
Zip Deployment

Similar to a server based .vdb deployment a URL may be given to a zip file - see the EmbeddedServer.deployvbBzip method.

The use of the zip lib for dependency loading is not enabled in Embedded.
See VDB Guide and Metadata Repositories for more on a typical vdb file and zip structures.

Support Teiid Designer 7 and later VDBs is deprecated and are subject to all of the limitations/differences highlighted in this

guide. To use a Teiid Designer VDB requires including the teiid-metadata dependency:

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-metadata</artifactId>
</dependency>

Translators

Translators instances can be scoped to a VDB in AS using declarations in a vdb.xml file, however named instances in embedded
are scoped to the entire Embeddedserver and must be registered via the EmbeddedServer.addTranslator methods. Note that

there are three addTranslator methods:

e addTranslator(Class<? extends ExecutionFactory> clazz) - Adds a default instance of the ExecutionFactory, using the

default name either from the Translator annotation or the class name.

e addTranslator(String name, ExecutionFactory<?, ?> ef) - Adds a pre-initialized (ExecutionFactory.start() must have
already been called) instance of the ExecutionFactory, using the given translator name. The instance will be shared for all

usage.

® addTranslator(String name, String type, Map<String, String> properties) - Adds a definition of an override

translator - this is functionally equivalent to using a vdb.xml translator override.

A new server instance does not assume any translators are deployed and does not perform any sort of library scanning to find

translators.

Sources

The Embedded Server will still attempt to lookup the given JNDI connection factory names via JNDI. In most non-container
environments it is likely that no such bindings exist. In this case the Embedded Server instance must have
ConnectionFactoryProvider instances manually registered, either using the Embeddedserver.addConnectionFactory method,
or the EmbeddedServer.addConnectionFactoryProvider method to implement connectionFactoryProvider registering. Note
that the Embedded Server does not have built-in pooling logic, so to make better use of a standard java.sql.DataSource or to

enable proper use of javax.sql.XADataSource you must first configure the instance via a third-party connection pool.

Example - Deployment

EmbeddedServer es = new EmbeddedServer();
EmbeddedConfiguration ec = new EmbeddedConfiguration();
//set any configuration properties
ec.setUseDisk(false);

es.start(ec);

//example of adding a translator by pre-initialized ExecutionFactory and given translator name
H2ExecutionFactory ef = new H2ExecutionFactory()

ef.setSupportsDirectQueryProcedure(true);

ef.start();

es.addTranslator("translator-h2", ef);

//add a Connection Factory with a third-party connection pool
DataSource ds = EmbeddedHelper.newDataSource("org.h2.Driver", "jdbc:h2:mem://localhost/~/account", "sa", "sa")
es.addConnectionFactory("java:/accounts-ds", ds);

//add a vdb

//physical model

ModelMetabData mmd = new ModelMetaData();

mmd . setName("my-schema");

mmd . addSourceMapping("my-schema", "translator-h2", "java:/accounts-ds");

//virtual model

ModelMetaData mmdl = new ModelMetaData();

mmd1l.setName("virt");

mmd1l.setModelType(Type.VIRTUAL);

mmd1.setSchemaSourceType("ddl");

mmd1l.setSchemaText("create view \"my-view\" OPTIONS (UPDATABLE 'true') as select * from \"my-table\"");

es.deployVvDB("test", mmd, mmdl);

Secured Data Sources

If Source related security authentication, for example, if you want connect/federate/integrate Twitter supplied rest source, a

security authentication is a necessary, the following steps can use to execute security authentication:

1. refer to Secure Embedded with PicketBox start section to develop a SubjectFactory,

2. initialize a ConnectionManager with ironjacamar libaries, set SubjectFactory to ConnectionManager
3. use the following method to create ConnectionFactory

Example - Secured Data Sources

WSManagedConnectionFactory mcf = new WSManagedConnectionFactory();
NoTxConnectionManagerImpl cm = new NoTxConnectionManagerImpl();
cm.setSecurityDomain(securityDomain);

cm.setSubjectFactory(new EmbeddedSecuritySubjectFactory(authConf))
Object connectionFactory = mcf.createConnectionFactory(cm);
server.addConnectionFactory("java:/twitterDS", connectionFactory);

twitter-as-a-datasource is a completed example.

Access from client applications

Typically when Teiid is deployed as Embedded Server, and if your end user application is also deployed in the same virtual

machine as the Teiid Embedded, you can use Local JDBC Connection, to access to your virtual database. For example:

Example - Local JDBC Connection

EmbeddedServer es = ...

Driver driver = es.getDriver();

Connection conn = driver.connect("jdbc:teiid:<vdb-name>", null);
// do work with conn; create statement and execute it
conn.close();

This is the most efficient method as it does not impose any serialization of objects.

If your client application is deployed in remote VM, or your client application is not a JAVA based application then accesses to the
Teiid Embedded is not possible through above mechanism. In those situations, you need to open a socket based connection from
remote client application to the Embedded Teiid Server. By default, when you start the Embedded Teiid Sever it does not add any
capabilities to accept remote JDBC/ODBC based connections. If you would like to expose the functionality to accept remote
JDBC/ODBC connection requests, then configure necessary transports during the initialization of the Teiid Embedded Server.

The example below shows a sample code to enable a ODBC transport

Example - Remote ODBC transport

EmbeddedServer es = new EmbeddedServer ()
SocketConfiguration s = new SocketConfiguration();
s.setBindAddress("<host-name>");

s.setPortNumber ()

s.setProtocol(WireProtocol.pg);

EmbeddedConfiguration config = new EmbeddedConfiguration();
config.addTransport(s);

es.start(config);

Example - SSL transport

EmbeddedServer server = new EmbeddedServer();

EmbeddedConfiguration config = new EmbeddedConfiguration();
SocketConfiguration socketConfiguration = new SocketConfiguration();

SSLConfiguration sslConfiguration = new SSLConfiguration();

//Settings shown with their default values
//sslConfiguration.setMode(SSLConfiguration.ENABLED);
//sslConfiguration.setAuthenticationMode(SSLConfiguration.ONEWAY);
//sslConfiguration.setSslProtocol(SocketUtil.DEFAULT_PROTOCOL);
//sslConfiguration.setKeymanagementAlgorithm(KeyManagerFactory.getDefaultAlgorithm());

http://ironjacamar.org/
https://github.com/teiid/teiid-embedded-examples/tree/master/socialmedia-integration/twitter-as-a-datasource

//optionally restrict the cipher suites
//sslConfiguration.setEnabledCipherSuites("SSL_RSA_WITH_RC4_128 MD5,SSL_RSA_WITH_RC4_128_SHA");

//for the server key
sslConfiguration.setKeystoreFilename("ssl-example.keystore");
sslConfiguration.setKeystorePassword("redhat");
sslConfiguration.setKeystoreType("JKS");
sslConfiguration.setKeystoreKeyAlias('"teiid");
sslConfiguration.setKeystoreKeyPassword('"redhat");

//for two way ssl set a truststore for client certs
//sslConfiguration.setTruststoreFilename("ssl-example.truststore");
//sslConfiguration.setTruststorePassword("redhat");

socketConfiguration.setSSLConfiguration(sslConfiguration);
config.addTransport(socketConfiguration);

server.start(config);

if you want to add a JDBC transport, follow the instructions above, however set the protocol to wireProtocol.teiid and choose
a different port number. Once the above server is running, you can use same instructions as Teiid Server to access Embedded Teiid
Server from remote client application. Note that you can add multiple transports to single Embedded Server instance, to expose
different transports.

Security

The primary interface for Teiid embedded’s security is the org.teiid.security.SecurityHelper in the engine jar. The
SecurityHelper instance is associated with with the EmbeddedServer via EmbeddedConfiguration.setSecurityHelper . If no
SecurityHelper is set, then no authentication will be performed. A SecurityHelper controls authentication and associates a security
context with a thread. How a security context is obtained can depend upon the security domain name. The default security domain
name is teiid-security and can be changed via EmbeddedConfiguration.setSecuritybomain . The effective security domain

may also be configured via a transport of the VDB.
See the JBoss Security Helper source for an example of expected mechanics.

You can just return null from negotiateGssLogin unless you want to all GSS authentications from JDBC/ODBC.

Example

embedded-portfolio-security demonstrates how to implement security authentication in Teiid Embedded:
e EmbeddedSecurityHelper is the implementation of org.teiid.security.SecurityHelper
e users.properties and roles.properties in class path user to pre define users and roles

e application-policy’s name in authentication.conf should match to security

domain(EmbeddedConfiguration.setSecurityDomain)

Transactions

Transaction processing requires setting the TransactionManager inthe EmbeddedConfiguration used to start the
EmbeddedServer . A client facing javax.sql.DataSource is not provided for embedded. However the usage of provided
java.sql.briver should be sufficient as the embedded server is by default able to detect thread bound transactions and

appropriately propagate the transaction to threads launched as part of request processing. The usage of local connections is also

permitted.

https://github.com/teiid/teiid/blob/master/jboss-integration/src/main/java/org/teiid/jboss/JBossSecurityHelper.java
https://github.com/teiid/teiid-embedded-examples/tree/master/embedded-portfolio-security
https://github.com/teiid/teiid-embedded-examples/blob/master/common/src/main/java/org/teiid/example/EmbeddedSecurityHelper.java
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/users.properties
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/roles.properties
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/common/src/main/resources/picketbox/authentication.conf

AdminApi

Embedded provides a the Admin interface via the EmbeddedServer.getAdmin method. Not all methods are implemented for

embedded - for example those that deal with data sources. Also the deploy method may only deploy VDB xml artifacts.

Logging
Teiid by default use JBoss Logging, which will utilize JUL (Java Util Logging) or other common logging frameworks depending

upon their presence in the classpath. Refer to Logging in Teiid Embedded for details.

The internal interface for Teiid embedded’s logging is org.teiid.logging.Logger in teiid-api jar. The Logger instance is
associated with the org.teiid.logging.LogManager Via static method LogManager.setLogListener() . You may alternatively

choose to directly set a Logger of your choice.

Other Differences Between Teiid Embedded and an AS
Deployment

There is no default JDBC/ODBC socket transport in embedded. You are expected to obtain a briver connection via the

EmbeddedServer.getDriver method. If you want remote JDBC/ODBC transport see above on how to add a transport.

e A MetadataRepository is scoped to a VDB in AS, but is scoped to the entire Embeddedserver instance and must be

registered via the EmbeddedServer.addMetadataRepository method.
e MDC logging values are not available as Java logging lacks the concept of a mapped diagnostic context.

e Translator overrides in vdb.xml files is not supported, but you may add overridden translators using the addTranslator

methods that accept an ExecutionFactory instance or a property set.
e The default for the maximum disk space used by the buffer manager is 5 GB, rather than 50 GB.

e VDB imports are processed only at deployment time. A missing vdb import results in a failed deployment. If the imported

vdb is redployed after the importing vdb is deployed, the importing vdb is not redeployed.

Logging in Teiid Embedded

Teiid’s LogManager is an interface to a single logging framework that is easily accessible by any component. Using the

LogManager, a component can quickly submit a log message, and can rely upon the LogManager to determine
e whether that message is to be recorded or discarded

e where to send any recorded messages

JBoss Logging

JBoss Logging is used by default. The JBoss Logging jar is already in the kit and you just need to ensure the jboss-logging library

is in your class path. If you use Maven, add the dependency as shown below:

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-loggging</artifactId>
</dependency>

Bridging with JBoss Logging

JBoss LogManager is a replacement for the JDK logging system LogManager that fixes or works around many serious problems
in the default implementation. To use JBoss LogManager with JBoss Logging, the only need to do is add jboss-logmanager library

to class path. If use Maven to pull dependencies, add the dependency as shown below:

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logmanager</artifactId>
</dependency>

TeiidEmbeddedLogging is a example for Logging with JBoss LogManager.

A sample logging.properties for Teiid Embedded:
loggers=sun.rmi,com.arjuna

logger.level=TRACE
logger.handlers=FILE, CONSOLE

logger.sun.rmi.level=WARN
logger.sun.rmi.useParentHandlers=true

logger.com.arjuna.level=WARN
logger.com.arjuna.useParentHandlers=true

handler.CONSOLE=0rg.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.level=INFO
handler.CONSOLE.formatter=COLOR-PATTERN
handler.CONSOLE.properties=autoFlush, target, enabled
handler.CONSOLE.autoFlush=true

https://github.com/teiid/teiid-embedded-examples/blob/master/embedded-portfolio-logging/src/main/java/org/teiid/example/TeiidEmbeddedLogging.java

handler.CONSOLE.target=SYSTEM_OUT
handler .CONSOLE.enabled=true

handler.FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler
handler.FILE.formatter=PATTERN

handler.FILE.properties=append, autoFlush,enabled, suffix, fileName
handler.FILE.constructorProperties=fileName, append
handler.FILE.append=true

handler.FILE.autoFlush=true

handler.FILE.enabled=true

handler.FILE.suffix=.yyyy-MM-dd
handler.FILE.fileName=target/teiid-embedded.log

formatter.PATTERN=0rg. jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%d{yyyy-MM-dd HH\:mm\:ss,SSS} %-5p \[%C\] (%t) %s%e%n

formatter.COLOR-PATTERN=0rg.jboss.logmanager.formatters.PatternFormatter
formatter.COLOR-PATTERN.properties=pattern
formatter.COLOR-PATTERN.pattern=%K{level}%d{HH\:mm\:ss,SSS} %-5p \[%c\] (%t) %s%e%n

Bridging with L og4j

To bridge JBoss Logging with Log4j, the only need to do is have a 1.x log4j jar in your class path.

If your system use Log4j as logging framework, with above JBoss LogManager bridge Log4j functionality and steps in Bridging

with JBoss Logging, it’s easy to set up logging framework consistent between Teiid Embedded and your system.

Secure Embedded with PicketBox

Secure Embedded with PicketBox.

