
1.1

1.2

1.3

1.3.1

1.3.1.1

1.3.2

1.3.2.1

1.3.2.1.1

1.3.2.1.2

1.3.2.1.3

1.3.2.1.4

1.3.2.1.5

1.3.2.1.6

1.3.2.1.7

1.3.2.1.8

1.3.2.1.9

1.3.2.1.10

1.3.2.1.11

1.3.2.1.12

1.3.2.1.13

1.3.2.1.14

1.3.2.1.15

1.3.2.1.16

1.3.2.1.17

1.3.2.1.18

1.3.2.1.18.1

1.3.2.1.18.2

1.3.2.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.6.1

1.3.6.2

1.3.6.3

1.3.6.4

1.3.6.5

Table	of	Contents
Introduction

Legal	Notice

Administrator’s	Guide

Installation	Guide

Dockerize	Teiid

Deploying	VDBs

Deploying	VDB	Dependencies

Accumulo	Data	Sources

Amazon	SimpleDB	Data	Sources

Cassandra	Data	Sources

Couchbase	Data	Sources

File	Data	Sources

Ftp/Ftps	Data	Sources

Google	Spreadsheet	Data	Sources

HDFS	Data	Sources

Infinispan	HotRod	Data	Sources

JDBC	Data	Sources

LDAP	Data	Sources

MongoDB	Data	Sources

Phoenix	Data	Sources

OSISoft	PI	Data	Sources

S3	Data	Sources

Salesforce	Data	Sources

Solr	Data	Sources

Web	Service	Data	Sources

Kerberos	with	REST	based	Services

OAuth	Authentication	With	REST	Based	Services

VDB	Versioning

Logging

Clustering	in	Teiid

Monitoring

Performance	Tuning

Memory	Management

Threading

Cache	Tuning

Socket	Transports

LOBs

1

1.3.6.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

1.3.15

1.3.16

1.3.17

1.4

1.4.1

1.4.2

1.4.2.1

1.4.2.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.1.1

1.5.1.1.1

1.5.1.1.2

1.5.1.1.3

1.5.1.1.4

1.5.1.1.5

1.5.1.1.6

1.5.1.1.7

1.5.1.2

1.5.1.3

1.5.1.4

1.5.1.4.1

1.5.1.4.2

1.5.1.4.3

1.5.1.4.4

1.5.1.4.5

1.5.1.5

Other	Considerations

Teiid	Console

System	Properties

Teiid	Management	CLI

Diagnosing	Issues

Migration	Guide	From	Teiid	14.x

Migration	Guide	From	Teiid	13.x

Migration	Guide	From	Teiid	12.x

Migration	Guide	From	Teiid	11.x

Migration	Guide	From	Teiid	10.x

Migration	Guide	From	Teiid	9.x

Migration	Guide	From	Teiid	8.x

Caching	Guide

Results	Caching

Materialized	Views

External	Materialization

Internal	Materialization

Code	Table	Caching

Translator	Results	Caching

Hints	and	Options

Programmatic	Control

Client	Developer’s	Guide

JDBC	Support

Connecting	to	a	Teiid	Server

Driver	Connection

DataSource	Connection

Standalone	Application

WildFly	DataSource

Using	Multiple	Hosts

SSL	Client	Connections

Additional	Socket	Client	Settings

Prepared	Statements

ResultSet	Limitations

JDBC	Extensions

Statement	Extensions

Partial	Results	Mode

Non-blocking	Statement	Execution

ResultSet	Extensions

Connection	Extensions

Unsupported	JDBC	Methods

2

1.5.1.5.1

1.5.1.5.2

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

1.5.2.4

1.5.3

1.5.3.1

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.5.13

1.5.14

1.5.15

1.5.15.1

1.5.15.2

1.5.15.3

1.5.15.4

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.1.2.1

1.6.1.3

1.6.1.3.1

1.6.1.4

1.6.2

1.6.2.1

1.6.2.1.1

1.6.2.1.2

1.6.2.2

1.6.2.2.1

1.6.2.2.2

Unsupported	Classes	and	Methods	in	"java.sql"

Unsupported	Classes	and	Methods	in	"javax.sql"

ODBC	Support

Installing	the	ODBC	Driver	Client

Configuring	the	Data	Source	Name	(DSN)

DSN	Less	Connection

ODBC	Connection	Properties

OData	Support

OData	Version	4.0	Support

Using	Teiid	with	Hibernate

Using	Teiid	with	EclipseLink

GeoServer	Integration

QGIS	Integration

SQLAlchemy	Integration

Node.js	Integration

ADO.NET	Integration

Reauthentication

Execution	Properties

SET	Statement

SHOW	Statement

Transactions

Local	Transactions

Request	Level	Transactions

Using	Global	Transactions

Restrictions

Developer’s	Guide

Developing	JEE	Connectors

Archetype	Template	Connector	Project

Implementing	the	Teiid	Framework

ra.xml	file	Template

Packaging	the	Adapter

Adding	Dependent	Libraries

Deploying	the	Adapter

Translator	Development

Environment	Setup

Setting	up	the	build	environment

Archetype	Template	Translator	Project

Implementing	the	Framework

Caching	API

Command	Language

3

1.6.2.2.3

1.6.2.2.4

1.6.2.2.5

1.6.2.2.6

1.6.2.2.7

1.6.2.2.8

1.6.2.2.9

1.6.2.3

1.6.2.4

1.6.2.5

1.6.2.5.1

1.6.2.6

1.6.3

1.6.3.1

1.6.3.2

1.6.3.2.1

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.8.1

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.8.3.1

1.8.3.2

1.8.3.3

1.8.3.4

1.8.3.5

1.8.3.6

1.8.3.7

1.8.3.8

1.8.3.9

1.8.3.10

1.8.4

Connections	to	Source

Dependent	Join	Pushdown

Executing	Commands

Extending	the	ExecutionFactory	Class

Large	Objects

Translator	Capabilities

Translator	Properties

Extending	The	JDBC	Translator

Delegating	Translator

Packaging

Adding	Dependent	Modules

Deployment

User	Defined	Functions

Source	Supported	Functions

Support	for	User-Defined	Functions(Non-Pushdown)

Archetype	Template	UDF	Project

AdminAPI

Custom	Logging

Runtime	Updates

Custom	Metadata	Repository

PreParser

Archetype	Template	PreParser	Project

Embedded	Guide

Logging	in	Teiid	Embedded

Secure	Embedded	with	PicketBox

Reference	Guide

Release	Notes

Data	Sources

Virtual	databases

Developing	a	Virtual	Database

DDL	VDB

Using	XML	&	DDL

VDB	Properties

Schema	object	DDL

Domain	DDL

MultiSource	Models

Metadata	Repositories

REST	Service	Through	VDB

VDB	Reuse

SQL	Support

4

1.8.4.1

1.8.4.2

1.8.4.3

1.8.4.3.1

1.8.4.3.2

1.8.4.3.3

1.8.4.3.4

1.8.4.3.5

1.8.4.3.6

1.8.4.3.7

1.8.4.3.8

1.8.4.4

1.8.4.5

1.8.4.5.1

1.8.4.5.2

1.8.4.5.3

1.8.4.5.4

1.8.4.5.5

1.8.4.5.6

1.8.4.5.7

1.8.4.5.8

1.8.4.5.9

1.8.4.5.10

1.8.4.5.11

1.8.4.5.12

1.8.4.5.13

1.8.4.5.14

1.8.4.6

1.8.4.6.1

1.8.4.6.2

1.8.4.6.3

1.8.4.6.4

1.8.4.6.4.1

1.8.4.6.4.2

1.8.4.6.4.3

1.8.4.6.4.4

1.8.4.6.4.5

1.8.4.6.4.6

1.8.4.6.4.7

1.8.4.6.5

Identifiers

Operator	Precedence

Expressions

Column	identifiers

Literals

Aggregate	functions

Window	functions

Case	and	searched	case	expressions

Scalar	subqueries

Parameter	references

Arrays

Criteria

Scalar	functions

Numeric	functions

String	functions

Date_Time	functions

Type	conversion	functions

Choice	functions

Decode	functions

Lookup	function

System	functions

XML	functions

JSON	functions

Security	functions

Spatial	functions

Miscellaneous	functions

Nondeterministic	function	handling

DML	commands

Set	operations

SELECT	command

VALUES	command

Update	commands

INSERT	command

UPDATE	command

DELETE

UPSERT/MERGE	command

EXECUTE	command

Procedural	relational	command

Anonymous	procedure	block

Subqueries

5

1.8.4.6.6

1.8.4.6.7

1.8.4.6.8

1.8.4.6.8.1

1.8.4.6.8.2

1.8.4.6.8.3

1.8.4.6.8.4

1.8.4.6.8.5

1.8.4.6.8.6

1.8.4.6.9

1.8.4.6.10

1.8.4.6.11

1.8.4.6.12

1.8.4.6.13

1.8.4.6.14

1.8.4.6.15

1.8.4.7

1.8.4.7.1

1.8.4.7.2

1.8.4.7.3

1.8.4.7.4

1.8.4.7.5

1.8.4.7.6

1.8.4.7.7

1.8.4.7.8

1.8.4.8

1.8.4.8.1

1.8.4.8.1.1

1.8.4.8.1.2

1.8.4.8.1.3

1.8.4.8.1.4

1.8.4.8.1.5

1.8.4.8.1.6

1.8.4.8.1.7

1.8.4.8.1.8

1.8.4.8.1.9

1.8.4.8.1.10

1.8.4.8.1.11

1.8.4.8.1.12

1.8.4.8.1.13

WITH	clause

SELECT	clause

FROM	clause

Nested	tables

XMLTABLE

ARRAYTABLE

OBJECTTABLE

TEXTTABLE

JSONTABLE

WHERE	clause

GROUP	BY	clause

HAVING	clause

ORDER	BY	clause

LIMIT	clause

INTO	clause

OPTION	clause

DDL	commands

Temporary	tables

Local	temporary	tables

Global	temporary	tables

Global	and	local	temporary	table	features

Foreign	temporary	tables

Alter	view

Alter	procedure

Alter	trigger

Procedures

Procedure	language

Command	statement

Dynamic	SQL	command

Declaration	statement

Assignment	statement

Special	variables

Compound	statement

IF	statement

LOOP	statement

WHILE	statement

CONTINUE	statement

BREAK	statement

LEAVE	statement

RETURN	statement

6

1.8.4.8.1.14

1.8.4.8.1.15

1.8.4.8.1.16

1.8.4.8.2

1.8.4.8.3

1.8.4.9

1.8.4.10

1.8.5

1.8.5.1

1.8.5.2

1.8.5.3

1.8.5.4

1.8.6

1.8.6.1

1.8.7

1.8.7.1

1.8.7.2

1.8.7.3

1.8.7.4

1.8.7.5

1.8.8

1.8.8.1

1.8.8.2

1.8.8.3

1.8.8.4

1.8.9

1.8.9.1

1.8.9.2

1.8.10

1.8.10.1

1.8.10.2

1.8.10.3

1.8.10.4

1.8.10.5

1.8.10.6

1.8.10.7

1.8.10.7.1

1.8.10.8

1.8.10.9

1.8.10.10

ERROR	statement

RAISE	statement

Exception-expression

Virtual	procedures

Update	procedures	(Triggers)

Comments

Explain	statement

Datatypes

Supported	types

Type	conversions

Special	conversion	cases

Escaped	literal	syntax

Updatable	views

Key-preserved	tables

Transaction	Support

AutoCommitTxn	execution	property

Updating	model	count

JDBC	and	transactions

Transactional	behavior	with	JBoss	data	source	types

Limitations	and	workarounds

Data	roles

Permissions

Role	mapping

XML	definition

Customizing

System	schema

SYS	schema

SYSADMIN	schema

Translators

Amazon	S3	translator

Amazon	SimpleDB	translator

Apache	Accumulo	translator

Apache	SOLR	translator

Cassandra	translator

Couchbase	translator

Delegator	translators

Extending	the	delegator	translator

File	translator

Google	spreadsheet	translator

Infinispan	translator

7

1.8.10.11

1.8.10.11.1

1.8.10.11.2

1.8.10.11.3

1.8.10.11.4

1.8.10.11.5

1.8.10.11.6

1.8.10.11.7

1.8.10.11.8

1.8.10.11.9

1.8.10.11.10

1.8.10.11.11

1.8.10.11.12

1.8.10.11.13

1.8.10.11.14

1.8.10.11.15

1.8.10.11.16

1.8.10.11.17

1.8.10.11.18

1.8.10.11.19

1.8.10.11.20

1.8.10.11.21

1.8.10.11.22

1.8.10.11.23

1.8.10.11.24

1.8.10.11.25

1.8.10.11.26

1.8.10.11.27

1.8.10.11.28

1.8.10.11.29

1.8.10.11.30

1.8.10.11.31

1.8.10.11.32

1.8.10.11.33

1.8.10.12

1.8.10.13

1.8.10.14

1.8.10.15

1.8.10.16

1.8.10.17

JDBC	translators

Actian	vector	translator

Amazon	Athena	translator

Apache	Phoenix	translator

Cloudera	Impala	translator

Db2	translator

Derby	translator

Exasol	translator

Greenplum	translator

H2	translator

Hive	translator

HSQL	translator

Informix	translator

Ingres	translators

Intersystems	Cache	translator

JDBC	ANSI	translator

JDBC	Simple	translator

MetaMatrix	translator

Microsoft	Access	translators

Microsoft	SQL	Server	translator

ModeShape	translator

MySQL	translators

Netezza	translator

Oracle	translator

OSISoft	PI	translator

PostgreSQL	translator

PrestoDB	translator

Redshift	translator

SAP	HANA	translator

SAP	IQ	translator

Sybase	translator

Teiid	translator

Teradata	translator

Vertica	translator

JPA	translator

LDAP	translator

Loopback	translator

Microsoft	Excel	translator

MongoDB	translator

OData	translator

8

1.8.10.18

1.8.10.19

1.8.10.20

1.8.10.21

1.8.10.22

1.8.10.23

1.8.10.24

1.8.11

1.8.11.1

1.8.11.2

1.8.11.3

1.8.11.4

1.8.11.5

1.8.11.6

1.8.11.7

1.8.11.8

1.8.12

1.8.12.1

1.8.12.2

1.8.12.3

1.8.12.4

1.8.13

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.9.9

OData	V4	translator

Swagger	translator

OpenAPI	translator

OLAP	translator

Salesforce	translators

SAP	Gateway	translator

Web	Services	translator

Federated	planning

Planning	overview

Query	planner

Query	plans

Federated	optimizations

Subquery	optimization

XQuery	optimization

Federated	failure	modes

Conformed	tables

Architecture

Terminology

Data	management

Query	termination

Processing

BNF	for	SQL	grammar

Security	Guide

LoginModules

Teiid	Server	Transport	Security

JDBC/ODBC	SSL	connection	using	self-signed	SSL	certificates

Data	Source	Security

Kerberos	support	through	GSSAPI

Custom	Authorization	Validator

SAML	Based	Security	For	OData

OAuth2	Based	Security	For	OData	Using	KeyCloak

SAML	Based	Security	For	OData	Using	KeyCloak

9

Legal	Notice

Teiid	15.0	Documentation

Contribute

The	documentation	project	is	hosted	on	GitHub	at	(teiid/teiid-documents).

It	is	published	on	GitHub	Pages	at	(teiid.github.io/teiid-documents/master/content)	('master'	can	be	substituted	with	any
maintained	branch	e.g.	'10.3.x').

For	simple	changes	you	can	just	use	the	online	editing	capabilities	of	GitHub	by	navigating	to	the	appropriate	source	file	and
selecting	fork/edit.

For	larger	changes	follow	these	3	steps:

Step.1	clone	the	sources

git	clone	git@github.com:teiid/teiid-documents.git

Step.2	do	edit

Use	any	text	editor	to	edit	the	adoc	files,	AsciiDoc	Syntax	Quick	Reference	can	help	you	in	AsciiDoc	Syntax.

Step.3	submit	your	change

Once	the	pull	request	is	committed	the	published	content	will	be	updated	automatically.

Test	locally

You	may	need	test	locally,	to	make	sure	the	changes	are	correct,	to	do	this	install	gitbook,	then	execute	the	following	commands
from	the	checkout	location:

$	cd	wildfly

$	gitbook	install

Introduction

10

https://github.com/teiid/teiid-documents
http://teiid.github.io/teiid-documents/master/content
http://asciidoctor.org/docs/asciidoc-syntax-quick-reference/
https://github.com/GitbookIO/gitbook

$	gitbook	serve	-w

Once	above	commands	execute	successfully	(may	take	a	few	minutes),	you	should	see	the	"Serving	book	at	…"	message	and	the
http	format	document	can	be	tested	locally	via		http://localhost:4000/	.

Generate	html/pdf/epub/mobi

You	may	locally	create	rendered	forms	of	the	documentation.	To	do	this	install	gitbook	and	ebook-convert,	then	execute	the
following	commands	from	the	checkout	location:

$	gitbook	build	./	teiid-documents

$	gitbook	pdf	./	teiid-documents.pdf

$	gitbook	epub	./	teiid-documents.epub

$	gitbook	mobi	./	teiid-documents.mobi

Once	above	commands	executes	successfully,	the		teiid-documents		folder,		teiid-documents.pdf	,		teiid-documents.epub	,
and		teiid-documents.mobi		will	be	generated.

CI	Build

The	.travis.yaml	file	allows	for	continuous	integration	of	doc	changes	on	multiple	branches	to	be	published	to	a	single	gh-pages
branch.	When	you	setup	the	travis	build	job	you	must	create	the	gh-pages	branch	if	it	does	not	already	exist:

git	checkout	--orphan	gh-pages

git	rm	-rf	.

git	commit	--allow-empty	-m	"initializing	gh-pages"

git	push	origin	gh-pages

You	will	need	to	add	an	appropriate	user	and	git	api	key	with	repo	access	as	the	environment	properties	GITHUB_USER	and
GITHUB_API_KEY	respectively	in	the	travis	build	settings.

Introduction

11

https://github.com/GitbookIO/gitbook
https://download.calibre-ebook.com

Legal	Notice

1801	Varsity	Drive	Raleigh,	NC27606-2072USA	Phone:	+1	919	754	3700	Phone:	888	733	4281	Fax:	+1	919	754	3701	PO	Box
13588	Research	Triangle	Park,	NC27709USA

Copyright	©	2005	-	2019	by	Red	Hat,	Inc.	This	copyrighted	material	is	made	available	to	anyone	wishing	to	use,	modify,	copy,	or
redistribute	it	subject	to	the	terms	and	conditions	of	the	Apache	Software	License,	Version	2.0.

Red	Hat	and	the	Red	Hat	"Shadow	Man"	logo	are	registered	trademarks	of	Red	Hat,	Inc.	in	the	United	States	and	other	countries.

All	other	trademarks	referenced	herein	are	the	property	of	their	respective	owners.

The	GPG	fingerprint	of	the	security@redhat.com	key	is:

CA	20	86	86	2B	D6	9D	FC	65	F6	EC	C4	21	91	80	CD	DB	42	A6	0E

Legal	Notice

12

mailto:security@redhat.com

Administrator’s	Guide
This	guide	is	intended	for	any	user	who	assumes	role	of	a	developer/administrator	of	a	Teiid	instance.

This	guide	guides	user	through	installation	of	Teiid,	configuration	of	different	services	and	deployment	of	Teiid	artifacts	such	as
VDBs.