Table of Contents
e Steps of implement a JAAS authentication
e How to develop a SecurityHelper
e Embedded Security with UsersRolesLoginModule

e Embedded Security with LdapExtLoginModule

Steps of implement a JAAS authentication

PicketBox is a Java Security Framework that build on top of JAAS. PicketBox is configured via a schema formatted Security
Configuration File(security-config 5 0.xsd) and provides various LoginModule Implementations (UsersRolesLoginModule,

LdapExtLoginModule, DatabaseServerLoginModule, etc). The following are 5 key steps to execute a authentication:

//1. establish the JAAS Configuration with picketbox authentication xml file
SecurityFactory.prepare();

//2. load picketbox authentication xml file
PicketBoxConfiguration config = new PicketBoxConfiguration();
config.load(SampleMain.class.getClassLoader().getResourceAsStream("picketbox/authentication.conf"));

//3. get AuthenticationManager
AuthenticationManager authManager = SecurityFactory.getAuthenticationManager(securityDomain);

//4. execute authentication
authManager.isValid(userPrincipal, credString, subject);

//5. release resource
SecurityFactory.release();
Teiid Embedded exposes 2 methods for security authentication:

e EmbeddedConfiguration.setSecurityHelper() - associated with a org.teiid.security.SecurityHelper in the engine jar. If no

SecurityHelper is set, then no authentication will be performed.

e EmbeddedConfiguration.setSecurityDomain() - associated with a application-policy’s name in Security Configuration file. If

no SecurityDomain is set, then a default teiid-security will be used.

EmbeddedSecurityHelper is a sample implementation of SecurityHelper, authentication.conf is a sample Security Configuration
file.

How to develop a SecurityHelper

Add ’teiid-engine-VERSION.jar’to classpath is necessary. If you are using the maven to pull artifacts, the engine dependency can

added as below,

<dependency>
<groupId>org.teiid</groupId>
<artifactId>teiid-engine</artifactId>
</dependency>

https://raw.githubusercontent.com/picketbox/picketbox/master/security-jboss-sx/jbosssx/src/main/resources/schema/security-config_5_0.xsd
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/java/org/teiid/example/EmbeddedSecurityHelper.java
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/picketbox/authentication.conf

The key to develop a SecurityHelper is implement the authenticate() method. PicketBox’s 5 key steps to execute an authentication

which depicted in Steps of implement a JAAS authentication is shown in the example below:

@0verride
public SecurityContext authenticate
throws LoginException {

SecurityFactory.prepare();

try {
PicketBoxConfiguration config = new PicketBoxConfiguration();
config.load(this.getClass().getClassLoader().getResourceAsStream("pickethox/authentication.conf"));

AuthenticationManager authManager = SecurityFactory.getAuthenticationManager (securityDomain);
if (authManager !'= null){
final Principal userPrincipal = new SimplePrincipal(baseUserName);
final Subject subject = new Subject();
final String credString = credentials==null?null:new String(credentials.getCredentialsAsCharArray()
)i
final String domain = securityDomain;
boolean isvalid = authManager.isvalid(userPrincipal, credString, subject);
if (isvalid) {
SecurityContext securityContext = AccessController.doPrivileged(new PrivilegedAction<SecurityCo
ntext>(){
@override
public SecurityContext run {
SecurityContext sc;
try {
sc = SecurityContextFactory.createSecurityContext(userPrincipal, credString, subjec
t, domain);
} catch (Exception e) {
throw new RuntimeException(e);
}

return sc;

1)

return securityContext;

}
} finally {
SecurityFactory.release();

}

throw new LoginException("The username " + baseUserName + " and/or password could not be authenticated by
security domain " + securityDomain + ".");

}

You can just return null from negotiateGssLogin unless you want to all GSS authentications from JDBC/ODBC.

Embedded Security with UsersRolesL.oginModule

Add the following content to PicketBox Security Configuration file:

<application-policy name = "teiid-security">
<authentication>
<login-module code = "org.jboss.security.auth.spi.UsersRolesLoginModule" flag = "required"></login-modu
le>
</authentication>

</application-policy>

To prepare users/roles by add users.properties and roles.properties to class path. A sample of users.properties

testUser=password

A sample of roles.properties

testUser=user

To start Embedded Server with UsersRolesLoginModule based security authentication via:

EmbeddedServer server =
EmbeddedConfiguration config = new EmbeddedConfiguration();
config.setSecurityDomain("teiid-security-file");

config.setSecurityHelper(new EmbeddedSecurityHelper());
server.start(config);

Embedded Security with LdapExtLoginModule

Add the following content to the PicketBox Security Configuration File:

<application-policy name = "teiid-security-ldap">
<authentication>
<login-module code = "org.jboss.security.auth.spi.LdapExtLoginModule" flag = "required">

<module-option name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</module-option>
<module-option name="java.naming.provider.url">ldap://HOST:389</module-option>
<module-option name="java.naming.security.authentication">simple</module-option>
<module-option name="bindDN">cn=Manager, dc=example, dc=com</module-option>
<module-option name="bindCredential">redhat</module-option>
<module-option name="baseCtxDN">ou=Customers, dc=example, dc=com</module-option>
<module-option name="baseFilter">(uid={0})</module-option>
<module-option name="rolesCtxDN">ou=Roles, dc=example, dc=com</module-option>
<module-option name="roleFilter">(uniqueMember={1})</module-option>
<module-option name="roleAttributeID">cn</module-option>
</login-module>
</authentication>
</application-policy>

To define security users/roles refer to your LDAP Vendors documentation. For example, if you use OpenLDAP, then with the Idif

file customer-security.ldif, execute

ldapadd -x -D "cn=Manager,dc=example,dc=com" -w redhat -f customer-security.ldif

to setup users/roles.

Ti module-options setting like url, bindDN, bindCredential, baseCtxDN, rolesCtxDN should match to your LDAP
P server setting.
To start Embedded Server with LdapExtLoginModule based security authentication via:

EmbeddedServer server =

EmbeddedConfiguration config = new EmbeddedConfiguration();
config.setSecurityDomain("teiid-security-ldap");
config.setSecurityHelper(new EmbeddedSecurityHelper());
server.start(config);

https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/customer-security.ldif

Secure Embedded with PicketBox

309

Teiid reference

Teiid offers a highly scalable and high performance solution to information integration. By allowing integrated and enriched data
to be consumed relationally, as JSON, XML, and other formats over multiple protocols. Teiid simplifies data access for developers

and consuming applications.

Commercial development support, production support, and training for Teiid is available through Red Hat. Teiid is a professional

open source project and a critical component of Red Hat data Integration.

Before one can delve into Teiid it is very important to learn few basic constructs of Teiid. For example, what is a virtual database?

What is a model? and so forth. For more information, see the Teiid Basics.

If not otherwise specified, versions referenced in this document refer to Teiid project versions. Teiid or Teiid running on various

platforms will have both platform and product-specific versioning.

http://teiid.io/about/basics/

Teiid 15.0.0 Release Notes

Teiid 15.0.0 adds performance features, microservice enablement, and fixes.

Release Notes
e Highlights
e Compatibility Issues
o from 14.0
o from 13.1
o from 13.0
o from12.3
o from 12.2
o from 12.0
o from 11.2
o from 11.1
o from 11.0
o from 10.3
o from 10.2
o from 10.1
o from 10.0
o from 9.x
o from 8.x
e Configuration Issues
o from 14.0
o from 12.0
o from 11.2
o from 10.3
o from 10.2
o from 10.1
o from 9.x
o from 8.x
e Other Issues
e Thirdparty Library Updates
o From 14.0
o From 12.3
o From 12.1
o From 12.0
o From 11.0
o From 10.1
o From 10.0
o Detailed Release Notes
o Documentation and Help
e Licenses
e About Red Hat

Highlights

e TEIID-5040 The google spreadsheet source can specify more than one spreadsheet with the new SpreadsheetMap property.

https://issues.redhat.com/browse/TEIID-5040

e TEIID-3647 Added a HDFS file source utilizing the hadoop client jars.

e TEIID-5950 Added an Amazon Athena Translator.

e TEIID-5936 Added an S3 source, which can be used with the Excel translator, for all S3 sources.

e TEIID-5928 Added properties for the partitioned load of materialized views.

e TEIID-5977 Added support for pushing virtual functions via a source function option teiid_rel:virtual-function
e TEIID-6005 Better support for Teiid in DBeaver as a postgres source

e TEIID-5780 Added SSL authentication support

Compatibility Issues
e Support for named parameter syntax using param=value has been deprecated, since it is ambiguous with a comparison
predicate boolean value expression. param=value should be used instead.
e decodeinteger/decodestring have been deprecated. A CASE expression should be used instead.

e TEIID-3159 The SAP Netweaver Gateway translator (sap-nw-gateway) has been renamed to just SAP Gateway (sap-

gateway). Usage of sap-nw-gateway is deprecated.

e TEIID-4205 By default, the wrapping begin/commit of a UseDeclareFetch cursor will be ignored as Teiid does not require a
transaction. Set the org.teiid.honorDeclareFetchTxn system property to false to revert to the old behavior which honored the

transaction.

e TEIID-4240 The usage of ; delimited statements for materialization scripts has been deprecated. An anonymous procedure

block should be used instead if multiple statements are needed.
e TEIID-4228 Precision and scale values greater than 32767 are deprecated.

e TEIID-4228 Not using a semicolon delimiter between statements is deprecated and should only be relied on for backwards

compatibility.

e TEIID-4731 The default authentication scheme for MongoDB resource adapter has been changed to SCRAM_SHA_1 to
match with latest versions of MongoDB. If using MongoDB version less than 3.0, to restore previous functionality

change/add SecurityType to 'None' in the resource adapter configuration.
e TEIID-5511 The AdminShell kit has been removed. No further releases are planned.

e TEIID-5833 The use of SET NAMESPACE to define a custom prefix or namespace is no longer allowed. Please remove this

statement from your DDL and simply use a consistent property key.

from 14.0

e TEIID-5967 CREATE FOREIGN DATA WRAPPER will no longer allow the usage of HANDLER. Use TYPE instead.

e TEIID-5936 The amazon-s3 translator is deprecated. Use the s3 source with an appropriate translator, such as file or excel

instead.

from 13.1

e TEIID-5948 The mysql5 translator name has been deprecated. You should use just mysqgl instead - the version will be

detected from the source, or you may manually set the database version property.

from 13.0

https://issues.redhat.com/browse/TEIID-3647
https://issues.redhat.com/browse/TEIID-5950
https://issues.redhat.com/browse/TEIID-5936
https://issues.redhat.com/browse/TEIID-5928
https://issues.redhat.com/browse/TEIID-5977
https://issues.redhat.com/browse/TEIID-6005
https://issues.redhat.com/browse/TEIID-5780
https://issues.redhat.com/browse/TEIID-3159
https://issues.redhat.com/browse/TEIID-4205
https://issues.redhat.com/browse/TEIID-4240
https://issues.redhat.com/browse/TEIID-4228
https://issues.redhat.com/browse/TEIID-4228
https://issues.redhat.com/browse/TEIID-4731
https://issues.redhat.com/browse/TEIID-5511
https://issues.redhat.com/browse/TEIID-5833
https://issues.redhat.com/browse/TEIID-5967
https://issues.redhat.com/browse/TEIID-5936
https://issues.redhat.com/browse/TEIID-5948

e TEIID-5798 specifying a condition on a table permission is now deprecated. Use CREATE POLICY instead.

from 12.3

e TEIID-5819 References to any Teiid *-swagger artifact should use openapi in both the artifact name and group instead.

e TEIID-1323 The protected method SQLConverstion.generateSqlForStoredProcedure is now expected to append directly to
the working buffer.

e TEIID-5565 The Teiid Java client now requires Java 8 and above.

e TEIID-5557 The default for the JDBC importer useFullSchemaName is now false. It is generally expected to import from
only a single foreign schema. Set useFullSchemaName to true to preserve the legacy behavior. There is also an env/system

property org.teiid.translator.jdbc.useFullSchemaNameDefault that can be used to preserve the legacy behavior.

e TEIID-5840 TEIID-5841 Grant / revoke targets are now resolved at deployment time and will be checked in a more strict
manner. See the migration guide and/or the issues for more. The PolicyDecider was changed to reference the metadata

objects rather than just strings.
e TEIID-5849 The admin and api modules/jars have been merged. Only teiid-api should be used moving forward.

e TEIID-5857 The salesforce translators no longer support the ModelAuditFields execution property - the import property

should be used instead.

from 12.2

e TEIID-5742 The SecurityHelper interface has been simplified, instead of getSecurityContext() and
getSubjectInContext(String), there is now just getSecurityContext(String)

e TEIID-5759 GRANT CONDITION syntax behavior did not match with XML VDBs and was updated to match - you must
now explicitly use NOT CONSTRAINT to declare that the condition is not a constraint. If you still want the older behavior

set the property org.teiid.conditionConstraintDefault to false.

e TEIID-5759 The odata4 openapi.json metadata url now returns v2 metadata by default. Please use /openapi.json?version=3

to get the v3 metadata.

e TEIID-5757 The teiid-security security domain is configured by default to provide the odata role, so that it does not have to
be explicitly granted for odata access. If you wish to keep that requirement, then remove the Identity login module from the

teiid-security security domain.

e TEIID-5729 The mapping of some procedures to OData functions will require explicitly setting the UPDATECOUNT option
- CREATE VIRTUAL PROCEDURE ... OPTIONS (UPDATECOUNT 0) AS BEGIN ...

from 12.0

e TEIID-5640 Access to system schema over OData has been disabled. If you need access to SYS, SYSADMIN, or

pg_catalog, consider adding an appropriate view or procedure.

e TEIID-5647 The information_schema schema name is now reserved for future internal use. If you do need to use this name

for now, you can set the property org.teiid.allow_information_schema=true

from 11.2

e TEIID-5476 JGroups was removed as a direct dependency of the runtime and the associated property removed from the

EmbeddedConfiguration. If you need clustering support with embedded, please raise an issue.

https://issues.redhat.com/browse/TEIID-5798
https://issues.redhat.com/browse/TEIID-5819
https://issues.redhat.com/browse/TEIID-1323
https://issues.redhat.com/browse/TEIID-5565
https://issues.redhat.com/browse/TEIID-5557
https://issues.redhat.com/browse/TEIID-5840
https://issues.redhat.com/browse/TEIID-5841
https://issues.redhat.com/browse/TEIID-5849
https://issues.redhat.com/browse/TEIID-5857
https://issues.redhat.com/browse/TEIID-5742
https://issues.redhat.com/browse/TEIID-5759
https://issues.redhat.com/browse/TEIID-5759
https://issues.redhat.com/browse/TEIID-5757
https://issues.redhat.com/browse/TEIID-5729
https://issues.redhat.com/browse/TEIID-5640
https://issues.redhat.com/browse/TEIID-5647
https://issues.redhat.com/browse/TEIID-5476

e TEIID-5563 All wildfly specific maven subprojects - including the resource adapter connector-x artifacts - were moved

under the org.teiid.wildfly group id. See the Admin Guide for more migration information.