Before	one	can	delve	into	Teiid	it	is	very	important	to	learn	few	basic	constructs	of	Teiid,	like	what	is	VDB?	what	is	Model?	etc.
For	that	please	read	the	short	introduction.

Administrator’s	Guide

13

http://teiid.io/about/basics/

Installation	Guide
Teiid	needs	to	be	installed	into	an	existing	WildFly	19.1.0	installation.

Note Teiid	provides	an	embedded	kit,	however	it	should	be	considered	a	tech	preview	as	its	APIs	will	likely	evolve	and
there	is	sparse	documentation.

Steps	to	install	Teiid

Download	the	WildFly	application	server.	Install	the	server	by	unzipping	into	a	known	location.	Ex:	/apps/jboss-install

Note You	may	also	choose	to	use	an	existing	AS	installation.	However	if	a	previous	version	of	Teiid	was	already
installed,	you	must	remove	the	old	Teiid	distribution	artifacts	before	installing	the	new	version.

Download	Teiid.	Unzip	the	downloaded	artifact	inside	the	WildFly	installation.	Teiid	15.0	directory	structure	matches
WildFly	directly	-	it	is	just	an	overlay.	This	will	add	necessary	modules	and	configuration	files	to	install	Teiid	in	WildFly
19.1.0	in	both	Standalone	and	Domain	modes.	Teiid	provides	separate	configuration	files	for	both	standalone	mode	and
domain	mode.	Based	on	mode	type	you	selected	to	run	WildFly	19.1.0	,	you	may	have	to	run	a	CLI	script	to	complete	the
Teiid	installation.

The	"Domain"	mode	recommended	in	a	clustered	environment	to	take	advantage	of	clustered	caching	and	cluster	safe	distribution
of	events.	Teiid’s	default	configuration	for	Domain	mode	through	CLI	script	configured	for	high	availability	and	clustered
caching.

Standalone	Mode

if	you	want	to	start	the	"standalone"	profile,	execute	the	following	command

<jboss-install>/bin/standalone.sh	-c=standalone-teiid.xml

Installing	Teiid	using	CLI	script

The	above	is	starting	WildFly	in	a	separate	Teiid	specific	configuration	that	is	based	standalone.xml.	However,	if	you	already
working	with	a	predefined	configuration	for	example	default	standalone.xml	and	would	like	to	install	Teiid	into	that	configuration,
then	you	can	execute	the	following	JBoss	CLI	script.	First,	start	the	server

<jboss-install>/bin/standalone.sh

then	in	a	separate	console	window	execute

<jboss-install>/bin/jboss-cli.sh	--file=bin/scripts/teiid-standalone-mode-

install.cli

this	will	install	Teiid	subsystem	into	the	running	configuration	of	the	WildFly	19.1.0	in	standalone	mode.

Note:	If	you	are	using	standalone	ha	or	standalone	full-ha,	you	should	use	the	teiid-standalone-ha-mode-install.cli	script	instead.

Domain	Mode

Installation	Guide

14

http://wildfly.org/downloads/
http://teiid.io/teiid_runtimes/teiid_wildfly/downloads/

To	start	the	server	in	"Domain"	mode,	install	WildFly	19.1.0	and	Teiid	15.0	on	all	the	servers	that	are	going	to	be	part	of	the
cluster.	Select	one	of	the	servers	as	the	"master"	domain	controller,	the	rest	of	the	servers	will	be	slaves	that	connect	to	the
"master"	domain	controller	for	all	the	administrative	operations.	Please	refer	to	WildFly	19.1.0	provided	WildFly
19.1.0Admin_Guide.html#Domain_Setup[documentation]	for	full	details.

Once	you	configured	all	the	servers,	start	the	"master"	node	with	following	command

<jboss-install>/bin/domain.sh

and	on	"slave"	nodes

<jboss-install>/bin/domain.sh

The	slave	nodes	fetch	their	domain	configuration	from	the	"master"	node.

Once	all	the	servers	are	up,	complete	the	installation	to	run	in	domain	mode	by	executing	the	following	command	against	the
"master"	node.	Note	that	this	only	needs	to	be	run	once	per	domain	(i.e.	cluster)	install.	This	script	will	install	Teiid	in	the	ha	and
full-ha	profiles.	It	will	also	re-configure	main-server-group	to	start	the	ha	profile.	Once	in	domain	mode,	you	can	not	statically
deploy	resources	by	dropping	them	in	the	domain/deployments	folder,	so	this	script	will	deploy	the	default	resources	(file,	ldap,
salesforce	and	ws	connectors)	using	the	CLI	interface.

<jboss-install>/bin/jboss-cli.sh	--file=bin/scripts/teiid-domain-mode-install.cli

Thats	it!.	WildFly	and	Teiid	are	now	installed	and	running.	See	below	instructions	to	customize	various	other	settings.

Once	VDBs	have	been	deployed,	users	can	now	connect	their	JDBC	applications	to	Teiid.	If	you	need	help	on	connecting	your
application	to	Teiid	using	JDBC	check	out	the	Client	Developer’s	Guide.

Directory	Structure	Explained

This	shows	the	contents	of	the	Teiid	15.0	deployment.	The	directory	structure	is	exactly	the	same	under	any	JBoss	profile.

Directory	Structure

/bin

			/scripts

/docs

			/teiid

							/datsources

							/schema

							/examples

/domain

			/configuration

/modules

			/system

							/layers

											/base

															/org/jboss/teiid/*

/standalone

			/configuration

						standalone-teiid.xml

Installation	Guide

15

Name Description

bin/scripts Contains	installation	and	utility	CLI	scripts	for	setting	up
Teiid	in	different	configurations.

docs/teiid Contains	documents,	examples,	sample	data	source	XML
fragments	and	schema	files.

/standalone/configuration
standalone-teiid.xml	-	Master	configuration	file	for	the
Teiid	system.	This	file	contains	the	Teiid	subsystem,	in
addition	to	the	standard	WildFly	web	profile	subsystems

/domain/configuration/ -

/modules/system/layers/base/org/jboss/teiid/* This	directory	contains	the	Teiid	modules	for	WildFly
19.1.0	system

/modules/system/layers/base/org/jboss/teiid/client

This	directory	contains	Teiid	client	libraries.	It	has	the
Teiid	JDBC	driver	jar,	"teiid-15.0.0-jdbc.jar",	and	also
contains	"teiid-hibernate-dialect-15.0.0.jar"	that	contains
Teiid’s	Hibernate	dialect.

{standalone	or	domain}/tmp/teiid

This	directory	under	standalone	or
domain,	contains	temporary	files	created	by	Teiid.	These
are	mostly	created	by	the	buffer	manager.	These	files	are
not	needed	across	a	VM	restart.	Creation	of	Teiid	lob
values(for	example	through	SQL/XML)	will	typically
create	one	file	per	lob	once	it	exceeds	the	allowable	in
memory	size	of	8KB.	In	heavy	usage	scenarios,	consider
pointing	the	buffer	directory	at	a	partition	that	is	routinely
defragmented.

{standalone	or	domain}/data/teiid-data This	directory	under	standalone	or	domain,	contains
cached	vdb	metadata	files.	Do	not	edit	them	manually.

Installation	Guide

16

Dockerize	Teiid
Running	Teiid	as	a	Docker	container	is	straight-forward,	but	since	the	runtime	by	itself	is	not	a	turn-key	environment	you	must
consider	how	you	will	configure/use	the	server	from	there.

The	following	is	a	basic	Dockerfile	that	can	be	used	to	create	a	base	image.	Just	create	a	Dockerfile	with	these	contents	and	run
"docker	build	."	from	that	directory.

FROM	jboss/wildfly:19.1.0.Final

ENV	JBOSS_HOME	/opt/jboss/wildfly

#	Set	the	TEIID_VERSION	env	variable

ENV	TEIID_VERSION	15.0.0

#	Download	and	unzip	Teiid	server

RUN	cd	$JBOSS_HOME	\

				&&	curl	-O	

https://oss.sonatype.org/service/local/repositories/releases/content/org/teiid/teii

d/$TEIID_VERSION/teiid-wildfly-$TEIID_VERSION-dist.zip	\

				&&	bsdtar	-xf	teiid-wildfly-$TEIID_VERSION-dist.zip	\

				&&	chmod	+x	$JBOSS_HOME/bin/*.sh	\

				&&	rm	teiid-wildfly-$TEIID_VERSION-dist.zip

VOLUME	["$JBOSS_HOME/standalone",	"$JBOSS_HOME/domain"]

USER	jboss

ENV	LAUNCH_JBOSS_IN_BACKGROUND	true

#	Expose	Teiid	server		ports

EXPOSE	8080	9990	31000	35432

#	Run	Teiid	server	and	bind	to	all	interface

CMD	["/bin/sh",	"-c",	"$JBOSS_HOME/bin/standalone.sh	-c	standalone-teiid.xml	-b	

0.0.0.0	-bmanagement	0.0.0.0"]

Pre-built	images	can	be	found	at	Docker	Hub.

If	you	are	just	using	the	Teiid	Docker	environment	for	more	than	just	testing	you	will	likely	want	to	extend	the	base	image	or	base
Dockerfile	to	overlay	the	necessary	modules,	vdbs,	and	other	artifacts	as	well	as	run	any	necessary	cli	to	create	your	data	sources.

Mutable	Container

See	the	Teiid	Docker	Quickstart	that	shows	starting	the	Teiid	container	and	performing	mutative	operations	after	it	is	started.

Immutable	Container

Dockerize	Teiid

17

https://hub.docker.com/r/jboss/teiid/
https://developer.jboss.org/wiki/QuickstartExampleWithDockerizedTeiid

See	the	WildFly	with	MySQL	example	that	shows	extending	the	WildFly	image	to	include	a	MySQL	source.	Note	that	this	is
based	upon	also	having	the	database	containerized	and	thus	exposing	the	container	linking	variables.	If	that	is	not	the	case	for
your	environment,	you	will	have	to	provide	the	host/port	information	in	a	different	way.

OpenShift

OpenShift	is	the	Red	Hat	enterprise	offering	of	Kubernetes	which	also	utilizes	Docker.	While	you	may	usually	be	able	to	use	your
existing	Docker	containers	on	OpenShift,	there	are	additional	considerations	and	features.

See	JDV	on	OpenShift	for	an	overview	of	how	the	productized	version	of	Teiid	can	be	run	on	OpenShift.

A	simplified	form	of	immutable	containers,	but	with	additional	OpenShift	features	such	as	health	checks	and	better	JVM
constraints,	can	be	seen	at	OpenShift	Teiid	Server	Docker.	Note	however	that	many	of	the	resource	concerns	have	been	addressed
by	later	java	versions	which	automatically	detect	memory	constraints	in	vm	sizing	and	report	an	appropriate	number	of	available
processors.

See	link:http://teiid.io/tools/beetle_studio/	for	tooling	that	provides	a	turn-key	experience	for	creating	containerized
virtualizations.	Under	the	covers	it	uses	fabric8	and	Thorntail	to	create	images.	See	Teiid	Thorntail	Examples	for	direct	usage	of
the	build	logic.

Dockerize	Teiid

18

http://blog.arungupta.me/docker-container-linking-across-multiple-hosts-techtip69/
https://dzone.com/articles/red-hat-jboss-data-virtualization-on-openshift-part-1-getting-started
https://github.com/shawkins/teiid-openshift-templates/tree/master/server-docker
https://github.com/teiid/thorntail-teiid-examples

Deploying	VDBs
A	VDB	is	the	primary	means	to	define	a	Virtual	Database	in	Teiid.	See	the	Reference	Guide	to	create	a	VDB.

Once	you	have	a	"VDB"	built	it	can	be	deployed/undeployed	in	Teiid	runtime	in	different	ways.

Warning
If	VDB	versioning	is	not	used	to	give	distinct	version	numbers,	overwriting	a	VDB	of	the	same	name	will
terminate	all	connections	to	the	old	VDB.	It	is	recommended	that	VDB	versioning	be	used	for	production
systems.

Caution Removing	an	existing	VDB	will	immediately	clean	up	VDB	file	resources,	and	will	automatically	terminate
existing	sessions.

Caution
The	runtime	names	of	deployed	VDB	artifacts	must	either	be	*.vdb	for	a	zip	file	or	*-vdb.xml	for	an	xml	file
or	-vdb.ddl	for	DDL	file.	Failure	to	name	the	deployment	properly	will	result	in	a	deployment	failure	as	the
Teiid	subsystem	will	not	know	how	to	properly	handle	the	artifact.

Tip if	you	have	existing	VDB	in	combination	of	*.vdb	or	-vdb.xml	format,	you	can	migrate	to	all	DDL	version	using
the	"teiid-convert-vdb.bat"	or	"teiid-convert-vdb.sh"	utility	in	the	"bin"	directory	of	the	installation.

Direct	File	Deployment

Copy	the	VDB	file	into	the

<jboss-install>/standalone/deployments

directory.	Then	create	an	empty	marker	file	with	same	name	as	the	VDB	with	extension	".dodeploy"	in	the	same	directory.	For
example,	if	your	vdb	name	is	"enterprise.vdb",	then	marker	file	name	must	be	"enterprise.vdb.dodeploy".	Make	sure	that	there	are
no	other	VDB	files	with	the	same	name.	If	a	VDB	already	exists	with	the	same	name,	then	this	VDB	will	be	replaced	with	the
new	VDB.	This	is	the	simplest	way	to	deploy	a	VDB.	This	is	mostly	designed	for	quick	deployment	during	development,	when
the	Teiid	server	is	available	locally	on	the	developer’s	machine.

Note This	only	works	in	the	Standalone	mode.	For	Domain	mode,	you	must	use	one	of	the	other	available	methods.

Admin	Console	Deployment	(Web)

Use	the	admin	web	console	at:

http://<host>:<port>/console

More	details	for	this	can	be	found	in	the	Admin	Console	VDB	deployment	section.	This	is	the	easiest	way	to	deploy	a	VDB	to	a
remote	server.

CLI	based	Deployment
WildFly	19.1.0	provides	command	line	interface	(CLI)	for	doing	any	kind	of	administrative	task.	Execute

bin/jboss-cli.sh	--connect

Deploying	VDBs

19

http://www.jboss.org/teiid/basics/virtualdatabases.html

command	and	run

#	in	stand	alone	mode

deploy	/path/to/my.vdb

#	in	domain	mode

deploy	/path/to/my.vdb	--server-groups=main-server-group

to	deploy	the	VDB.	Note	that	in	domain	mode,	you	need	to	either	select	a	particular	"server-group"	or	all	available	server	groups
are	deployment	options.	Check	out	CLI	documentation	for	more	general	usage	of	the	CLI.

AdminAPI	Deployment

See	the	"deploy"	method.	Consult	the	AdminAPI	documentation	for	more	information.	When	using	AdminAPI,	in	domain	mode,
the	VDB	is	deployed	to	all	the	available	servers.

Admin	API	Deployment

The	Admin	API	(look	in	org.teiid.adminpi.*)	provides	Java	API	methods	that	lets	a	user	connect	to	a	Teiid	runtime	and	deploy	a
VDB.	If	you	need	to	programatically	deploy	a	VDB	use	this	method.	This	method	is	preferable	for	OEM	users,	who	are	trying	to
extend	the	Teiid’s	capabilities	through	their	applications.	When	using	Admin	API,	in	domain	mode,	the	VDB	is	deployed	to	all	the
servers.

Deploying	VDBs

20

https://docs.wildfly.org/19/Admin_Guide.html

Deploying	VDB	Dependencies
Apart	from	deploying	the	VDB,	the	user	is	also	responsible	for	providing	all	the	necessary	dependent	libraries,	configuration	for
creating	the	data	sources	that	are	needed	by	the	models	(schemas)	defined	in	"META-INF/vdb.xml"	file	inside	your	VDB.	For
example,	if	you	are	trying	to	integrate	data	from	Oracle	RDBMS	and	File	sources	in	your	VDB,	then	you	are	responsible	for
providing	the	JDBC	driver	for	the	Oracle	source	and	any	necessary	documents	and	configuration	that	are	needed	by	the	File
Translator.

Data	source	instances	may	be	used	by	single	VDB,	or	may	be	shared	with	as	other	VDBs	or	other	applications.	Consider	sharing
connections	to	data	sources	that	have	heavy-weight	and	resource	constrained.

With	the	exception	of	JDBC	sources,	other	supported	data	sources	have	a	corresponding	JCA	connector	in	the	Teiid	kit.	Either
directly	edit	the	standalone-teiid.xml	or	use	CLI	to	create	the	required	data	sources	by	the	VDB.	Example	configurations	are
provided	for	all	the	sources	in	"<jboss-install>/docs/teiid/datasources"	directory.	Note	that	in	the	Domain	mode,	you	must	use	CLI
or	admin-console	or	AdminAPI	to	configure	the	data	sources.

Some	data	sources	may	contain	passwords	or	other	sensitive	information.	See	the	WIKI	article	EncryptingDataSourcePasswords
to	not	store	passwords	in	plain	text.

Once	the	VDB	and	its	dependencies	are	deployed,	then	client	applications	can	connect	using	the	JDBC	API.	If	there	are	any	errors
in	the	deployment,	a	connection	attempt	will	not	be	successful	and	a	message	will	be	logged.	You	can	use	the	admin-console	tool
or	check	the	log	files	for	errors	and	correct	them	before	proceeding.	Check	Client	Developer’s	Guide	on	how	to	use	JDBC	to
connect	to	your	VDB.

Deploying	VDB	Dependencies

21

https://community.jboss.org/wiki/JBossAS7SecuringPasswords

Apache	Accumulo	Data	Sources
Accumulo	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	Accumulo	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid:add(jndi-name=java:/accumul

o-ds,	class-name=org.teiid.resource.adapter.accumulo.AccumuloManagedConnectionFactory,	enabled=true,	use-java-c

ontext=true)

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=ZooKeeper

ServerList:add(value=localhost:2181)

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Username:

add(value=user)

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Password:

add(value=password)

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=InstanceN

ame:add(value=instancename)

/subsystem=resource-adapters/resource-adapter=accumulo/connection-definitions=teiid/config-properties=Roles:add

(value=public)

/subsystem=resource-adapters/resource-adapter=accumulo:activate

runbatch

All	the	properties	that	are	defined	on	the	RAR	file	are

Property	Name Description Required Default

ZooKeeperServerList

A	comma	separated	list	of
zoo	keeper	server
locations.	Each	location
can	contain	an	optional
port,	of	the	format
host:port

true none

Username Connection	User’s	Name true none

Password Connection	User’s
password true none

InstanceName Accumulo	instance	name true none

Roles
optional	visibility	for	user,
supply	multiple	with
comma	separated

false none

To	find	out	all	the	properties	that	are	supported	by	this	Accumulo	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=accumulo)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/accumulo"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

22

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Deploying	VDB	Dependencies

23

Amazon	SimpleDB	Data	Sources
SimpleDB	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	SimpleDB	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	access	keys.
Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command	below.	Edit	the
JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS:add(jndi-name=java:/si

mpledbDS,	class-name=org.teiid.resource.adapter.simpledb.SimpleDBManagedConnectionFactory,	enabled=true,	use-ja

va-context=true)

/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS/config-properties=Acce

ssKey:add(value=xxx)

/subsystem=resource-adapters/resource-adapter=simpledb/connection-definitions=simpledbDS/config-properties=Secr

etAccessKey:add(value=xxx)

/subsystem=resource-adapters/resource-adapter=simpledb:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	SimpleDB	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=simpledb)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/simpledb"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