e TEIID-5596 The usage of infinispan caching with Teiid Embedded now requires a dependency to org.teiid:cache-infinispan.

from 11.1

e TEIID-5506 Removed the option to specify domain qualified logins.

from 11.0

e TEIID-5411 Pluggable server discovery has been removed as a client feature. The client will focus on better integration with
existing load-balancing paradigms instead.

e TEIID-5415 The JDBC client load-balancing feature has been removed. The client will no longer pool instances nor issue a

ping. If you use the client against a server older than 10.2, ping will need to be disabled on that server.

e TEIID-5427 Session/user scoping of materialized views has been removed. You should use a global temporary table instead
and load it as needed for your session.

from 10.3

e TEIID-5365 Function model support has been completely removed from the server. VDBs utilizing function models should
be migrated to having those functions located on physical or virtual models.

e TEIID-5083 The salesforce translator and resource adapter now provide 34.0 api access rather than 22.0.

e TEIID-5370 A warning rather than an exception will be generated when the HEADER option is specified for a
TEXTTABLE, but the header/column does not exist in the file.

e TEIID-5360 JDBC DatabaseMetaData will no longer by default report nullsAreSortedLow as true since that behavior in not
guaranteed and can be adjusted on the server side. If you need a particular value reported, use the connection property
nullsAreSorted=\{ AtStart,AtEnd,High,Low}

from 10.2

e TEIID-5294 The name escaping performed by the SQL/XML logic and JSONTOXML function did not properly escape
values. Instead of uHHHH, xHHHH should have been used. That correction has been made. If you want the old behavior set
the system property org.teiid.useXMLxEscape to false.

from 10.1

e TEIID-5286 The Sybase IQ translator has been renamed sap-iq and the usage of the SybaseIQExecutionFactory and the

sybaseiq translator name has been deprecated.
e TEIID-5262 Removed support for Teiid 7.x clients/servers

e TEIID-5220 The pg_catalog now has information_schema.tables, views, and columns, which require qualification to

reference the tables, views, or columns system tables.

from 10.0

e TEIID-5177 Stricter naming is now enforced in DDL. Only unqualified identifiers are expected as names. Set the system

property org.teiid.requireUnqualifiedNames=false to restore the older behavior.

e TEIID-5201 The SYS.Keys table had SchemaUID and RefSchemaUID columns added.

https://issues.redhat.com/browse/TEIID-5563
https://issues.redhat.com/browse/TEIID-5563
https://issues.redhat.com/browse/TEIID-5506
https://issues.redhat.com/browse/TEIID-5411
https://issues.redhat.com/browse/TEIID-5415
https://issues.redhat.com/browse/TEIID-5427
https://issues.redhat.com/browse/TEIID-5365
https://issues.redhat.com/browse/TEIID-5083
https://issues.redhat.com/browse/TEIID-5370
https://issues.redhat.com/browse/TEIID-5360
https://issues.redhat.com/browse/TEIID-5294
https://issues.redhat.com/browse/TEIID-5286
https://issues.redhat.com/browse/TEIID-5262
https://issues.redhat.com/browse/TEIID-5220
https://issues.redhat.com/browse/TEIID-5177
https://issues.redhat.com/browse/TEIID-5201

from 9.x

e TEIID-4894 The XML document model feature has been removed. You must use OData or SQL/XML to create XML

documents.

e TEIID-4924 Maven coordinates for Teiid artifacts have changed. They will now be pushed directly to Maven Central and

will use the org.teiid group instead of org.jboss.teiid.

e TEIID-5026 The FROM_UNIXTIME function now returns a string rather than a timestamp value and no longer is rewritten
to the timestampadd function. The functionality now matches that of HIVE/IMPALA. See also the to_millis and from_millis

functions.
e TEIID-5012 A Description column was added to SYS.VirtualDatabases.
e TEIID-4943 Copy criteria created from a join will typically only be pushed when the join is not pushed.
e TEIID-5112 Type length specified in DDL or SQL must be greater than 0. Char type length must only be 1.

e TEIID-5130 Procedure RESULT parameters must appear as the first parameter in the argument list. To allow the old

behavior of appearing anywhere, set the system property org.teiid.resultAnyPosition=true.

e TEIID-3624 The introduction of domain types modified several of the system tables. The isPhysical column was removed
from the SYS.Datatypes table. SYS.Datatypes added Type, TypeCode, Literal_Prefix, and Literal_Suffix columns. The
SYS.Columns, SYS.ProcedureParams, and SYS.FunctionParams tables added TypeName, TypeCode, and ColumnSize

columns.
e TEIID-4827 Java 1.8 is now required for building and running Teiid.
e TEIID-4890 The ProcedureParameters system table will report return parameters as position 0.

e TEIID-4866 For usability with SQLAlchemy and Superset the version() function over ODBC will report ""PostgreSQL 8.2"

rather than "Teiid version". You can use the system property org.teiid.pgVersion to control this further.

e TEIID-4574 Phoenix/Hbase Translator has been renamed phoenix and the usage of the HBaseExecutionFactory and the

hbase translator name has been deprecated.
e TEIID-4501 The salesforce-34 resource adapter defaults to the version 34 api rather than version 22 api.

e TEIID-3754 OData Version 2 support is removed. Please use OData V4. Note that there are many changes in specification
with V4 vs V2.

e TEIID-4400 XML Document Models have been deprecated. OData or SQL/XML should be used instead.

e TEIID-4317 ExecutionFactory.initCapabilities will always be called - either during start if isSourceRequiredForCapabilities

returns false, or later if true.
e TEIID-4346 The excel-odbc translator has been removed. Please use the excel translator instead.

e TEIID-4332 Due to costing logic changes plans may be different that in previous releases. Please raise an issue is you feel a

plan is not appropriate.
e TEIID-4421 Removed the deprecated EmbeddedServer.addTranslator(ExecutionFactory) method.

e TEIID-4442 Removed the interpretation of the security-domain setting for the session service as a comma separated list of
domains. Also added the USER(boolean) function to control if the USER function returns a name with the security domain.
Finally the DatabaseMetaData and CommandContext getUserName will both return the simple user name without the

domain.

e TEIID-4228 Precision/scale will now be set consistently. Values reported from JDBC/OData/ODBC metadata may be

different if your current metadata declares a bigdecimal type with default precision.

https://issues.redhat.com/browse/TEIID-4894
https://issues.redhat.com/browse/TEIID-4924
https://issues.redhat.com/browse/TEIID-5026
https://issues.redhat.com/browse/TEIID-5012
https://issues.redhat.com/browse/TEIID-4943
https://issues.redhat.com/browse/TEIID-5112
https://issues.redhat.com/browse/TEIID-5130
https://issues.redhat.com/browse/TEIID-3624
https://issues.redhat.com/browse/TEIID-4827
https://issues.redhat.com/browse/TEIID-4890
https://issues.redhat.com/browse/TEIID-4866
https://issues.redhat.com/browse/TEIID-4574
https://issues.redhat.com/browse/TEIID-4501
https://issues.redhat.com/browse/TEIID-3754
https://issues.redhat.com/browse/TEIID-4400
https://issues.redhat.com/browse/TEIID-4317
https://issues.redhat.com/browse/TEIID-4346
https://issues.redhat.com/browse/TEIID-4332
https://issues.redhat.com/browse/TEIID-4421
https://issues.redhat.com/browse/TEIID-4442
https://issues.redhat.com/browse/TEIID-4228

e TEIID-4423 Uncorrelated subqueries will be treated as deterministic regardless of functions used within them. Prior releases

treated most uncorrelated subqueries as non-deterministic if they contained a non-deterministic function.

from 8.x

e TEIID-2694 In the autogenerated web service, if a procedure is designed for POST method, and one of its IN/INOUT
parameters is either a LOB or VARBINARY then that service can only invoked using "multipart/form-data". This allows user

to send large binary files for processing in Teiid

e TEIID-3462 Semantic versioning requires the VDB version to be a string, rather than an integer field. This affects several
public classes including CommandLogMessage, VDB, Session, EventListener, VDBImport, ExecutionContext, and
MetadataRepository. Any custom command logging or materialization status tables will need the version field updated as

well.
e TEIID-4147 ODBC type handling will now report the type name as the PostgreSQL type rather than the Teiid type.
e TEIID-3601 changed the rowCount field on CommandLogMessages from Integer to Long.
e TEIID-3752 the admin assignToModel method was removed

e TEIID-3684 RoleBasedCredentialMaplIdentityLoginModule removed, consider using alternative login modules with roles to

restrict access to VDB

e TEIID-2476 The AuthorizationValidator and PolicyDecider interfaces had minor changes - see their javadocs for new/altered

methods

e TEIID-3503 To better isolate dependencies a separate teiid-jboss-admin jar was created from classes in teiid-admin - most

notably AdminFactory was moved there.
e TEIID-4206 TranslatorProperty annotations on methods without setters must have the readOnly attribute as true.
e TEIID-3814 In the autogenerated web service, the model name in the path is now case sensitive.

e TEIID-2267 The custom appenders for command and audit logging has been changed, now they need to be developed for

java.util.logging based Handler.

e TEIID-3553 Ambiguous OData v2 entity set and function names will throw an exception rather than resolving to the first

found.
e TEIID-3515 MAKEIND was added as a reserved word.
e TEIID-3576 the waitForLoad connection property has been deprecated.
e TEIID-2813 a source end event will be sent to the command log when an error occurs rather than being omitted.
e TEIID-3736 string literals values matching the date format can be directly resolved as timestamps.
e TEIID-3727 The version 22 salesforce translator and resource adapter have been deprecated.

e TEIID-3380/https://issues.redhat.com/browse/TEIID-3663[TEIID-3663] The SecurityHelper interface has changed to allow

for easier control over GSS authentication

e TEIID-3372 DDL and DDL-FILE metadata repositories have deprecating using the respective ddl and ddl-file model

properties.
e TEIID-3390 temporary lobs are now cleaned up when the result set is closed - even for local connections.

e TEIID-3210 Added supportsCompareCriteriaOrderedExclusive, which defaults to supportsCompareCriteriaOrdered, to

specifically support < and > pushdown.

https://issues.redhat.com/browse/TEIID-4423
https://issues.redhat.com/browse/TEIID-2694
https://issues.redhat.com/browse/TEIID-3462
https://issues.redhat.com/browse/TEIID-4147
https://issues.redhat.com/browse/TEIID-3601
https://issues.redhat.com/browse/TEIID-3752
https://issues.redhat.com/browse/TEIID-3684
https://issues.redhat.com/browse/TEIID-2476
https://issues.redhat.com/browse/TEIID-3503
https://issues.redhat.com/browse/TEIID-4206
https://issues.redhat.com/browse/TEIID-3814
https://issues.redhat.com/browse/TEIID-2267
https://issues.redhat.com/browse/TEIID-3553
https://issues.redhat.com/browse/TEIID-3515
https://issues.redhat.com/browse/TEIID-3576
https://issues.redhat.com/browse/TEIID-2813
https://issues.redhat.com/browse/TEIID-3736
https://issues.redhat.com/browse/TEIID-3727
https://issues.redhat.com/browse/TEIID-3380
https://issues.redhat.com/browse/TEIID-3372
https://issues.redhat.com/browse/TEIID-3390
https://issues.redhat.com/browse/TEIID-3210

TEIID-3282 Changed the WEEK function to compute the ISO 8601 by default (org.teiid.iso8601Week=true) and ensured
pushdowns do the same. Changed the dayOfWeek function to be unaffected by the iso8601Week setting.

TEIID-2904 The createMetadataProcessor method on JDBCExcutionFactory has been deprecated. Use getMetadataProcessor

instead.
TEIID-2793 Searchability metadata will not prevent more complicated expressions from being pushed down.
TEIID-2794 Schema scoped functions are checked for ambiguity. Schema qualification may be needed to resolve properly.

TEIID-2840 Internal materialized view ttl refresh is now blocking by default. To keep the old behavior of lazy invalidation,

use the vdb property lazy-invalidation=true
TEIID-2667 The jdbc importer importKeys parameter is now correctly defaulted to true.

TEIID-2737 The "native' procedure exposed by translators has been renames as the direct query feature. The related
ExecutionFactory methods supportsNativeQueries and nativeQueryProcedure name have been deprecated and replaced with

supportsDirectQueryProcedure and directQueryProcedureName.

TEIID-2580 Both xpathValue and XMLTABLE will return null when retrieving the value for a single element marked with

xis:nil="true".

TEIID-2590 Both the source specific and the general hint if present will be included as the source hint for Oracle.
TEIID-2603 TableStats and ColumnStats numeric values are held as Number, rather than Integer.

TEIID-2613 The rowcount is reset to 0 after a non-update command statement is issued.

TEIID-2422 using calendar based timestampdiff by default. See the Admin Guide for using the

org.teiid.calendarTimestampDiff to control backwards compatibility.

TEIID-2477 Most of the JDBC translator static String version constants were replaced by org.teiid.translator.jdbc. Version

constants. Use the .toString() method to obtain a version string if needed.

TEIID-2344 non-available JDBC sources in partial results mode or source with connection factories that require an
ExecutionContext to obtain a connection will require manual setting of the database version metadata property. The affected

sources are: db2, derby, oracle, postgresql, sqlserver, sybase, teiid

TEIID-2444 The deployment platform for Teiid has been changed to EAP 6.1.Alphal, older or non-EAP deployments are not
supported.

TEIID-2429 Sorts over data sets over a single batch are not guaranteed to be sorted in a stable manor to improve

performance. The sort will still be correct with respect to the sort keys.