24

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Cassandra	Data	Sources
Cassandra	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	Cassandra	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandraDS:add(jndi-name=java:/

cassandraDS,	class-name=org.teiid.resource.adapter.cassandra.CassandraManagedConnectionFactory,	enabled=true,	u

se-java-context=true)

/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandraDS/config-properties=Ad

dress:add(value=127.0.0.1)

/subsystem=resource-adapters/resource-adapter=cassandra/connection-definitions=cassandraDS/config-properties=Ke

yspace:add(value=my-keyspace)

/subsystem=resource-adapters/resource-adapter=cassandra:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	Cassandra	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=cassandra)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/cassandra"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

25

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Couchbase	Data	Sources
Couchbase	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	Couchbase	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=couchbaseQS:add(module=org.jboss.teiid.resource-adapter.couchbase

)

/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS:add(jndi-name="jav

a:/couchbaseDS",	class-name=org.teiid.resource.adapter.couchbase.CouchbaseManagedConnectionFactory,	enabled=true

,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=

ConnectionString:add(value="localhost")

/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=

Keyspace:add(value="default")

/subsystem=resource-adapters/resource-adapter=couchbaseQS/connection-definitions=couchbaseDS/config-properties=

Namespace:add(value="default")

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	Couchbase	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=couchbase)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/couchbase"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

26

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

File	Data	Sources
File	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	the	file	data	source,	using	CLI,
admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	directory	name
and	other	properties	below.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"
command	below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS:add(jndi-name=java:/fileDS,	cl

ass-name=org.teiid.resource.adapter.file.FileManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS/config-properties=Parentdirect

ory:add(value=/home/rareddy/testing/)

/subsystem=resource-adapters/resource-adapter=file/connection-definitions=fileDS/config-properties=AllowParentP

aths:add(value=true)

/subsystem=resource-adapters/resource-adapter=file:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	File	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=file)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/file"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before
you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

27

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Ftp/Ftps	Data	Sources
Ftp/Ftps	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	the	Ftp/Ftps	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	directory	name
and	other	properties	below.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"
command	below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

/subsystem=resource-adapters/resource-adapter=ftp:add(module=org.jboss.teiid.resource-adapter.ftp)

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS:add(jndi-name=${jndi.name}",	cla

ss-name=org.teiid.resource.adapter.ftp.FtpManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=ParentDirector

y:add(value="${ftp.parent.dir}")

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Host:add(value

="${ftp.parent.host}")

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Port:add(value

=${ftp.parent.port}")

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Username:add(v

alue=${ftp.parent.username}")

/subsystem=resource-adapters/resource-adapter=ftp/connection-definitions=ftpDS/config-properties=Password:add(v

alue=${ftp.parent.password}")

/subsystem=resource-adapters/resource-adapter=ftp:activate()

To	find	out	all	the	properties	that	are	supported	by	this	Ftp/Ftps	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=ftp)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/ftp"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before	you
edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

28

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Google	Spreadsheet	Data	Sources

The	Google	JCA	connector	is	named	teiid-connector-google.rar.	The	examples	include	a	sample	google.xml	file.	The	JCA
connector	has	number	of	config-properties	to	drive	authentication.		The	JCA	connector	connects	to	exactly	one	spreadsheet	with
each	sheet	exposed	as	a	table.

Authentication	to	your	google	account	may	be	done	using	OAuth,	which	requires	a	refresh	token	(outlined	below).

Config	property Description

ClientId client	ID	for	access.	If	not	specified,	the	Teiid	default	will
be	used.

ClientSecret client	secret	for	access.	If	not	specified,	the	Teiid	default
will	be	used.

RefreshToken Use	guide	below	to	retrieve	RefreshToken.	Request	access
to	Google	Drive	and	Spreadsheet	API.

SpreadsheetName Name/Title	of	the	Spreadsheet.	May	be	used	with	v3.

SpreadsheetId ID	of	Spreadsheet.	May	be	used	with	v3	or	v4.

SpreadsheetMap

If	spreadsheetId	is	not	set,	specifies	more	than	one
spreadsheet	for	use	in	a	format	of
prefix1=spreadsheetId1;prefix2=spreadsheet2…	May	be
used	with	v4.

ApiVersion Optional	GData	API	version.	Can	be	v3	or	v4.	Defaults	to
v3.

BatchSize Maximum	number	of	rows	that	can	be	fetched	at	a	time.
Defaults	to	4096.

The	v4	api	requires	the	use	of	SpreadsheetId	and	specifying	ClientId	and	ClientSecret.	Some	sheets	such	as	those	contained	in	a
team	drive	will	only	be	visible	to	the	v4	api.

Create	Authorization	Credentials

For	v3	connections	it	is	recommended	that	you	create	your	own	authorization	credentials	rather	than	relying	on	the	default	Teiid
client	id	and	client	secret.	For	v4	connections	it	is	required	that	you	create	your	own	credentials.	Creating	your	own	project	will
give	you	greater	control	over	monitoring	and	controlling	API	access.

You	should	follow	the	OAuth2	For	Devices	Guide	prerequisites.	You	should	allow	the	project	access	to	Google	Drive	API	and	the
Sheets	API.

A	condensed	form	of	the	rest	of	the	guide	"Obtaining	OAuth	2.0	access	tokens"	is	covered	next	as	"Getting	an	OAuth	Refresh
Token".

Getting	an	OAuth	Refresh	Token

With	a	browser	or	other	client	issue	the	request	with	the	appropriate	client	ID:

Deploying	VDB	Dependencies

29

https://developers.google.com/accounts/docs/OAuth2ForDevices

https://accounts.google.com/o/oauth2/auth?
scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fspread
sheets&redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=<CLIENT_ID>;

Then	copy	the	authorization	code	into	following	POST	request	and	run	it	in	command	line:

curl	\--data-urlencode	code=<AUTHORIZATION_CODE>	\

--data-urlencode	client_id=<CLIENT_ID>	\

--data-urlencode	client_secret=<CLIENT_SECRET>	\

--data-urlencode	redirect_uri=urn:ietf:wg:oauth:2.0:oob	\

--data-urlencode	grant_type=authorization_code	https://accounts.google.com/o/oauth2/token

The	refresh	token	will	be	in	the	response.

To	use	the	Teiid	defaults:

Click	on	https://accounts.google.com/o/oauth2/auth?
scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fspreadsheets.google.com%2Ffeeds&redire
ct_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=217138521084.apps.googleusercontent.com

Then	copy	the	authorization	code	into	following	POST	request	and	run	it	in	command	line:

curl	\--data-urlencode	code=<AUTHORIZATION_CODE>	\

--data-urlencode	client_id=217138521084.apps.googleusercontent.com	\

--data-urlencode	client_secret=gXQ6-lOkEjE1lVcz7giB4Poy	\

--data-urlencode	redirect_uri=urn:ietf:wg:oauth:2.0:oob	\

--data-urlencode	grant_type=authorization_code	https://accounts.google.com/o/oauth2/token

Implementation	Details

Google	Translator	is	implemented	using	GData	API	and	the	Google	Visualization	Protocol.	v4	connections	still	rely	upon	v3
functionality	for	update/delete	as	the	v4	API	does	not	provide	appropriate	search	functionality.

Deploying	VDB	Dependencies

30

https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fspreadsheets&redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=<CLIENT_ID>"
https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive+https%3A%2F%2Fspreadsheets.google.com%2Ffeeds&redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&client_id=217138521084.apps.googleusercontent.com

HDFS	Data	Sources
HDFS	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	the	HDFS	data	source,	using	CLI,
admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	directory	name
and	other	properties	below.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"
command	below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

/subsystem=resource-adapters/resource-adapter=hdfs:add(module=org.jboss.teiid.resource-adapter.hdfs)

/subsystem=resource-adapters/resource-adapter=hdfs/connection-definitions=hdfsDS:add(jndi-name=${jndi.name}",	c

lass-name=org.teiid.resource.adapter.hdfs.HdfsManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=hdfs/connection-definitions=hdfsDS/config-properties=FsUri:add(va

lue="${fs.uri}")

/subsystem=resource-adapters/resource-adapter=hdfs:activate()

To	find	out	all	the	properties	that	are	supported	by	this	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=hdfs)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/hdfs"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before
you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

31

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Infinispan	Data	Sources
Infinispan	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	Infinispan	hotrod	based	data
source,	using	CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain
modes.

Execute	the	following	commands	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=infinispanDS:add(module=org.jboss.teiid.resource-adapter.infinisp

an.hotrod)

/subsystem=resource-adapters/resource-adapter=infinispanDS/connection-definitions=ispnDS:add(jndi-name="java:/i

spnDS",	class-name=org.teiid.resource.adapter.infinispan.hotrod.InfinispanManagedConnectionFactory,	enabled=true

,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=infinispanDS/connection-definitions=ispnDS/config-properties=Remo

teServerList:add(value="{host}:11222")

/subsystem=resource-adapters/resource-adapter=infinispanDS:activate

run-batch

All	the	properties	that	are	defined	on	the	RAR	file	are

Property	Name Description Required Default

RemoteServerList

A	comma	separated	list	of	server
locations.	Each	location	can
contain	an	optional	port,	of	the
format	host:port

Yes n/a

UserName
If	remote	server	is	secured,	this
property	is	used	as	username	to
login

No n/a

Password
If	remote	server	is	secured,	this
property	is	used	as	password	to
login

No n/a

SaslMechanism
"EXTERNAL"	is	when	certificate
based	security	at	use,	all	others
use	username/password.

No The	default
mechanism	of	Hotrod.

AuthenticationRealm Realm	to	use	for	authentication. No n/a

AuthenticationServerName Infinispan	server	name	where	the
Authentication	is	handled. No n/a

TrustStoreFileName

When	"EXTERNAL"
SaslMechnism	used,	use	this
property	to	define	truststore.
Alternatively	JAVA	system
property	"javax.net.ssl.trustStore"
can	also	be	defined	instead.