TEIID-1979 The resource adaptors are now deployed through modules, and have shorter names as identifiers. Connection

Factories created with previous versions must be re-configured.
TEIID-2253 the multi-source implementation logic was significantly altered the following changes were introduced.

o If not auto-populated, the multi-source column acts as a pseudo-column and will not be selectable via a wildcard
SELECT * nor tbl.*

o Multi-source inserts must specify a single source as their target.

o The join planning behavior in multi-source mode was not consistent and did not work in all situations. To ensure
consistency multi-source tables being joined together should specify a join predicate on the source name column - i.e.
tbl1.source_name = tbl2.source_name. For backwards compatibility a the system property
org.teiid.implicitMultiSourceJoin was introduced to control whether multi-source joins are effectively partitioned by
source without a source_name predicate. The property defaults to true, the pre 8.3 behavior - but should be switched to

false for later versions unless the issues with implicit join planning are addressed.

https://issues.redhat.com/browse/TEIID-3282
https://issues.redhat.com/browse/TEIID-2904
https://issues.redhat.com/browse/TEIID-2793
https://issues.redhat.com/browse/TEIID-2794
https://issues.redhat.com/browse/TEIID-2840
https://issues.redhat.com/browse/TEIID-2667
https://issues.redhat.com/browse/TEIID-2737
https://issues.redhat.com/browse/TEIID-2580
https://issues.redhat.com/browse/TEIID-2590
https://issues.redhat.com/browse/TEIID-2603
https://issues.redhat.com/browse/TEIID-2613
https://issues.redhat.com/browse/TEIID-2422
https://issues.redhat.com/browse/TEIID-2477
https://issues.redhat.com/browse/TEIID-2344
https://issues.redhat.com/browse/TEIID-2444
https://issues.redhat.com/browse/TEIID-2429
https://issues.redhat.com/browse/TEIID-1979
https://issues.redhat.com/browse/TEIID-2253

TEIID-2317 byte[] char[] and java.util.Date instances returned as object values will be left in tact and not automatically

converted to BinaryType, ClobType, and Timestamp respectively. The values may still be cast to those types.

TEIID-2149 the subqueryUnnestDefault property no longer influences cost based decisions to treat subqueries as merge
joins. In nearly all circumstances this is desirable, but may require the use of nounnest hint to prevent forming the join if

desired.
TEIID-2166 array_get will return null if the index is out of bounds rather than raising an error.

TEIID-2175 for 8.0 and 8.1 clients the server will check if serialized date/time values fall outside of 32-bit value ranges (year
1900 - 9999 for dates and times between years 1901 and 2038) and throw an exception. The previous behavior was to
truncate. The exception and the use of 32 bit serialization can be avoided by setting the system property

org.teiid.longDatesTimes to true.

TEIID-2184 to be consistent with the rest of Teiid’s logic the system functions dayName and monthName will return values
from the default locale, rather than only the English names. Use the system property org.teiid.enDateNames true to revert to

the pre-8.2 behavior.

TEIID-2187 the CONSTRAINT keyword is not correctly used in table DDL. It should be replaced with a comma from
scripts to be compatible with 8.2. If desired, 8.2 now supports the CONSTRAINT keyword to provide a name for each

constraint.
TEIID-2181 system tables no longer contain valid OIDs. That responsibility has moved to the pg_catalog.

TEIID-1386 the SQLState and errorCode reported by a TeiidSQLException will typically be from the top level nested
SQLException. If there is also a nested TeiidException, the TeiildSQLException.teiidCode will be set to the
TeiidException.getCode value and the TeiildSQLException.errorCode will be set to the integer suffix of the teiidCode if

possible.

TEIID-2226 All statements that return result sets that are executed as command statements in a procedure are validated
against the expected resultset columns of the procedure. If the statement is not intended to be returnable, WITHOUT
RETURN can be added to the end of the statement.

TEIID-2235 The MetadataRepository.setNext method was removed and MetadataRepository was converted to an abstract
class rather than an interface. Also if an instance of a DefaultMetadataRepository is used, it will only affect metadata already

loaded in the repository chain.

TEIID-2237 teiid_ is a reserved DDL namespace prefix and the MetadataFactory class no longer throws

TranslatorExceptions, instead the unchecked MetadataException is thrown.

TEIID-2243 by default Teiid will not pushdown the default null sort order of nulls low when no null sort order is specified.

Set the system property org.teiid.pushdownDefaultNullOrder to true mimic the 8.1 and older release behavior.
org.teiid.metadata.Schema holds FunctionMethods by uuid rather than name to accommodate overridden method signatures.
MetadataFactory no longer extends Schema. Use the MetadataFactory.getSchema method to get the target Schema.

DDL created VIRTUAL pushdown functions should be referenced in the ExecutionFactory.getSupportedFunctions by their

full schema.function name.

DDL functions/procedures defined without the VIRTUAL keyword are by default VIRTUAL. Use the FOREIGN keyword to

indicate that they are source specific.
FunctionMethod.getFullName returns the proper schema, not category qualified name.
VDB.getUrl has been removed.

VDB.Status now has four states - LOADING, ACTIVE, FAILED, REMOVED. To check for validity use the isValid method,
rather than checking for the VALID state. FAILED deployments will still be accessible via the admin getVDB methods.

https://issues.redhat.com/browse/TEIID-2317
https://issues.redhat.com/browse/TEIID-2149
https://issues.redhat.com/browse/TEIID-2166
https://issues.redhat.com/browse/TEIID-2175
https://issues.redhat.com/browse/TEIID-2184
https://issues.redhat.com/browse/TEIID-2187
https://issues.redhat.com/browse/TEIID-2181
https://issues.redhat.com/browse/TEIID-1386
https://issues.redhat.com/browse/TEIID-2226
https://issues.redhat.com/browse/TEIID-2235
https://issues.redhat.com/browse/TEIID-2237
https://issues.redhat.com/browse/TEIID-2243

The standalone and cli configuration files specify a setting for the teiid subsystem policy-decider-module. If a module is not

specified, then data roles will not be checked.

local connections specifying a VDB version will wait for their VDB to finish loading before allowing a connection, see the

waitForLoad connection property for more.

jsonToXml document elements will contain xsi:type attribute values of decimal and boolean respectively for number and

boolean json values to allow for differentiation from string values.
Result set cache entries can now have updatable set to false to indicate that updates should not purge the entry.

Datatype default values have been corrected for Teiid built-in types. All datatypes are now nullable by default, only character

string types are case sensitive, numeric types have radix 10, and length/precision/scale have been set appropriately.
pg catalog and dynamic vdb created metadata will use a generated Teiid id rather than a random UUID.
transport ssl config no longer uses the enabled attribute. Use mode=disabled to disable the usage of encryption.

TEIID-2105 If a MetadataRepository throws a RuntimeException during load, that will be treated as a non-recoverable error
and the VDB will have a FAILED status.

TEIID-2105 It was an undocumented behavior that is a source did not specify a jndi connection that "java:/name" would be

assumed. That is no longer the case. It the source needs a connection, then one must be specified.

TEIID-2127 if ExecutionFactory.isSourceRequired returns true (the default) then not obtaining a connection will for an
Execution will result in an error. If an ExecutionFactory does not use a source, then no connection-jndi-name should be
specified and isSourceRequired should return false (see setSourceRequired). If isSourceRequired returns false and a
connection-jndi-name is specified, then Teiid will still attempt to obtain a connection, but no exception will be thrown if a

connection isn’t available.

TEIID-2138 the odbc layer will report standard_conforming_strings as on, rather than off to better reflect the string literal
handling of Teiid.

Configuration Issues

See the Admin Guide for more on configuration and installation.

from 14.0

e TEIID-6007 The meaning of the transport authentication mode was changed to specifically be the client authentication mode,

1-way has been replace by NONE, 2-way has been replaced by NEED, and a new value WANT is supported.

from 12.0

e TEIID-5642 The generic sql query procedure for generated REST wars will not be exposed by default. The schema/model

must have the property \{http://teiid.org/rest}sqlquery set to true.

from 11.2

e TEIID-5584 org.teiid.enforceSingleMaxBufferSizeEstimate now defaults to false. Rather the biggest memory consumers

among sessions will be killed by default in the event of running out of disk space.

e TEIID-5490 org.teiid.longRanks now defaults to true. Analytical functions such as row_number return a long by default.

e TEIID-5574 the cli buffer-service properties have been deprecated and replaced with buffer-manager properties - see the

migration guide for more

https://issues.redhat.com/browse/TEIID-2105
https://issues.redhat.com/browse/TEIID-2105
https://issues.redhat.com/browse/TEIID-2127
https://issues.redhat.com/browse/TEIID-2138
https://issues.redhat.com/browse/TEIID-6007
https://issues.redhat.com/browse/TEIID-5642
https://issues.redhat.com/browse/TEIID-5584
https://issues.redhat.com/browse/TEIID-5490
https://issues.redhat.com/browse/TEIID-5574

from 10.3

e TEIIDTOOLS-381 the default max buffer space for Teiid embedded and derived runtimes (Thorntail/Spring Boot) is 5
gigabytes, rather than 50. For the full WildFly environment the default is still 50 gigabytes (51200 megabytes), via the

stanadlone-teiid buffer-service max-buffer-space attribute.

from 10.2

e TEIID-5323 User query command log entries are now logged at the DEBUG level on the org.teiid COMMAND_LOG
context. Source events are logged on the org.teiid. COMMAND_LOG.SOURCE context at the DEBUG level. This allows
command logging of just the user query events by setting the logging level to DEBUG for the overall context, but INFO or
higher for the SOURCE child context. The level will default to WARN in the standard install or to DEBUG when running the

auditcommand scripts.

from 10.1

e TEIID-5248 v4 Api Support modified the properties for the Google Resource Adapter. The Key property was removed - use
Spreadsheetld instead. The AuthMethod property was removed as well.

e TEIID-5268 Anonymous authentication requires setting the LdapAuthType property to none on the LDAP Resource Adapter.

from 9.x

e TEIID-4820 The JDG specific connectivity is being separated from the main community project. It will be made available

separately and as part of the product.
e TEIID-4858 The Hive translator now has order by support turned off by default.

e TEIID-4533 The default for the max-staleness of the resultset cache was changed from 60 seconds to 0 seconds. You may use

the cli to alter this new default if necessary.

e TEIID-4707 The PrestoDB driver is no longer pre-installed. This allows for newer client versions to be used as needed. The

documentation has been updated to reflect this as well.

e TEIID-4129 in order to prevent invalid results from a sort/merge join, the sort operation will undergo additional checks. If
org.teiid.assumeMatchingCollation is false (the default) and a translator does not specify a collationLocale, then the sort for a
sort/merge join will not be pushed. Teiid defaults to the Java UCS-2 collation, which may not match the default collation for
sources, particular tables, or columns. You may set the system property org.teiid.assumeMatchingCollation true to restore the
old default behavior or selectively update the translators to report a collationL.ocale matching org.teiid.collationLocale (UCS-

2 if unset).

from 8.x

e TEIID-2754 view are reported as VIEW table type in the metadata. Use the connection property reportAsViews=false to

restore the old behavior.
e TEIID-3753 org.teiid.widenComparisonToString now defaults to false.

e TEIID-3669 there is now a single session service. Common configuration properties need to be consolidated. With TEIID-
3790 this also means that you may want to change the default of trust-all-local to false to restrict local pass-through

connections. Also the VDB REST passthrough-auth property is no longer used.
e TEIID-3797 the embedded transport is now known as the local transport.

e TEIID-3859 the "native" 9999 management port is no longer used. AdminShell will default to the http 9990 management
port instead.

https://issues.redhat.com/browse/TEIIDTOOLS-381
https://issues.redhat.com/browse/TEIID-5323
https://issues.redhat.com/browse/TEIID-5248
https://issues.redhat.com/browse/TEIID-5268
https://issues.redhat.com/browse/TEIID-4820
https://issues.redhat.com/browse/TEIID-4858
https://issues.redhat.com/browse/TEIID-4533
https://issues.redhat.com/browse/TEIID-4707
https://issues.redhat.com/browse/TEIID-4129
https://issues.redhat.com/browse/TEIID-2754
https://issues.redhat.com/browse/TEIID-3753
https://issues.redhat.com/browse/TEIID-3669
https://issues.redhat.com/browse/TEIID-3790
https://issues.redhat.com/browse/TEIID-3797

e TEIID-3594 User query command log entries are now logged at the INFO level on the org.teiid COMMAND_LOG context.
This allows command logging of just the user query events by setting the logging level to INFO. The level will default to
WARN in the standard install or to DEBUG when running the auditcommand scripts.

e TEIID-3192 The CXF config is no longer a valid option for the Salesforce resource adapter. Please log an issue if there is

feature from the CXF config that you were using that is not present on the new resource adapter.

e TEIID-3177 ODBC connections will be required to be secure based upon the SSL mode setting. If the mode is enabled, then
the client must request an SSL connection. If the mode is login, then the client must use GSS authentication. To revert to the

prior behavior, the system property org.teiid. ODBCRequireSecure can be set to false.

e TEIID-2512 the usage of the metadata element text as the "raw schema text" may not be appropriate in all situations. The ddl

and ddl-file metadata repositories will check for the ddl and ddl-file model properties respectively.
e TEIID-2707 the org.teiid.joinPrefetchBatches property is no longer used.

e TEIID-2429 the default for maxProcessingKb has effectively doubled (the old default would use approaximately 4MB),
while the maxReserveKb default has been reduced to 70% of the memory past the first gigabyte instead of 75%.

e TEIID-2445 the UseConnectorMetadata and supports-multi-source-bindings properties have been deprecated, but will still be
respected if present. There is no equavalent to UserConnectorMetadata=true as it is always implied.
UseConnectorMetadata=false has been replaced by cache-metadata=false, which can be placed at either the vdb or model
level. supports-multi-source-bindings has been replaced by multisource, which no longer needs to be specified if more than

one source is configured.
e TEIID-2510 the time-slice-in-millseconds has been corrected to be time-slice-in-milliseconds

e The connector batch size setting is no longer used. Instead a fetch size will be sent to the translator that is 2 times the

working batch size or the non-pushed limit, whichever is less.

e The file translator now defaults to exceptionlIfFileNotFound=true, you can set the translator property to false to preserve the

old behavior of returning null.

e TEIID-2086 TEIID-2168 prepared plan and result set caches are now configured as infinispan caches. See the teiid cache
container in the configuration. You may also control the transactional aspects of the result set cache on the resultset and

resultset-repl caches via the configuration.

e TEIID-1241 the web services connector property ConfigName was deprecated in favor of EndPointName. There were also

ServiceName, NamespaceUri, and Wsdl properties added, which are used to point the

e teiid-security-users and teiid-security-roles properties files have been moved under the configuration directory of their

respective deployment.

Other Issues

e TEIID-5687 - Querying NCHAR values in Oracle using prepared statements and unicode values will result in the value being

converted to extended ascii instead.

e TEIID-1281 - Negative start indexing is not supported by DB2 and Derby databases. Usage of the Teiid SUBSTRING

against these sources should not use negative start values.

e TEIID-1008 - Most versions of Oracle and MySQL do not support deeply nested correlated references. There is currently no

workaround for this issue.

e For compatibility with the 7.0 release if a stored procedure parameter list begins with identifier=, then it will be parsed as a
named parameter invocation even if the intent was to use a comparison predicate as the first parameter value. The

workaround is to use nesting parens, e.g. call proc((identifier=value), ...), which clarifies that this is positional value. This

https://issues.redhat.com/browse/TEIID-3594
https://issues.redhat.com/browse/TEIID-3192
https://issues.redhat.com/browse/TEIID-3177
https://issues.redhat.com/browse/TEIID-2512
https://issues.redhat.com/browse/TEIID-2707
https://issues.redhat.com/browse/TEIID-2429
https://issues.redhat.com/browse/TEIID-2445
https://issues.redhat.com/browse/TEIID-2510
https://issues.redhat.com/browse/TEIID-2086
https://issues.redhat.com/browse/TEIID-2168
https://issues.redhat.com/browse/TEIID-1241
https://issues.redhat.com/browse/TEIID-5687
https://issues.redhat.com/browse/TEIID-1281
https://issues.redhat.com/browse/TEIID-1008

workaround will not be needed in later releases.

e TEIID-586 - Salesforce LIKE pushdown is case insensitive, while LIKE evaluated by Teiid is case sensitive unless an

alternative collation is used. Care should be taken to ensure consistent results if mixed case values are being searched.

e TEIID-2836 - Data from DB2 on z/OS in EBCDIC may not be represented correctly at runtime. It is recommended that the
values are converted to ASCII or another common character set.

e TEIID-2998 - Google spreadsheets containing all string data do not detect their row data and labels correctly on the Google
backend.

e TEIID-3070 - Netty threads may inappropriately take up CPU resources. This affects most EAP releases. Upgrade the AS
version of Netty to 3.6.10.Final to address this issue.

e TEIID-3289 - The timestamp to string conversion performed in MySQL will produce a string with all of the trailing zeros (up

to 6) for the fractional seconds. This differs from the expected Teiid/Java format.

e TEIID-2836 - Data from DB2 on z/OS in EBCDIC may not be represented correctly at runtime. It is recommended that the
values are converted to ASCII or another common character set.

e TEIID-2998 - Google spreadsheets containing all string data do not detect their row data and labels correctly on the Google
backend.

e TEIID-3070 - Netty threads may inappropriately take up CPU resources. This affects most EAP releases. Upgrade the AS
version of Netty to 3.6.10.Final to address this issue.

e TEIID-3289 - The timestamp to string conversion performed in MySQL will produce a string with all of the trailing zeros (up

to 6) for the fractional seconds. This differs from the expected Teiid/Java format.

e TEIID-3779 - There are a host of Phoenix issues that Teiid is currently not working around for HBase access. If you hit any
of these, please let us know so that we can work with the Phoenix community to get it resolved. Generally Phoenix has issues

with subquery evaluation and certain datatypes, such as char and timestamp.
o TEIID-3772 TEIID-3769 TEIID-3766 are not likely to occur and generate an exception.
o TEIID-3774 is unlikely but can return inaccurate results.
o TEIID-3768 affects correlated subquery comparison using an aggregate of a char value and can return inaccurate results.

e TEIID-3808 - The Informix driver handling of timezone information is inconsistent - even if the databaseTimezone translator

property is set. Consider ensuring that the Informix server and the application server are in the same timezone.

e TEIID-3805 - SAP Hana returns an empty string rather than null for the substring function when the from index is larger than

the string length.

e TEIID-3816 - Informix can return incorrect results for subquery comparisons involving a boolean value and a subquery that

has only a single row. If you encounter such a scenario and need Teiid to compensate, then please open an issue.

Thirdparty Library Updates

The following components have been updated:

From 14.0

e Accumulo was updated to the 2.0.0 client.

From 12.3

https://issues.redhat.com/browse/TEIID-2836
https://issues.redhat.com/browse/TEIID-2998
https://issues.redhat.com/browse/TEIID-3070
https://issues.redhat.com/browse/TEIID-3289

e The infinispan-hotrod translator/resource adapter were updated to Infinispan 10.0.1.

e Olingo was upgraded to 4.7

From 12.1

e The salesforce-41 translator/resource adapter were updated to the 45.1.0 jars.

e Olingo was upgraded to 4.6

From 12.0

e Apache POI for the excel translator was upgraded to 3.13.
e Accumulo core and related dependencies were updated to 1.9.2.
e The mongodb driver was upgraded to 3.9.1.

e jts and related were updated to 1.16.0

From 11.0

e The cassandra driver and associated dependencies were upgraded to 3.5.1.

From 10.1

e Saxon was upgraded to 9.8.0-7.

e The MongoDB client was upgraded to 3.6.3

From 10.0

e The Swagger libraries were updated to version 1.5.17, and the swagger-parser was upgraded to version 1.0.33.

Detailed Release Notes

Detailed Release Notes - Teiid - Version 15.0.0

Documentation and Help

The Teiid community project is hosted on jboss.org. Documentation and help may be obtained from the local distribution under

teiid-docs or the following locations.
e Online Documentation
e Wiki
e JIRA

e Forums

Licenses

Teiid is primarily licensed under the Apache Software License 2.0. Individual jars built for Teiid are also licensed under the EPL,
MPL, and the PostgreSQL-BSD licenses as per the needs of their originating source. See the license directory in the distribution

for full license copies. Third-party jars retain their original licensing.

https://issues.redhat.com/secure/ReleaseNote.jspa?projectId=12310782
http://teiid.io/
http://teiid.io/teiid_runtimes/teiid_wildfly/docs/
https://community.jboss.org/wiki/TheTeiidProject
http://jira.jboss.org/jira/browse/TEIID
http://community.jboss.org/en/teiid?view=discussions

About Red Hat

Red Hat, is in the business of providing superior technical support to our customers. Our goal is to make Professional Open
Source™ the SAFE CHOICE for you. We accomplish this by backing up our open source Java products with technical support
services that are delivered by the core developers themselves. We can help you to train your staff and provide you with support at
every stage of the application lifecycle - from development and integration through deployment and maintenance. Visit the JBoss

Services page for more information.

http://www.redhat.com/jboss/
http://www.jboss.com/services/index

Data Sources

Teiid provides the means (i.e., Translators and JEE connectors) to access a variety of types of data sources.

The types of data sources that are currently accessible are:
e Databases
e Web Services
e OData
e OpenAPI/ Swagger
e Big Data/No SQL/Search Engines/JCR and Other Sources
e Enterprise Systems
e Object Sources
e LDAP
e Files

e Spreadsheets

Databases

See JDBC Translators for access to:
e Oracle
e PostgreSQL
e MySQL/MariaDB
o DB2
o Microsoft SQL Server
e Sybase
e SAPIQ
e Microsoft Access
e Derby
o H2
e HSQL
e Ingres
e Informix
o MetaMatrix
e Teradata
e Vertica
e Exasol
e Generic ANSI SQL - for typical JDBC/ODBC sources

e Simple SQL - for any JDBC/ODBC source

Web Services

See Web Services Translator for access to:
e SOAP
e REST

e Arbitrary HTTP(S)

OData

See the OData Translator

OpenAPI / Swagger

See the OpenAPI and Swagger Translators

Big Data/No SQL/Search Engines/JCR and Other Sources

e Actian Vector

e Amazon Athena

e Amazon S3

e Amazon SimpleDB

e Apache Accumulo

e Apache Cassandra DB

e Apache SOLR

e Apache Spark

e Couchebase

e Greenplum

e Hive / Hadoop / Amazon Elastic MapReduce
e Impala / Hadoop / Amazon Elastic MapReduce
e ModeShape JCR Repository

e Mongo DB

e Mondrian OLAP

e Netezza data warehouse appliance

e Phoenix / HBase

e PrestoDB

o Redshift

Enterprise Systems

e OSISoft PI
e SalesForce
o SAP Gateway
e SAP Hana

o Teiid

Object Sources

e Infinispan HotRod Mode
e Intersystems Cache Object Database

e JPA sources

LDAP

See the LDAP Translator for access to:
e RedHat Directory Server

e Active Directory

Files

See the File Translator and file sources (file, hdfs, s3, and ftp) for use with:
o Delimited/Fixed width
e XML

e JSON

Spreadsheets

e Excel
e Google Spreadsheet

This represents data sources that have been validated to work using the available translators and connectors. However, this does
not preclude a new data source from working. It can be as easy as extending an existing translator, to creating a new translator

using the Translator Development extensions.

Take a look at the list of Translators that are used as the bridge between Teiid and the external system.

Virtual databases

A virtual database (VDB) is a metadata container for components used to integrate data from multiple data sources, so that they

can be accessed in an integrated manner through a single, uniform API.

Virtual database — |
API
Foreign schema
Amazon
A > s
g
References
]
Eg;;a
Virtual schema
Database

A virtual database typically contains multiple schema components (also called as models), and each schema contains the metadata

(tables, procedures, functions). There are two different types of schemas:

Foreign schema
Also called a source or physical schema, a foreign schema represents external or remote data sources, such as a relational
database, such as Oracle, Db2, or MySQL; files, such as CSV or Microsoft Excel; or web services, such as SOAP or REST.

Virtual schema
A view layer, or logical schema layer that is defined using schema objects from foreign schemas. For example, when you
create a view table that aggregates multiple foreign tables from different sources, the resulting view shields users from the

complexities of the data sources that define the view.

One important thing to note is, a virtual database contains only metadata. Any use case involving Teiid must have a virtual

database model to begin with. So, it is important to learn how to design and develop a VDB.

The following example of a virtual database model, defines a single foreign schema component that makes a connection to a
PostgreSQL database.

The SQL DDL commands in the example implement the SQL/MED specification.

CREATE DATABASE my_example;
USE DATABASE my_example;
CREATE SERVER pgsql
VERSION 'one' FOREIGN DATA WRAPPER postgresql
OPTIONS (
"resource-name" 'java:/postgres-ds'
)i
CREATE SCHEMA test SERVER pgsql;
IMPORT FOREIGN SCHEMA public FROM SERVER pgsql INTO test
OPTIONS(
importer.useFullSchemaName false,
importer.tableTypes 'TABLE,VIEW'
)i

Or as an XML vdb:

<vdb name="my-example" version="1">

<model name="test" type="PHYSICAL">
<property name="importer.schemaName" value="public"/>
<property name="importer.useFullSchemaName" value="false"/>
<property name="importer.tableTypes" value="TABLE,VIEW"/>
<source name="pqgsqgl" translator-name="postgresql" connection-jndi-name="java:/postgres-ds"/>
</model>
</vdb>

Both formats define the same VDB.

The following sections describe in greater detail how the statements in the preceding example are used to define a virtual

database. Before that we need to learn about the different elements of the source schema component.

External data sources

As shown in preceding example, the "source schema" component of a virtual database is a collection of schema objects, tables,
procedures and functions, that represent an external data source’s metadata locally. In the example, schema objects are not defined
directly, but are imported from the server. Details of the connection to the external data source are provided through a resource-

name , which is a named connection reference to a external data source.

For the purposes of Teiid, connecting and issuing queries to fetch the metadata from these external data sources, Teiid

defines/provides two types of resources.

Resource adapter

A resource adapter (also called as SERVER) is connection object to the external data source. In the case of relational database this
can be achieved through a JDBC connection, or in the case of a File this may be a reference to file’s location. The resource-
adapter provides a unified interface to define a connection in the Teiid. A resource adapter also provides way to natively issue
commands and gather results. Teiid provides variety of resource adaptors to many different systems or one can be developed for

new/custom data source. A resource adapters connection is represented above as the "resource-name".

As VDB developer you need to know, how to configure these sources in the Teiid. In WildFly Server these are defined as JCA
components. In Teiid embedded, the developer has to define the connections to these sources programmatically. Check out

Administrator’s Guide on how to configure these in WildFly, or embedded examples, if you are working with Teiid Embedded.

Translator

A translator, also known as a DATA WRAPPER , is a component that provides an abstraction layer between the Teiid query engine
and a physical data source. The translator knows how to convert query commands from Teiid into source-specific commands and
execute them. The translator also has the intelligence to convert data that the physical source returns into a form that the Teiid
query engine can process. For example, when working with a web service translator, the translator converts SQL procedures from

the Teiid layer into HTTP calls, and JSON responses are converted to tabular results.

Teiid provides various translators as part of the system, or one can be developed by using the provided java libraries. For

information about the available translators, see Translators.

In a VDB, a source schema must be configured with a correct Translator and a valid resource adapter, to

Important
P make the system work.

Developing a Virtual Database

There are few different ways a Virtual Database can be developed. Each method has advantages and disadvantages.

A VDB is developed as file artifact, which can deployed into a Teiid Server. This file artifact contains the metadata about the
VDB, or contains the details to fetch the metadata from source data sources. These artifacts can be shared and moved between

different servers.
e vdb.xml : In this file format, you can use combination of XML elements and DDL elements to define the metadata.

e vdb.ddl : In this file format, you can use strictly DDL using SQL-MED (with few custom extensions) to define the metadata.

This can be viewed as next version to the vdb.xml.

e myvdb.vdb : This is an archive based (zip) file format is combination of above vdb.xml or vdb.ddl file enclosed in zip
archive along with any other supporting files like externalized DDL files, UDF libraries. This closely resembles the legacy
Designer VDB format, however this will not contain any .INDEX or .XMI files. If the individual schema elements inside a
given model/schema is large and managability of that schema in a single vdb file is getting hard as with above formats, then
consider using this format. With this you can define each model/schema’s DDL in its own file. The ZIP archive structure

must resemble

myvdb . vdb
/META-INF
vdb.ddl
/schemal.ddl
/schema2.ddl
/1ib
myudf.jar

vdb.xml and vdb.ddl may be deployed as standalone files. As a standalone file, the VDB file name pattern must adhere to "-

vdb.xxx" for the Teiid VDB deployer to recognize this file.