No n/a

Deploying	VDB	Dependencies

32

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

TrustStorePassword

When	"EXTERNAL"
SaslMechnism	used,	use	this
property	to	define	truststore
password.	Alternatively	JAVA
system	property
"javax.net.ssl.trustStorePassword"
can	also	be	defined	instead.

No n/a

KeyStoreFileName

When	"EXTERNAL"
SaslMechnism	used,	use	this
property	to	define	keystore.
Alternatively	JAVA	system
property	"javax.net.ssl.keyStore"
can	also	be	defined	instead.

No n/a

KeyStorePassword

When	"EXTERNAL"
SaslMechnism	used,	use	this
property	to	define	keystore
password.	Alternatively	JAVA
system	property
"javax.net.ssl.keyStorePassword"
can	also	be	defined	instead.

No n/a

CacheName The	default	cache	name. No n/a

CacheTemplate If	a	cache	needs	to	be	created	the
template	name	to	use. No n/a

TransactionMode

The	transaction	mode	expected
for	cache	access.	Can	be	one	of:
FULL_XA,
NON_DURABLE_XA,
NON_XA

No n/a

To	find	out	all	the	properties	that	are	supported	by	this	Infinispan	Connector,	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=infinispan)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/infinispan"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

33

JDBC	Data	Sources
The	following	is	an	example	highlighting	configuring	an	Oracle	data	source.	The	process	is	nearly	identical	regardless	of	the
database	vendor.	Typically	the	JDBC	jar	and	the	configuration	like	connection	URL	and	user	credentials	change.

There	are	configuration	templates	for	all	the	data	sources	in	the	"<jboss-install>/docs/teiid/datasources"	directory.	A	complete
description	how	a	data	source	can	be	added	into	WildFly	is	also	described	here.	The	below	we	present	two	different	ways	to	create
a	datasource.

Deploying	a	single	JDBC	Jar	File

First	step	in	configuring	the	data	source	is	deploying	the	required	JDBC	jar	file.	For	example,	if	you	are	trying	to	create	a	Oracle
data	source,	first	you	need	to	deploy	the	"ojdbc6.jar"	file	first.	Execute	following	command	using	the	CLI	once	you	connected	to
the	Server.

			deploy	/path/to/ojdbc6.jar

Tip Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	copy	this	’ojdbc6.jar"	to
the	"<jboss-install>/standalone/deployments"	directory,	to	automatically	deploy	without	using	the	CLI	tool.

Creating	a	module	for	the	Driver

You	may	also	create	a	module	to	have	more	control	over	the	handling	of	the	driver.	In	cases	where	the	driver	is	not	contained	in	a
single	file,	this	may	be	preferable	to	creating	a	"uber"	jar	as	the	dependencies	can	be	managed	separately.

Creating	a	module	for	a	driver	is	no	different	than	any	other	container	module.	You	just	include	the	necessary	jars	as	resources	in
the	module	and	reference	other	modules	as	dependencies.

<module	xmlns="urn:jboss:module:1.0"	name="com.mysql">

		<resources>

				<resource-root	path="mysql-connector-java-5.1.21.jar"/>

		</resources>

		<dependencies>

				<module	name="javax.api"/>

				...

		</dependencies>

</module>

Create	Data	Source
Now	that	you	have	the	JDBC	driver	deployed	or	the	module	created,	it	is	time	to	create	a	data	source	using	this	driver.	There	are
many	ways	to	create	the	datasource	using	CLI,	admin-console	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in
both	Standalone	and	Domain	modes.

Execute	following	command	using	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and	user
credentials	and	edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

/subsystem=datasources/data-source=oracel-ds:add(jndi-name=java:/OracleDS,	driver-name=ojdbc6.jar,	connection-u

rl=jdbc:oracle:thin:{host}:1521:orcl,user-name={user},	password={password})

/subsystem=datasources/data-source=oracel-ds:enable

Deploying	VDB	Dependencies

34

https://docs.wildfly.org/19/Admin_Guide.html#DataSource
https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli
https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

The	driver-name	will	match	the	name	of	jar	or	module	that	you	deployed	for	the	driver.

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	*"<jboss-
install>/docs/teiid/datasources/oracle"	directory	under	"datasources"	subsystem.	Shutdown	the	server	before	you
edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

35

LDAP	Data	Sources
LDAP	data	sources	use	a	Teiid	specific	JCA	connector	which	is	deployed	into	WildFly	19.1.0	during	installation.	There	are	many
ways	to	create	the	ldap	data	source,	using	CLI,	admin-console	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in
both	Standalone	and	Domain	modes.

Execute	following	command	using	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and	user
credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command	below.
Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=ldap/connection-

definitions=ldapDS:add(jndi-name=java:/ldapDS,	class-

name=org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory,	enabled=true,	

use-java-context=true)

/subsystem=resource-adapters/resource-adapter=ldap/connection-

definitions=ldapDS/config-properties=LdapUrl:add(value=ldap://ldapServer:389)

/subsystem=resource-adapters/resource-adapter=ldap/connection-

definitions=ldapDS/config-properties=LdapAdminUserDN:add(value=

{cn=???,ou=???,dc=???})

/subsystem=resource-adapters/resource-adapter=ldap/connection-

definitions=ldapDS/config-properties=LdapAdminUserPassword:add(value={pass})

/subsystem=resource-adapters/resource-adapter=ldap/connection-

definitions=ldapDS/config-properties=LdapTxnTimeoutInMillis:add(value=-1)

/subsystem=resource-adapters/resource-adapter=ldap:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	LDAP	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=ldap)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	*"<jboss-
install>/docs/teiid/datasources/ldap"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before
you	edit	this	file,	and	restart	after	the	modifications	are	done.

Note To	use	an	anonymous	bind,	set	the	LdapAuthType	to	none.	When	performing	an	anonymous	bind	the	values	for
the	admin	user	and	password	will	be	ignored.

Tip If	you	experience	stale	connections	in	the	pool,	you	should	enable	either	the	validate-on-match	or	the	background-
validation	pool	settings.

Deploying	VDB	Dependencies

36

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

MongoDB	Data	Sources
MongoDB	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	MongoDB	data	source,	using
CLI,	admin-console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS:add(jndi-name="java:/mon

goDS",	class-name=org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory,	enabled=true,	use-java-co

ntext=true)

/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS/config-properties=Remote

ServerList:add(value="{host}:27017")

/subsystem=resource-adapters/resource-adapter=mongodb/connection-definitions=mongodbDS/config-properties=Databa

se:add(value="{db-name}")

/subsystem=resource-adapters/resource-adapter=mongodb:activate

runbatch

All	the	properties	that	are	defined	on	the	RAR	file	are

Property	Name Description Required Default

RemoteServerList

A	comma	separated	list	of	server
locations.	Each	location	can	contain	an
optional	port,	of	the	format	host:port.	The
property	may	also	contain	a	full	standard
(mongodb://)	or	seedlist	(mongodb+srv://)
connection	URI	string.	If	a	full	connection
string	is	used,	then	none	of	the	other
configuration	properties	will	be	used	nor
are	required.	However	the	database	should
be	specified	in	the	URI.

true

Username Connection	User’s	Name false none

Password Connection	User’s	password false none

Database
MongoDB	database	name	-	required	if	not
suing	a	full	connection	URI	in	the
RemoteServerList

false none

SecurityType

MongoDB	Type	of	Authentication	to	be
used.	Allowed	values	are
"None","SCRAM_SHA_1",
"SCRAM_SHA_256","MONGODB_CR",
"Kerberos","X509".	If	you	are	using
MongoDB	version	lessthan	3.0,
MongoDB	by	default	uses
"MONGODB_CR",	thus	this	value	need
to	be	set	accordingly	or	set	to	None.

false SCRAM_SHA_1

AuthDatabase

MongoDB	Database	Name	for	user
authentication	in	case	when	SecurityType
'MONGODB-CR'	is	used.	This	is	an
optional	value.

false none

Deploying	VDB	Dependencies

37

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Ssl Use	SSL	Connections false none

To	find	out	all	the	properties	that	are	supported	by	this	MongoDB	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=mongodb)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/mongodb"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Transaction	support
With	Teiid	12.1	running	against	a	MongoDB	server	4+	in	a	replica	set,	you	may	optionally	use	LocalTransaction	transaction
support.	Doing	so	through	the	CLI	requires	the	creation	of	a	new	resource	adapter.

batch

/subsystem=resource-adapters/resource-adapter=mongodbLocal:add(transaction-support=LocalTransaction,	module=org

.jboss.teiid.resource-adapter.mongodb:main

/subsystem=resource-adapters/resource-adapter=mongodbLocal/connection-definitions=mongodbLocal:add(jndi-name="j

ava:/mongoDS",	class-name=org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory,	enabled=true,	use

-java-context=true)

...

runbatch

Deploying	VDB	Dependencies

38

Phoenix	Data	Sources
The	following	is	a	example	for	setting	up	Phoenix	Data	Sources,	which	is	precondition	for	Apache	Phoenix	Translator.	In	addition
to	the	Data	Sources	set	up,	this	article	also	cover	mapping	Phoenix	table	to	an	existing	HBase	table	and	creating	a	new	Phoenix
table.

There	are	configuration	templates	for	Phoenix	data	sources	in	the	"<jboss-install>/docs/teiid/datasources"	directory.	A	complete
description	how	a	data	source	can	be	added	into	WildFly	is	also	described	here.

Configuring	a	Phoenix	data	source	in	WildFly

Configuring	a	Phoenix	data	source	is	nearly	identical	to	configuring	JDBC	Data	Sources.	The	first	step	is	deploying	the	Phoenix
driver	jar.	Using	below	CLI	command	to	deploy	Phoenix	driver:

module	add	--name=org.apache.phoenix		--resources=/path/to/phoenix-[version]-client.jar		--dependencies=javax.a

pi,sun.jdk,org.apache.log4j,javax.transaction.api

/subsystem=datasources/jdbc-driver=phoenix:add(driver-name=phoenix,driver-module-name=org.apache.phoenix,driver-

class-name=org.apache.phoenix.jdbc.PhoenixDriver)

The	Driver	jar	can	be	download	from	phoenix	document.

The	second	steps	is	creating	the	Data	Source	base	on	above	deployed	driver,	which	is	also	like	creating	JDBC	Data	Source.	Using
below	CLI	command	to	create	Data	Source:

/subsystem=datasources/data-source=phoenixDS:add(jndi-name=java:/phoenixDS,		driver-name=phoenix,	connection-ur

l=jdbc:phoenix:{zookeeper	quorum	server},	enabled=true,	use-java-context=true,	user-name={user},	password={pass

word})

/subsystem=datasources/data-source=phoenixDS/connection-properties=phoenix.connection.autoCommit:add(value=true)

Please	make	sure	the	URL,	Driver,	and	other	properties	are	configured	correctly:

jndi-name	-	The	JNDI	name	need	to	match	the	JNDI	name	you	used	in	VDB

driver-name	-	The	Driver	name	need	to	match	the	driver	you	deployed	in	above	steps

connection-url	-	The	URL	need	to	match	the	HBase	zookeeper	quorum	server,	the	format	like	jdbc:phoenix	[:<zookeeper
quorum>	[:<port	number>]	[:<root	node>]],	’jdbc:phoenix:127.0.0.1:2181’	is	a	example

user-name/password	-	The	user	credentials	for	Phoenix	Connection

The	Phoenix	Connection	AutoCommit	default	is	false.	Set	phoenix.connection.autoCommit		to	true	if	you	will	be	executing
INSERT/UPDATE/DELETE	statements	against	Phoenix.

Mapping	Phoenix	table	to	an	existing	HBase	table

Mapping	Phoenix	table	to	an	existing	HBase	table	has	2	steps.	The	first	step	is	installing	phoenix-[version]-server.jar	to	the
classpath	of	every	HBase	region	server.	An	easy	way	to	do	this	is	to	copy	it	into	the	HBase	lib	-	for	more	details	please	refer	to	the
phoenix	documentation.

The	second	step	is	executing	the	DDL	to	map	a	Phoenix	table	to	an	existing	HBase	table.	The	DDL	can	either	be	executed	via
Phoenix	Command	Line,	or	executed	by	JDBC.

Deploying	VDB	Dependencies

39

https://docs.wildfly.org/19/Admin_Guide.html#DataSource
http://phoenix.apache.org/
http://phoenix.apache.org/download.html
http://phoenix.apache.org/download.html

The	Following	is	a	example	for	mapping	an	existing	HBase	Customer	with	the	following	structure:

As	depicted	above,	the	HBase	Customer	table	have	2	column	families,	customer	and	sales,	and	each	has	2	column	qualifiers,
name,	city,	product	and	amount	respectively.	We	can	map	this	Table	to	Phoenix	via	DDL:

CREATE	TABLE	IF	NOT	EXISTS	"Customer"("ROW_ID"	VARCHAR	PRIMARY	KEY,	"customer"."city"	VARCHAR,	"customer"."name"

	VARCHAR,	"sales"."amount"	VARCHAR,	"sales"."product"	VARCHAR)

For	more	about	mapping	Phoenix	table	to	an	existing	HBase	table	please	refer	to	the	phoenix	documentation.

Creating	a	new	Phoenix	table

Creating	a	new	Phoenix	table	is	just	like	mapping	to	an	existing	HBase	table.	Phoenix	will	create	any	metadata	(table,	column
families)	that	do	not	exist.	Similar	to	the	above	example	the	DDL	to	create	the	Phoenix/HBase	Customer	table	would	be:

CREATE	TABLE	IF	NOT	EXISTS	"Customer"("ROW_ID"	VARCHAR	PRIMARY	KEY,	"customer"."city"	VARCHAR,	"customer"."name"

	VARCHAR,	"sales"."amount"	VARCHAR,	"sales"."product"	VARCHAR)

Defining	Foreign	Table	in	VDB
Finally,	we	need	define	a	Foreign	Table	in	VDB	that	map	to	Phoenix	table,	the	following	principles	should	be	considered	in
defining	Foreign	Table:

nameinsource	option	in	Table	used	to	match	Phoenix	table	name

nameinsource	option	in	Column	used	to	match	HBase	Table’s	Columns

create	a	primary	key	is	recommended,	the	primary	key	column	should	match	Phoenix	table’s	primary	key/HBase	row	id.

With	"Mapping	Phoenix	table	to	an	existing	HBase	table"	section’s	`Customer'	table,	below	is	a	example:

CREATE	FOREIGN	TABLE	Customer	(

				PK	string	OPTIONS	(nameinsource	'ROW_ID'),

				city	string	OPTIONS	(nameinsource	'"city"'),

				name	string	OPTIONS	(nameinsource	'"name"'),

				amount	string	OPTIONS	(nameinsource	'"amount"'),

				product	string	OPTIONS	(nameinsource	'"product"'),

				CONSTRAINT	PK0	PRIMARY	KEY(PK)

)	OPTIONS(nameinsource	'"Customer"',	"UPDATABLE"	'TRUE');

Note "Constraint	violation.	X	may	not	be	null"	exception	may	thrown	if	updating	a	table	without	defining	a	primary
key.

Deploying	VDB	Dependencies

40

http://phoenix.apache.org/faq.html#How_I_map_Phoenix_table_to_an_existing_HBase_table

Deploying	VDB	Dependencies

41

OSISoft	PI	Data	Sources
The	driver	is	not	provided	with	Teiid	install,	this	needs	be	downloaded	from	OSISoft	and	installed	correctly	on	Teiid	server
according	to	OSISoft	documentation	PI-JDBC-2016-Administrator-Guide.pdf	or	latest	document.

Install	on	Linux

Make	sure	you	have	OpenSSL	libraries	installed,	and	you	have	following	"export"	added	correctly	in	your	shell	environment
variables.	Otherwise	you	can	also	add	in	<WildFly>/bin/standalone.sh	file	or	<WildFly>/bin/domain.sh	file.

export	PI_RDSA_LIB=/<path>/pipc/jdbc/lib/libRdsaWrapper-1.5b.so

export	PI_RDSA_LIB64=/<path>/pipc/jdbc/lib/libRdsaWrapper64-1.5b.so

Please	also	note	to	execute	from	Linux,	you	also	need	install	'gSoap'	library,	as	PI	JDBC	driver	uses	SOAP	over	HTTPS	to
communicate	with	PI	server.

Install	on	Windows
Follow	the	installation	program	provided	by	OSISoft	for	installing	the	JDBC	drivers.	Make	sure	you	have	the	following
environment	variables	configured.

PI_RDSA_LIB					C:\Program	Files	(x86)\PIPC\JDBC\RDSAWrapper.dll

PI_RDSA_LIB64			C:\Program	Files\PIPC\JDBC\RDSAWrapper64.dll

Installing	the	JDBC	driver	for	Teiid	(same	for	both	Linux	and
Windows)
Then	copy	the	module	directory	from	<WildFly>/teiid/datasources/osisoft-pi/modules	directory	into	_<WilfFly>/modules
directory.	Then	find	the	"PIJDBCDriver.jar"	file	from	the	installation	directory,	and	copy	it	to
_<WildFly>/module/system/layers/dv/com/osisoft/main"	directory.	Then	add	the	driver	definition	to	the	standalone.xml	file	by
editing	the	file	and	adding	something	similar	to	below

				<drivers>

							<driver	name="osisoft-pi"	module="com.osisoft">

											<driver-class>com.osisoft.jdbc.Driver</driver-class>

							</driver>

				</drivers>

That	completes	the	configuration	of	the	PI	driver	in	the	Teiid.	We	still	have	not	created	a	connection	to	the	PI	server.

You	can	start	the	server	now.

Creating	a	Data	Source	to	PI
You	can	execute	following	similar	CLI	script	to	create	a	datasource

Deploying	VDB	Dependencies

42

/subsystem=datasources/data-source=pi-ds:add(jndi-name=java:/pi-ds,		driver-

name=osisoft-pi,	connection-url=jdbc:pioledbent://<DAC	Server>/Data	Source=<AF	

Server>;	Integrated	Security=SSPI,user-name=user,	password=mypass)

/subsystem=datasources/data-source=pi-ds:enable

this	will	create	following	XML	in	standalone.xml	or	domain.xml	(you	can	also	directly	edit	these	files	and	add	manually)

<datasource	jndi-name="java:/pi-ds"	pool-name="pi-ds">

				<connection-url>jdbc:pioledbent://<DAC	Server>/Data	Source=<AF	Server>;	

Integrated	Security=SSPI</connection-url>

				<driver>osisoft-pi</driver>

				<pool>

								<prefill>false</prefill>

								<use-strict-min>false</use-strict-min>

								<flush-strategy>FailingConnectionOnly</flush-strategy>

				</pool>

				<security>

								<user-name>user</user-name>

								<password>mypass</password>

				</security>

</datasource>

Now	you	have	fully	configured	the	Teiid	with	PI	database	connection.	You	can	create	VDB	that	can	use	this	connection	to	issue
queries.