They may also be contained in a .vdb zip file along with other relevant files, such as jars, additional ddl, and static file resources.

It is important to note that, the metadata represented by the VDB formats is EXACTLY same in all different

Important
P ways. In fact, you can convert a VDB from one type to the other.

Steps to follow in developing a VDB

This will walk through developing a DDL based VDB.

Step 1: Pick Name and Version
Pick the name and version of the virtual database you want to create. From previous example this represents
CREATE DATABASE my_example VERSION '1.0.0';

USE DATABASE my_example VERSION '1.0.0';

Step 2: Configuring a Source(s)

When working with external sources, there are few extra steps need to be followed, as not all the software components required

for the connection nor configuration are automatically provided by Teiid.

Step 2B: Find the module to connect to External Source

e Typically all relational databases are connected using their JDBC drivers. Find out if the external source has a JDBC driver?

if this source has JDBC driver, then acquire the driver jar file.

e Once the driver is acquired, then make sure this driver is Type 4 driver, and then deploy this driver into Teiid server using
either web-console application or CLI admin-console. The below example shows deploying the Oracle driver in Teiid Server

based on WildFly using CLI admin-console. If driver is not Type 4, it can be still used, but more set up is needed.

</wildfly/bin>$./jboss-cli.sh --connect
[standalone@localhost:9990 /] deploy /path/to/ojdbcé6.jar

o if the source does not have JDBC driver and has resource-adapter provided by Teiid, then driver for it is already available in

Teiid server. No further action required for this.

Step 2C: Create a Connection to External Source

e Based on above driver or resource adapter a connection to the external source need to be created. There are many methods to

create a data source connection.
e Teiid Server (choose one method from below)

o Edit the wildfly/standalone/configuration/standalone-teiid.xml file and add respective data source or resource adapter

configuration. The examples of these templates are provided in wildfly/docs/teiid/datasources directory.
o Use Teiid Web-console and follow the directions to create a data source or resource-adapter.

o Use CLI admin-console and execute the script. The sample scripts are given in wildfly/docs/teiid/datasources directory.

Also, checkout documentation at Administrator’s Guide for more details.
e Teiid Embedded
o Create the connection programmatically, by supplying your own libraries to connect to the source.
From previous example this represents
CREATE SERVER pgsql
VERSION 'one' FOREIGN DATA WRAPPER postgresql

OPTIONS (
"resource-name" 'java:/postgres-ds'

DF;

This probably is most challenging step in terms of understanding Teiid, make sure you follow before going

Warnin .
8 further into next steps.

Step 3: Create Source Schema

Now that access the external sources is defined, "source schema" or models as shown before needs to be created and metadata

needs to be defined.

From previous example this represents

CREATE SCHEMA test SERVER pgsql;
SET SCHEMA test;

SET SCHEMA statement sets the context in which following DDL statements to fall in.

Schema component is defined, but it has no metadata. i.e tables, procedures or functions. These can be defined one of two ways
for a source model, either importing the metadata directly from the source system itself, or defining the DDL manually inline in

this file.

Step 3A: Import Metadata

e Using the data source connections created in Step 2, import the metadata upon deployment of the VDB. Note that this
capability is slightly different for each source, as to what and how/what kind of metadata is. Check individual source’s

translator documentation for more information. From previous example this represents

IMPORT FOREIGN SCHEMA public FROM SERVER pgsql INTO test
OPTIONS(
importer.tableTypes 'TABLE,VIEW'

);

The above import statement is saying that, import the "public" schema from external data source defined by "pgsql" into local
"test" schema in Teiid. It also further configures to only fetch TABLE, VIEW types, and do not use fully qualified schema names
in the imported metadata. Each translator/source has many of these configuration options you can use to filter/refine your

selections, for more information consult the translator documents at Translators for every source you are trying to connect to.

Step 3B: Define Metadata using DDL

Instead of importing the metadata, you can manually define the tables and procedures inline to define the metadata. This will be

further explained in next sections detail on every DDL statement supported. For example, you can define a table like

CREATE FOREIGN TABLE CUSTOMER (
SSN char(10) PRIMARY KEY,
FIRSTNAME string(64),
LASTNAME string(64),
ST_ADDRESS string(256),
APT_NUMBER string(32),

CITY string(64),
STATE string(32),
ZIPCODE string(10)

)i
Please note that when metadata is defined in this manner, the source system must also have representative
schema to support any queries resulting from this metadata. Teiid CAN NOT automatically create this
Warning structure in your data source. For example, with above table definition, if you are connecting Oracle database,
the Oracle database must have the existing table with matching names. Teiid can not create this table in Oracle
for you.

e Repeat this Step 2 & Step 3, for all the external data sources to be included in this VDB

Step 5: Create Virtual Views

e Now using the above source’s metadata, define the abstract/logical metadata layer using Teiid’s DDL syntax. i.e. create

VIEWS, PROCEDURES etc to meet the needs of your business layer. For example (pseudo code):
CREATE VIRTUAL SCHEMA reports;

CREATE VIEW SalesByRegion (
guarter date,
amount decimal,
region varchar(50)
) AS
SELECT ... FROM Sales JOIN Region on x = y WHERE

e Repeat this step as needed any number of Virtual Views you need. You can refer to View tables in one view from others.

Step 6: Deploy the VDB

e Once the VDB is completed, then this VDB needs to be deployed to the Teiid Server. (this is exactly same as you deploying a
WAR file for example). One can use Teiid web-console or CLI admin-console to do this job. For example below cli can be

used

deploy my-vdb.ddl

Step 7: Client Access

e Once the VDB is available on the Teiid Server in ACTIVE status, this VDB can be accessed from any JDBC/ODBC
connection based applications. You can use BI tools such as Tableau, Business Objects, QuickView, Pentaho by creating a

connection to this VDB. You can also access the VDB using OData V4 protocol without any further coding.

No matter how you are developing the VDB, whether you are using the tooling or not, the above are steps to be followed to build

a successful VDB.

vdb.xml

The vdb-deployer.xsd schema for this xml file format is available in the schema folder under the docs with the Teiid distribution.

See also link:r_xml-deployment-mode.adoc

VDB Zip Deployment

For more complicated scenarios you are not limited to just an xml/ddl file deployment. In a vdb zip deployment:
e The deployment must end with the extension .vdb
e The vdb xml file must be zip under /META-INF/vdb.xml
e If a/lib folder exists any jars found underneath will automatically be added to the vdb classpath.

e Files within the VDB zip are accessible by a Custom Metadata Repository using the MetadataFactory.getVDBResources()
method, which returns a map of all vbBResources in the VDB keyed by absolute path relative to the vdb root. The resources

are also available at runtime via the SYSADMIN.VDBResources table.

e The built-in DDL-FILE metadata repository type may be used to define DDL-based metadata in other files within the zip

archive. This improves the memory footprint of the vdb metadata and the maintainability of the metadata.

Example VDB Zip Structure

/META-INF
vdb.xml

/ddl
schemal.ddl

/1ib
some-udf.jar

In the above example a vdb.xml could use a DDL-FILE metadata type for schemal:

<model name="schemal" ...
<metadata type="DDL-FILE">/ddl/schemal.ddl</metadata>
</model>

The contents inside schemal.ddl can include DDL for Schema Objects

DDL VDB

A Virtual Database (VDB) can created through DDL statements. Teiid supports the SQL-MED specification to utilize foreign data

sources.

DDL captures information about the VDB - the sources it integrate, and preferences for importing metadata. DDL may be

deployed as a single file or as a set of files in a zip archive.
See Developing a Virtual Database for a discussion of the .vdb zip packaging.

Table of Contents
e DDL File Deployment
e DDL File Format
e Create a Database
e Create a Translator
e Associate The Translator With A Source
e Create SCHEMA
e Importing Schema
o Importing another Virtual Database (VDB Reuse)
e Create Schema Objects
e Data Roles

e Differences with vdb.xml metadata

DDL File Deployment

You can simply create a SOME-NAME-vdb.ddl file with your DDL content. Then use a standard deployment mechanism (cli,
adminapi, or placing the file in the deployments directory) to deploy it.

The VDB name pattern must adhere to "-vdb.ddl" for the Teiid VDB deployer to recognize this file when
Important . s
deployed in Teiid Server.

Example VDB DDL

CREATE DATABASE my_example;
USE DATABASE my_example;

CREATE SERVER pgsql
VERSION 'one' FOREIGN DATA WRAPPER postgresql
OPTIONS (
"resource-name" 'java:/postgres-ds'

):

CREATE SCHEMA test SERVER pgsql;
IMPORT FOREIGN SCHEMA public FROM SERVER pgsql INTO test
OPTIONS(
importer.tableTypes 'TABLE,VIEW'
)i

DDL File Format

For compatibility with the existing metadata system, DDL statements must appear in a specific order to define a virtual database.
All of the database structure must be defined first - this includes create/alter database, domains, vdb import, roles, and schemas

statements. Then the schema object, schema import, and permission DDL may appear.

Create a Database

Every VDB file must start with database definition where it specifies the name and version of the database. The create syntax for
database is

CREATE DATABASE {db-name} [VERSION {version-string}] OPTIONS (<options-clause>)

<options-clause> ::=
<key> <value>[,<key>, <value>]*

An example statement

CREATE DATABASE my_example VERSION '1l' OPTIONS ('"cache-metadata" true);

For the list of database scoped properties see VDB properties.
Immediately following the create database statement is an analogous use database statement.

As we learned about the VDB components earlier in the guide, we need to first create translators, then connections to data sources,
and then using these we can gather metadata about these sources. There is no limit on how many translators, or data sources or
schemas you create to build VDB.

Create a Translator
A translator is an adapter to the foreign data source. The creation of translator in the context of the VDB creates a reference to the
software module that is available in the Teiid system. Some of the examples of available translators include:

e oracle

e mysql

e postgresql

e mongodb

CREATE FOREIGN (DATA WRAPPER | TRANSLATOR) {translator-name}

[TYPE {base-translator-type}]
[OPTIONS (<options-clause>)]

<options-clause> ::=
<key> <value>[,<key>, <value>]*

Optional TYPE is used to create an "override" translator. It is not required to define translators already known to the engine with a
CREATE - for example CREATE FOREIGN DATA WRAPPER oracle OPTIONS ... - will effectively be ignored.

The OPTIONS clause is used to provide the "execution-properties" of a specific translator defined in either in {translator-name} or
{base-translator-name}. These names MUST match with available Translators in the system. link:as_translators.adoc[Translators}

documents all the available translators.
For all available translators see Translators

Example Creating Override Translator

CREATE FOREIGN DATA WRAPPER oracle-override TYPE oracle OPTIONS (useBindVariables);

The above example creates a translator override with an example showing turning off the prepared statements.

Additional management support to alter, delete a translator

ALTER (DATA WRAPPER|TRANSLATOR) {translator-name} OPTIONS (ADD|SET|DROP <key-
value>);

DROP FOREIGN [<DATA> <WRAPPER>|<TRANSLATOR>] {translator-name}

Associate The Translator With A Source

The SERVER construct is used to associate your translator with a data source.

CREATE SERVER {source-name} [TYPE '{source-type}']
[VERSION '{version}'] FOREIGN DATA WRAPPER {translator-name}
OPTIONS (<options-clause>)

<options-clause> ::=
<key> <value>[,<key>, <value>]*

Name Description

source-name Name given to the source’s connection.
source-type Not currently used.

translator-name Name of the translator to be used with this server.

Currently only resource-name is supported. resource-name
provides a way to specify the environmentally dependent
(JNDI or bean) name of the source if it differs from the
server name. For example java:/source

options

Example 3: creating a data source connection to Postgres database

CREATE SERVER pgsql
FOREIGN DATA WRAPPER postgresql
OPTIONS (
"resource-name" 'java:/postgres-ds'

);

An example file source.

Example 4: creating a data source connection to "file" resource adapter.

CREATE SERVER marketdata
FOREIGN DATA WRAPPER file
OPTIONS(
ParentDirectory '/path/to/marketdata'’ ,"resource-name" 'java:/postgres-ds'

)i

See Data Sources for more.

Additional management support to alter/delete a connection.

ALTER SERVER {source-name} OPTIONS (ADD|SET|DROP <key-value>);
DROP SERVER {source-name};

Now that we have the Translators and Connections created, the next step is to create SCHEMAs and work with metadata.

Create SCHEMA

A schema is a container for metadata. It works as a namespace in which metadata objects like TABLES, VIEWS and
PROCEDURES exist. The below DDL shows how to create a SCHEMA element.

CREATE [VIRTUAL] SCHEMA {schema-name}
[SERVER {server-name} (<COMMA> {server-name})*]
OPTIONS (<options-clause>)

<options-clause> ::=
<key> <value>[,<key>, <value>]*

e The use of VIRTUAL keyword defines if this schema is "Virtual Schema". In the absence of the VIRTUAL keyword, this

Schema element represents a "Source Schema". Refer to VDB Guide about different types of Schema types.

If the Schema is defined as "Source Schema", then SERVER configuration must be provided, to be able to

Important
P determine the data source connection to be used when executing queries that belong to this Schema.

Providing multiple Server names configure this Schema as "multi-source" model. See Multisource Models for more information.

Below are typical properties that can be configured for a Schema in the OPTIONS clause.

Name Description

Set to false to make the Schema not visible to metadata

VISIBLE . .
interrogation

ANNOTATION A description of the Schema

Example 5: Showing to create a source schema for PostgreSQL server from example above

CREATE SCHEMA test SERVER pgsql;

Additional management support to alter/delete a schema can be done through following commands.

ALTER [VIRTUAL] SCHEMA {schema-name} OPTIONS (ADD|SET|DROP <key-value>);
DROP SCHEMA {schema-name};

Importing Schema

If you are designing a source schema, you can add the TABLES, PROCEDURES manually to represent the data source, however
in certain situations this can be tedious, or complicated. For example, if you need to represent 100s of existing tables from your

Oracle database in Teiid? Or if you are working with MongoDB, how are you going to map a document structure into a TABLE?

For this purpose, Teiid provides an import metadata command, that can import/create metadata that represents the source. The

following command can be used for that purpose with most of the sources (LDAP source is only exception, not providing import)

IMPORT [FOREIGN SCHEMA {foreign-schema-name}]
FROM (SERVER {server-name} | REPOSITORY {repository-name})
INTO {schema-name}
OPTIONS (<options-clause>)

<options-clause> ::=
<key> <value>[,<key>, <value>]*

foreign-schema-name : Name of schema to import. Typically most databases are tied to a schema name, like "public", "dbo" or
name of the database. If you are working with a non-relational source, or a DDL file, you can provide a dummy value here or omit
the entire FOREIGN SCHEMA clause. server-name: name of the server created above to import metadata from. repository-name:
Custom/extended "named" repositories from which metadata can be imported. See MetadataRepository interface for more details.
Teiid provides a built in type called "DDL-FILE" see example below. schema-name: The foreign schema name to import from -
it’s meaning is up to the translator. import qualifications : using this you can limit your import of the Tables from foreign
datasource specified to this list. options-clause : The "importer" properties that can be used to refine the import process behavior

of the metadata. Each Translator defines a set of "importer" properties with their documentation or through extension properties.
The below example shows importing metadata from a PostgreSQL using server example above.
Example Import

-- import from native database
IMPORT FOREIGN SCHEMA public
FROM SERVER pgsql
INTO test

The above command imports public.customers, public.orders tables using pgsql’s connection into a VDB schema test.
Example Import

-- in archive based vdbs(.vdb) you can provide schema in separate files and pull
them in a main vdb.ddl file as:
IMPORT FROM REPOSITORY "DDL-FILE"
INTO test OPTIONS ("ddl-file" '/path/to/schemal.ddl')
IMPORT FROM REPOSITORY "DDL-FILE"
INTO test OPTIONS ("ddl-file" '/path/to/schema2.ddl')

The example IMPORT SCHEMA can be used with any custom Metadata Repository, in the REPOSITORY DDL-

Tip FILE, DDL-FILE represents a particular type of repository.

Importing another Virtual Database (VDB Reuse)

If you like to import another VDB that is created into the current VDB, the following command cn be used to import all the

metadata

IMPORT DATABASE {vdb-name} VERSION {version} [WITH ACCESS CONTROL]

Specifying the WITH ACCESS CONTROL also imports any Data Roles defined in the other database.

Create Schema Objects

Most DDL statements that affect schema objects need the schema to be explicitly set. To be able to establish the schema context

you are working with use following command:

Example: Set Schema

SET SCHEMA {schema-name};

then you will be create/drop/alter schema objects for that schema.

Example: Schema Object Creation

SET SCHEMA test;
CREATE VIEW my_view AS SELECT 'HELLO WORLD';

Data Roles

Data roles, also called entitlements, are sets of permissions defined per VDB that dictate data access (create, read, update, delete).
Data roles use a fine-grained permission system that Teiid will enforce at runtime and provide audit log entries for access

violations. To read more about Data Roles and Permissions see Data Roles and Permissions
Here we will show DDL support to create these Data Roles and corresponding permissions.

BNF for Create Data Role

CREATE ROLE {data-role} WITH
FOREIGN ROLE {enterprise-role}(, {enterprise-role})*
| ANY AUTHENTICATED

data-role: Data role referenced in the VDB enterprise-role: Enterprise role(s) that this data-role represents WITH ANY
AUTHENTICATED: When present, this data-role is given to any user who is valid authenticated user.

Example: Create Data Role

CREATE ROLE readwWrite WITH FOREIGN ROLE developer,analyst;

CREATE ROLE readOnly WITH ANY AUTHENTICATED;

Roles must be defined as a structural component of the VDB. GRANT/REVOKE may then appear after all of the

Note .
database structure has been defined.

See Permissions for more details on the permission system.

BNF for GRANT/REVOKE command

GRANT [<permission-types> (,<permission-types>)*]
ON (<grant-resource>)
TO {data-role}

GRANT (TEMPORARY TABLE | ALL PRIVILEGES)
TO {data-role}

GRANT USAGE ON LANGUAGE {language-name}
TO {data-role}

<permission-types> ::=
SELECT | INSERT | UPDATE | DELETE |
EXECUTE | ALTER | DROP

<grant-resource> ::=
TABLE {schema-name}.{table-name} |
PROCEDURE {schema-name}.{procedure-name} |
SCHEMA {schema-name} |
COLUMN {schema-name}.{table-name}.{column-name} [MASK [ORDER n] {expression}]

REVOKE [(<permission-types> (,<permission-types>)*)]
ON (<revoke-resource>)
FROM {data-role}
REVOKE
(TEMPORARY TABLE | ALL PRIVILEGES)
FROM {data-role}

REVOKE USAGE ON LANGUAGE {language-name}
FROM {data-role}

<revoke-resource> ::=

TABLE {schema-name}.{table-name} |

PROCEDURE {schema-name}.{procedure-name} |

SCHEMA {schema-name} |

COLUMN {schema-name}.{table-name}.{column-name} [MASK]
e permission-types: Types of permissions to be granted
e language-name: Name of the language

e grant-resource: This is Schema element in the VDB on which this grant applies to.

e revoke-resource: This is Schema element in the VDB on which this revoke applies to. Specifying the CONDITION or
MASK keyword will attempt to move the specific CONDITION or MASK for that resource.

e schema-name: Name of the schema this resource belongs to

e table-name: Name of the Table/View

e procedure-name: Procedure Name

e column-name: Name of the column

e expression: any valid sql expression, this can include columns from referenced resource

BNF for CREATE POLICY and DROP POLICY.

GRANT/REVOKE mostly function as direct replacements for the legacy permission model. They do not
function the same as standard SQL GRANT/REVOKE. GRANT/REVOKE apply/remove permissions from
the given resource - but do not affect prior GRANT/REVOKE:s against any other resource. For example if you
GRANT the select permission on a table, then REVOKE the select permission on the table’s schema, the

Warning GRANT of the select permission will remain on the table. At runtime GRANTS are still interpreted
hierarchically - a select GRANT on a schema implies read access to all contained schema objects.
GRANT/REVOKE is also not ADD/DROP aware. If the GRANT target is dropped the old GRANT still
remains and could affect any recreated object.

Warning POLICIES are not ADD/DROP aware. If the POLICY target is dropped the old POLICY still remains and

could affect any recreated object.

Example: Give insert, select, update permission on single table to user with enterprise role "role1"

CREATE ROLE RoleA WITH FOREIGN ROLE rolel;

GRANT INSERT, SELECT, UPDATE ON TABLE test.Customer TO RoleA;

Example : Give all permissions to user with "admin" enterprise role

CREATE ROLE everything WITH FOREIGN ROLE admin;

GRANT ALL PRIVILEGES TO everything;

Example : All users can see only Orders table contents amount < 1000

CREATE ROLE base_role WITH ANY AUTHENTICATED;

GRANT SELECT ON TABLE test.Orders TO base_role;
CREATE POLICY policyOrders ON test.Orders TO base_role USING (amount < 1000) TO
base_role;

Example : Override previous example to more privileged user.

CREATE POLICY policyRoleAOrders ON test.Orders TO RoleA USING (amount < and amount >=)

Example : Restricting rows to only those owned by this user.

GRANT SELECT ON TABLE test.CustomerOrders TO RoleA;
CREATE POLICY policyCustomerOrders ON test.CustomerOrders TO RoleA USING (name = user());

In the above example, user() function returns the currently logged in user id, if that matches to the name column, only those rows

will be returned. There are functions like hasRole('x") that can be used too.

Example : Column Masking, mask "amount for all users"

GRANT SELECT ON COLUMN test.Order.amount
MASK 'xxxx'
TO base_role;

Example : Column Masking, mask "amount for all users when amount > 1000"

GRANT SELECT ON COLUMN test.Order.amount
MASK 'CASE WHEN amount > 1000 THEN 'xxxx' END'
TO base_role;

Example : Column Masking, mask "amount for all users" except the calling user is equal to the user()

GRANT SELECT ON COLUMN test.Order.amount
MASK 'xxxx'
CONDITION 'customerid <> user()'
TO base_role;

Differences with vdb.xml metadata

Using a .ddl file instead of a .xml file to define a vdb will result in differences in how metadata is loaded when using a full server

deployment of Teiid.

Using a vdb.ddl file does not support: * metadata caching at the schema level - although this feature may be added later *

metadata reload if a datasource is unavailable at deployment time * parallel loading of source metadata

All of same limitations affect all VDBs (regardless of .xml or .ddl) when using Teiid Embedded.

DDL VDB

343

XML VDB

XML based metadata may be deployed in a single xml file deployment or a zip file containing at least the xml file. The contents of
the xml file will be similar either way. See Developing a Virtual Database for a discussion of the .vdb zip packaging. The XML

may embedded or reference DDL.

XML File Deployment

You can simply create a SOME-NAME-vdb.xml file. The XML file captures information about the VDB, the sources it integrate,
and preferences for importing metadata. The format of the XML file need to adhere to vdb-deployer.xml file, which is available in

the schema folder under the docs with the Teiid distribution.

The VDB name pattern must adhere to "-vdb.xml" for the Teiid VDB deployer to recognize this file when

Tmportant deployed in Teiid Server.

if you have existing VDB in combination of XML & DDL format, you can migrate to all DDL version using the

Ti . " T 0 . :
P "teiid-convert-vdb.bat" or "teiid-convert-vdb.sh" utility in the "bin" directory of the installation.

XML File Format

Example VDB XML Template

<vdb name="${name}" version="${version}">

<!-- Optional description -->
<description>...</description>

<!-- Optional connection-type -->
<connection-type>...</connection-type>

<!-- VDB properties -->
<property name="${property-name}" value="${property-value}" />

<!-- UDF defined in an AS module, see Developers Guide -->
<property name ="1ib" value ="{module-name}"></property>

<import-vdb name="..." version="..." import-data-policies="true|false"/>

<!-- define a model fragment for each data source -->
<model visible="true" name="${model-name}" type="${model-type}" >

<property name="..." value="..." />

<source name="${source-name}" translator-name="${translator-name}"
connection-jndi-name="${deployed-jndi-name}">

<metadata type="${repository-type}">raw text</metadata>

<!-- additional metadata
<metadata type="${repository-type}">raw text</metadata>
=

</model>
<!-- define a model with multiple sources - see Multi-Source Models -->
<model name="${model-name}" path="/Test/Customers.xmi">

<property name="multisource" value="true"/>

<source name="${source-name}"

translator-name="${translator-name}" connection-jndi-name="${deployed-jndi-name}"/>

<source . . . />
<source . . . />
</model>
<!-- see Reference Guide - Data Roles -->

<data-role name="${role-name}">
<description>${role-description}</description>

</data-role>

<!-- create translator instances that override default properties -->
<translator name="${translator-name}" type="${translator-type}" />
<property name="..." value="..." />
</translator>
</vdb>

Property Substitution - If a -vdb.xml file has defined property values like ${my.property.name.value}, these can
Note be replaced by actual values that are defined through JAVA system properties. To define system properties on a
WildFly server, please consult WildFly documentation.

You may choose to locally name vdb artifacts as you wish, but the runtime names of deployed VDB artifacts
Warning must either be *.vdb for a zip file or *-vdb.xml for an xml file. Failure to name the deployment properly will
result in a deployment failure as the Teiid subsystem will not know how to properly handle the artifact.

VDB Element

Attributes
e name

The name of the VDB. The VDB name referenced through the driver or datasource during the connection time.
e version

The version of the VDB. Provides an explicit versioning mechanism to the VDB name - see VDB Versioning.

Description Element

Optional text element to describe the VDB.

Connection Type Element

Determines how clients can connect to the VDB. Can be one of BY_VERSION, ANY, or NONE. Defaults to BY_VERSION. See
VDB Versioning.

Properties Element

see VDB Properties for properties that can be set at VDB level.

import-vdb Element

VDBs may reuse other VDBs deployed in the same server instance by using an "import-vdb" declaration in the vdb.xml file. An
imported VDB can have it’s tables and procedures referenced by views and procedures in the importing VDB as if they are part of
the VDB. Imported VDBs are required to exist before an importing VDB may start. If an imported VDB is undeployed, then any
importing VDB will be stopped.+

An imported VDB includes all of its models and may not conflict with any model, data policy, or source already defined in the
importing VDB. Once a VDB is imported it is mostly operationally independent from the base VDB. Only cost related metadata
may be updated for an object from an imported VDB in the scope of the importing VDB. All other updates must be made through

the original VDB, but they will be visible in all imported VDBs. Even materialized views are separately maintained for an

imported VDB in the scope of each importing VDB.

Example reuse VDB XML

<vdb name="reuse" version="1">
<import-vdb name="common" version="1" import-data-policies="false'"/>
<model visible="true" type="VIRTUAL" name="new-model">
<metadata type = "DDL"><![CDATA[
CREATE VIEW x (

y varchar
) AS
select * from old-model.tbl;
11>
</metadata>
</model>
</vdb>
Attributes
® name

The name of the VDB to be imported.
e version

The version of the VDB to be imported (should be an positive integer).
e import-data-policies

Optional attribute to indicate whether the data policies should be imported as well. Defaults to "true".

Model Element

Attributes
e name

The name of the model is used as a top level schema name for all of the metadata imported from the connector. The name should

be unique among all Models in the VDB and should not contain the '.' character.
e visible

By default this value is set to "true", when the value is set to "false", this model will not be visible to when JDBC metadata
queries. Usually it is used to hide a model from client applications that should not directly issue queries against it. However, this

does not prohibit either client application or other view models using this model, if they knew the schema for this model.

Property Elements

All properties are available as extension metadata on the corresponding schema object that is accessible via the metadata API.
e cache-metadata

Can be "true" or "false". defaults to "false" for -vdb.xml deployments otherwise "true". If "false", Teiid will obtain metadata once
for every launch of the vdb. "true" will save a file containing the metadata into the PROFILE/data/teiid directory Can be used to

override the vdb level cache-metadata property.
o teiid_rel: DETERMINISM

Can be one of: DETERMINISM NONDETERMINISTIC COMMAND_DETERMINISTIC SESSION_DETERMINISTIC
USER_DETERMINISTIC VDB_DETERMINISTIC DETERMINISTIC

Will influence the cache scope for result set cache entries formed from accessing this model. Alternatively the scope may be

influenced through the Translator API or via table/procedure extension metadata.
Source Element
A source is a named binding of a translator and connection source to a model.

e name

The name of the source to use for this model. This can be any name you like, but will typically be the same as the model name.
Having a name different than the model name is only useful in multi-source scenarios. In multi-source, the source names under a
given model must be unique. If you have the same source bound to multiple models it may have the same name for each. An

exception will be raised if the same source name is used for different sources.
e translator-name

The name or type of the Teiid Translator to use. Possible values include the built-in types (ws, file, 1dap, oracle, sqlserver, db2,

derby, etc.) and translators defined in the translators section.
e connection-jndi-name

The JNDI name of this source’s connection factory. There should be a corresponding datasource that defines the connection
factory in the JBoss AS. Check out the deploying VDB dependencies section for info. You also need to define these connection

factories before you can deploy the VDB.
Property Elements
e importer.<propertyname>

Property to be used by the connector importer for the model for purposes importing metadata. See possible property name/values
in the Translator specific section. Note that using these properties you can narrow or widen the data elements available for

integration.
Metadata Element

The optional metadata element defines the metadata repository type and optional raw metadata to be consumed by the metadata

repository.
e type

The metadata repository type. Defaults to NATIVE for source models. For all other deployments/models a value must be
specified. Built-in types include DDL, NATIVE, and DDL-FILE. The usage of the raw text varies with the by type. NATIVE
metadata repositories do not use the raw text. The raw text for DDL is expected to be be a series of DDL statements that define the
schema. Note that, since <model> element means schema, you only use Schema Object DDL. The rest of the DDL statements can
NOT be used in the artifact mode, as those constructs are defined by the XML file. Like <Model> element is similar to "CREATE
SCHEMA ...". Due to backwards compatibility Teiid supports both modes as both have their advantages.

DDL-FILE (used only with zip deployments) is similar to DDL, except that the raw text specifies an absolute path relative to the

vdb root of the location of a file containing the DDL. See Metadata Repositories for more information and examples.

The INDEX type from Designer VDBs is deprecated.

Translator Element

Attributes
e name

The name of the the Translator. Referenced by the source element.

® ftype

The base type of the Translator. Can be one of the built-in types (ws, file, ldap, oracle, sqlserver, db2, derby, etc.).
Property Elements

e Set a value that overrides a translator default property. See possible property name/values in the Translator specific section.

VDB Reuse

VDBs may reuse other VDBs deployed in the same server instance by using an "import-vdb" declaration. An imported VDB can
have it’s tables and procedures referenced by views and procedures in the importing VDB as if they are part of the VDB.
Imported VDBs are required to exist before an importing VDB may start. If an imported VDB is undeployed, then any importing
VDB will be stopped.

An imported VDB includes all of its models and may not conflict with any model, data policy, or source already defined in the
importing VDB. Once a VDB is imported it is mostly operationally independent from the base VDB. Only cost related metadata
may be updated for an object from an imported VDB in the scope of the importing VDB. All other updates must be made through
the original VDB, but they will be visible in all imported VDBs. Even materialized views are separately maintained for an
imported VDB in the scope of each importing VDB.

Example reuse VDB XML
<vdb name="reuse" version="1">
<property name="imported-model.visible" value="false"/>
<import-vdb name="common" version="1" import-data-policies="false"/>
<model visible="true" type="VIRTUAL" name="new-model">

<metadata type = "DDL"><![CDATA[
CREATE VIEW X (

y varchar
) AS
select * from imported-model.tbl;
11>
</metadata>
</model>

</vdb>

In the above example the reuse VDB will have access to all of the models defined in the common VDB and adds in the "new-
model". The visibility of imported models may be overridden via boolean vdb properties using the key model.visible - shown

above as imported-model.visible with a value of false.

Virtual database properties

DATABASE properties

e domain-ddl
e schema-ddl
e cache-metadata

Canbe true or false. Defaults to “false for -vdb.xml deployments otherwise true .If false , Teiid will obtain
metadata once for every launch of the virtual database. true will save a file containing the metadata into the
PROFILE/data/teiid directory.

e query-timeout Sets the default query timeout in milliseconds for queries executed against this VDB. e indicates that the
server default query timeout should be used. Defaults to 0. Will have no effect if the server default query timeout is set to a

lesser value. Note that clients can still set their own timeouts that will be managed on the client side.

e [ib Set to a list of modules for the vdb classpath for user defined function loading. For more information, see Support for

User-Defined Functions (Non-Pushdown) in the Translator Development Guide.

e security-domain Set to the security domain to use if a specific security domain is applicable to the VDB. Otherwise the

security domain list from the transport will be used.

<property name="security-domain" value="custom-security" />

An admin needs to configure a matching "custom-security" login module in standalone-teiid.xml configuration

Note file before the VDB is deployed.

e connection. XXX For use by the ODBC transport and OData to set default connection/execution properties. For more
information about related properties, see Driver Connection in the Client Developer’s Guide. Note these are set on the

connection after it has been established.

CREATE DATABASE vdb OPTIONS ('"connection.partialResultsMode");

<property name="connection.partialResultsMode" value="true" />

e authentication-type

Authentication type to be used with this VDBs security domain. Allowed values currently are (GSS, USERPASSWORD, SSL).
The default is set on the session service (typically USERPASSWORD).

e Authentication Patterns
Authentication patterns further control the expected authentication using the user name given with the connection attempt.

password-pattern
Regular expression matched against the connecting user’s name that determines if USERPASSWORD authentication is

used. password-pattern takes precedence over authentication-type.

ssl-pattern
Regular expression matched against the connecting user’s name that determines if SSL authentication is used. ssl-pattern

takes precedence over password-pattern.

gss-pattern

Regular expression matched against the connecting user’s name that determines if GSS authentication is used. gss-

pattern takes precedence over ssl-pattern.
e max-sessions-per-user (11.2+)

Maximum number of sessions allowed for each user, as identified by the user name, of this VDB. No setting or a negative number
indicates no per user max, but the session service max will still apply. This is enforced at each Teiid server member in a cluster,

and not cluster wide. Derived sessions that are created for tasks under an existing session do not count against this maximum.
e model.visible

Used to override the visibility of imported vdb models, where model is the name of the imported model.
e include-pg-metadata

By default, PostgreSQL metadata is always added to VDB unless you set the property org.teiid.addPGMetadata to false. This
property enables adding PG metadata per VDB. For more information, System Properties in the Administrator’s Guide. Please

note that if you are using ODBC to access your VDB, the VDB must include PG metadata.
e lazy-invalidate

By default TTL expiration will be invalidating. For more information, see Internal Materialization in the Caching guide. Setting

lazy-invalidate to true will make TTL refreshes non-invalidating.
e deployment-name
Effectively reserved. Will be set at deploy time by the server to the name of the server deployment.

Schema and model properties

e visible

Marks the schema as visible when the value is true (the default setting). When the visible flagissetto false , the
schema’s metadata is hidden from any metadata requests. Setting the property to false does not prohibit you from issuing

queries against this schema. For information about how to control access to data, see Data roles.
e multisource

Sets the schema to multi-source mode, where the data exists in partitions in multiple different sources. It is assumed that metadata

of the schema is the same across all data sources.
e multisource.columnName

In a multi-source schema, an additional column that designates the partition is implicitly added to all tables to identify the source.

This property defines the name of that column, the type will be always string .
e multisource.addColumn

This flag specifies to add an implicit partition column to all the tables in this schema. A true value adds the column. Default is

false.
e allowed-languages

Specifies a comma-separated list of programming languages that can be used for any purpose in the VDB. Names are case-

sensitive, and the list cannot include whitespace between entries. For example, <property name="allowed-languages"
value="javascript"/>

e allow-language Specifies that a role has permission to use a language that is listed in the allowed-languages property. For
example, the allow-language property in following excerpt specifies that users with the role RoleA have permission to

use Javascript.

<data-role name="RoleA">
<description>Read and javascript access.</description>

<permission>
<resource-name>modelName</resource-name>
<allow-read>true</allow-read>
</permission>

<permission>
<resource-name>javascript</resource-name>
<allow-language>true</allow-language>
</permission>

<mapped-role-name>rolel</mapped-role-name>

</data-role>

DDL metadata for schema objects

The DDL for schema objects is common to both XML and DDL VDBs.

Tables and views exist in the same namespace in a schema. Indexes are not considered schema scoped objects, but are rather
scoped to the table or view they are defined against. Procedures and functions are defined in separate namespaces, but a function
that is defined by virtual procedure language exists as both a function and a procedure of the same name. Domain types are not

schema-scoped; they are scoped to the entire VDB.

Data types
For information about data types, see simple data type in the BNF for SQL grammar.

Foreign tables

A FOREIGN table is table that is defined on source schema that represents a real relational table in source databases such as
Oracle, Microsoft SQL Server, and so forth. For relational databases, Teiid can automatically retrieve the database schema
information upon the deployment of the VDB, if you want to auto import the existing schema. However, users can use the
following FOREIGN table semantics, when they would like to explicitly define tables on PHYSICAL schema or represent non-

relational data as relational in custom translators.

Example: Create foreign table (Created on PHYSICAL model)

CREATE FOREIGN TABLE {table-name} (
<table-element> (,<table-element>)*
(,<constraint>)*

) [OPTIONS (<options-clause>)]

<table-element> ::=
{column-name} <data-type> <element-attr> <options-clause>

<data-type> ::=
| | double | | timestamp .. (see Data Types)

<element-attr> ::=
[AUTO_INCREMENT] [NOT] [PRIMARY KEY] [UNIQUE] [INDEX] [DEFAULT {expr}]

<constraint> ::=
CONSTRAINT {constraint-name} (
PRIMARY KEY <columns> |
FOREIGN KEY (<columns>) REFERENCES tbhl (<columns>)
UNIQUE <columns> |
ACCESSPATTERN <columns>
INDEX <columns>

<columns> ::=

({column-name} [, {column-name}]*)

<options-clause> ::=
<key> <value>[,<key>, <value>]*

For more information about creating foreign tables, see CREATE TABLE in BNF for SQL grammar.

Example: Create foreign table (Created on PHYSICAL model)

CREATE FOREIGN TABLE Customer (

id PRIMARY KEY,
firstname (25),
lastname (25),

dob timestamp);

CREATE FOREIGN TABLE Order (

id PRIMARY KEY,

customerid OPTIONS(ANNOTATION 'Customer primary key'),

saledate 7

amount (25,4),

CONSTRAINT CUSTOMER_FK FOREIGN KEY(customerid) REFERENCES Customer (id)
) OPTIONS(UPDATABLE , ANNOTATION 'Orders Table');

TABLE OPTIONS: (the following options are well known, any others properties defined will be considered as extension

metadata)
Property Data type or allowed values Description

UuID string Unique identifier for the view.
Costing information. Number of

CARDINALITY int rows in the table. Used for planning
purposes.

UPDATABLE "TRUE' 'FALSE'

Defines whether or not the view is ANNOTATION sitsi)

allowed to update.
NONDETERMINISTIC,

COMMAND_DETERMINISTIC,
SESSION_DETERMINISTIC,
USER_DETERMINISTIC,
VDB_DETERMINISTIC,
DETERMINISTIC

Description of the view. DETERMINISM

—» column_name — dataType —I: not null]— auto_increment —|— default — {value} W options —‘1—
index
— unique —
— primary key —

COLUMN OPTIONS: (the following options are well known, any others properties defined will be considered as extension

metadata).

Property Data type or allowed values Descriptio

A unique
UuID string identifier fc
the column

If this is a
column
name on th
FOREIGN
table, this
value
represents
name of the
column in

NAMEINSOURCE string source

database. If

omitted, the
column
name is use
when
querying fc
data agains
the source.

CASE_SENSITIVE '"TRUE''FALSE'
TRUE whe
this columr

SELECTABLE 'TRUE//FALSE' Hevelelly
for selectio
from the us
query.
Defines if
the column
is updatabl

UPDATABLE '"TRUE''FALSE' Defaults to
true if the
view/table
updatable.

SIGNED '"TRUE''FALSE'

CURRENCY '"TRUE''FALSE'

FIXED_LENGTH '"TRUE''FALSE'
Column
searchabilit

SEARCHABLE 'SEARCHABLE'|UNSEARCHABLE'|LIKE_ONLY'ALL_EXCEPT_LIKE' }ijlilt]aatli)c; by
the data
type.

MIN_VALUE

MAX_VALUE

CHAR_OCTET_LENGTH integer

ANNOTATION string

NATIVE_TYPE string

RADIX integer
Costing
informatior

NULL_VALUE_COUNT long Number of
NULLS in

this columr

Costing

DISTINCT_VALUES long informatior
Number of

distinct
values in th
column.

Columns may also be marked as NOT NULL, auto_increment, or with a DEFAULT value.

A column of type bigdecimal/decimal/numeric can be declared without a precision/scale, which defaults to an internal maximum

for precision with half scale, or with a precision which will default to a scale of 0.
A column of type timestamp can be declared without a scale which will default to an internal maximum of 9 fractional seconds.

Table Constraints
Constraints can be defined on table/view to define indexes and relationships to other tables/views. This information is used by the

Teiid optimizer to plan queries, or use the indexes in materialization tables to optimize the access to the data.

—» r constraint — {name} —|

{ accesspattern —{— {column_names} —} options <«

—|: index :|—{— {column_names} —}
unique

— primarykey —{— {column_names} —}

+— foreignkey —{— {column_names} —} — references — {view_name} —{— {column_names} —3}—

CONSTRAINTS are same as one can define on RDBMS.

Example of CONSTRAINTS

CREATE FOREIGN TABLE Orders (
name (50),
saledate 7
amount 0
CONSTRAINT CUSTOMER_FK FOREIGN KEY(customerid) REFERENCES Customer (id)
ACCESSPATTERN (name),
PRIMARY KEY ...
UNIQUE ...
INDEX ...

ALTER TABLE
For the full SQL grammar for the ALTER TABLE statement, see ALTER TABLE in the BNF for SQL grammar.

Using the ALTER command, one can Add, Change, Delete columns, modify the values of any OPTIONS