Deploying	VDB	Dependencies

43

S3	Data	Sources
S3	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	the	S3	data	source,	using	CLI,	admin-
console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	directory	name
and	other	properties	below.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"
command	below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

/subsystem=resource-adapters/resource-adapter=s3:add(module=org.jboss.teiid.resource-adapter.s3)

/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS:add(jndi-name="${jndi.name}",	class

-name=org.teiid.resource.adapter.s3.S3ManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=Endpoint:add(val

ue="${endpoint}")

/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=Bucket:add(value=

"${bucket}")

/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=AccessKey:add(va

lue="${accessKey}")

/subsystem=resource-adapters/resource-adapter=s3/connection-definitions=s3DS/config-properties=SecretKey:add(va

lue="${secretKey}")

/subsystem=resource-adapters/resource-adapter=s3:activate

To	find	out	all	the	properties	that	are	supported	by	this	Connector	execute	the	following	command	in	the	CLI.

If	you	do	not	specify	endpoint,	the	AWS	S3	service	will	be	assumed,	and	if	you	only	specify	region,	the	endpoint	will	effectively
be	to	that	AWS	S3	region.

For	non-AWS	services	(such	as	ceph	or	minio),	or	AWS	services	with	non-default	endpoints,	you	will	need	to	set	the	endpoint.
The	endpoint	is	expected	to	be	the	full	service	endpoint	containing	protocol,	service,	region,	and	hostname	information	as
applicable.	The	region	when	the	endpoint	is	specified	is	used	as	the	signing	region	override	only	and	does	not	otherwise	affect	the
endpoint.

/subsystem=teiid:read-rar-description(rar-name=s3)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/s3"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before	you
edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

44

https://docs.wildfly.org/19//Admin+Guide#AdminGuide-RunningtheCLI

Salesforce	Data	Sources
Salesforce	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	three	versions	of	the	salesforce	resource	adapter	-
salesforce,	which	currently	provides	connectivity	to	the	34.0	Salesforce	API,	salesforce-34,	which	provides	connectivity	to	the
34.0	Salesforce	API,	and	salesforce-41	which	actually	provides	access	to	37.0	through	at	least	45.0.	The	version	22.0	support	has
been	removed.

Note

If	you	need	connectivity	to	an	API	version	other	than	what	is	built	in,	you	may	try	to	use	an	existing	connectivity
pair,	but	in	some	circumstances	-	especially	accessing	a	later	remote	api	from	an	older	java	api	-	this	is	not
possible	and	results	in	what	appears	to	be	hung	connections.	Please	raise	an	issue	if	you	cannot	successfully
access	a	specific	API	version.

There	are	many	ways	to	create	the	salesforce	data	source,	using	CLI,AdminAPI,	admin-console	etc.	The	example	shown	below
uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and	user
credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command	below.
Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS:add(jndi-name=java:/sfDS,	

class-name=org.teiid.resource.adapter.salesforce.SalesForceManagedConnectionFactory,	enabled=true,	use-java-con

text=true)

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=URL:add(

value=https://login.salesforce.com/services/Soap/u/34.0)

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=username

:add(value={user})

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=password

:add(value={password})

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=connectT

imeout:add(value={timeout})

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=requestT

imeout(value={timeout})

/subsystem=resource-adapters/resource-adapter=salesforce:activate

runbatch

The	salesforce-xx	connection	definition	configuration	is	similar	to	the	above.	The	resource	adapter	name	would	instead	be
salesforce-xx,	and	the	url	would	point	to	a	later	version.	It	is	recommended	to	set	the	url	explicitly.	If	you	use	just	the	salesforce
resource	adapter	without	setting	the	url,	then	later	versions	of	Teiid	can	use	a	different	default	once	the	resource	adapter	moves	to
a	different	version.	The	-34	resource	adapter	defaults	to	https://login.salesforce.com/services/Soap/u/34.0,	and	the	-41	resource
adapter	defaults	to	https://login.salesforce.com/services/Soap/u/40.0

Note that	if	you	access	a	newer	Salesforce	API	version	than	the	resource	adapter	supports,	you	will	receive	low	level
metadata	parsing	exceptions	-	you	can	either	access	an	older	API	or	log	an	issue	to	have	updated	support.

To	find	out	all	the	properties	that	are	supported	by	this	Salesforce	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=salesforce)

The	resource	adapter	by	default	uses	the	Salesforce	library	for	the	http	transport.	Usage	of	the	ConfigFile	property	allows	you	to
pass	in	a	CXF	configuration	and	instead	use	the	CXF	library.	If	you	do	so	the	other	properties,	such	as	the	requestTimeout	or
connectTimeout,	are	still	applicable	but	may	also	be	specified	directly	in	the	CXF	config.

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	*"<jboss-
install>/docs/teiid/datasources/salesforce"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server

Deploying	VDB	Dependencies

45

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli
https://login.salesforce.com/services/Soap/u/34.0
https://login.salesforce.com/services/Soap/u/40.0

before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

Mutual	Authentication
If	you	need	to	connect	to	Salesforce	using	Mutual	Authentication,	follow	the	directions	to	setup	Salesforce	at
https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_uploading_mutual_auth_cert.htm&language=en_US	then
configure	the	below	CXF	configuration	file	on	the	resource-adapter	by	adding	following	property	to	above	cli	script

/subsystem=resource-adapters/resource-adapter=salesforce/connection-definitions=sfDS/config-properties=ConfigFi

le:add(value=${jboss.server.config.dir}/cxf-https.xml)

cxf-https.xml

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:sec="http://cxf.apache.org/configuration/security"

				xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

				xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"

				xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration	http://cxf.apache.org/schemas/confi

guration/http-conf.xsd	http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/

spring-beans-2.0.xsd	http://cxf.apache.org/configuration/security	http://cxf.apache.org/schemas/configuration/s

ecurity.xsd">

				<http-conf:conduit	name="*.http-conduit">

								<http-conf:client	ConnectionTimeout="120000"	ReceiveTimeout="240000"/>

								<http-conf:tlsClientParameters	secureSocketProtocol="SSL">

										<sec:trustManagers>

												<sec:keyStore	type="JKS"	password="changeit"	file="/path/to/truststore.jks"/>

										</sec:trustManagers>

								</http-conf:tlsClientParameters>

				</http-conf:conduit>

</beans>

more	information	about	CXF	configuration	file	can	be	found	at	http://cxf.apache.org/docs/client-http-transport-including-ssl-
support.html#ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport

OAuth	Security	with	"Refresh	Token"
The	below	layout	the	directions	to	use	Refresh	Token	based	OAuth	Authentication	with	Salesforce.

1)	create	connected	app	(may	need	to	setup	custom	domain)	2)	add	profile	and/or	permissions	set	to	the	connected	app	3)	grab	the
"callback	url"	(one	need	to	set	as	https://localhost:443/_callback"	4)	Run	through	the	teiid-oauth-util.sh	in	"<eap>/bin"	directory,
use	client_id,	client_pass,	and	call	back	from	connected	app	5)	use	"https://login.salesforce.com/services/oauth2/authorize"
authorize	link	6)	use	"https://login.salesforce.com/services/oauth2/token"	for	access	token	url	7)	the	you	get	a	refresh	token	from
it	8)	create	a	security-domain	by	executing	CLI

/subsystem=security/security-domain=oauth2-security:add(cache-type=default)

/subsystem=security/security-domain=oauth2-security/authentication=classic:add

/subsystem=security/security-domain=oauth2-security/authentication=classic/login-

module=Kerberos:add(code=org.teiid.jboss.oauth.OAuth20LoginModule,	flag=required,	

module=org.jboss.teiid.security,

			module-options=[client-id=xxxx,	client-secret=xxxx,	refresh-token=xxxx,

			access-token-uri=https://login.salesforce.com/services/oauth2/token])

reload

Deploying	VDB	Dependencies

46

https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_uploading_mutual_auth_cert.htm&language=en_US
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html#ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport
https://localhost:443/_callback

this	will	generate	following	XML	in	the	standalone.xml	or	domain.xml	(this	can	also	be	directly	added	to	the	standalone.xml	or
domain.xml	files	instead	of	executing	the	CLI)

standalone.xml

<security-domain	name="oauth2-security">

				<authentication>

								<login-module	code="org.teiid.jboss.oauth.OAuth20LoginModule"	flag="required"	module="org.jboss.teiid.s

ecurity">

												<module-option	name="client-id"	value="xxxx"/>

												<module-option	name="client-secret"	value="xxxx"/>

												<module-option	name="refresh-token"	value="xxxx"/>

												<module-option	name="access-token-uri"	value="https://login.salesforce.com/services/oauth2/token"/>

								</login-module>

				</authentication>

</security-domain>

9)	Then	to	use	the	above	security	domain	in	the	sales	force	data	source	configuration,	add	"<security-domain>oauth2-
security</security-domain>"

OAuth	Security	with	"JWT	Token"	based	Steps
The	below	layout	the	directions	to	use	JWT	token	based	OAuth	Authentication	with	Salesforce.

1)	Create	a	Self-Signed	certificate	locally	or	on	Sales	Force.	(user→setup→security-controls→Certificate	and	Key	Management)
2)	Download	the	certificate	and	also	put	in	keystore	and	download	keystore.	Keystore	is	needed	for	Teiid,	certificate	for	the
salesforce	setup	3)	Create	connected	app	and	select	OAuth,	and	select	all	the	scopes	(some	posts	say	refresh-token	offline	is	must)
4)	create	a	profile	and/or	permission	set	assign	to	the	connected	app.	I	believe	before	you	can	create	a	connected	app	you	need	to
set	up	custom	domain	5)	When	you	creating	connected	app	make	sure	you	add	the	certificate	in	"Digital	Certificate"	6)	Now	in
Teiid	create	security-domain	by	executing	CLI

/subsystem=security/security-domain=oauth2-jwt-security:add(cache-type=default)

/subsystem=security/security-domain=oauth2-jwt-security/authentication=classic:add

/subsystem=security/security-domain=oauth2-jwt-

security/authentication=classic/login-

module=oauth:add(code=org.teiid.jboss.oauth.OAuth20LoginModule,	flag=required,	

module=org.jboss.teiid.security,

			module-options=[client-id=xxxx,	client-secret=xxxx,	access-token-

uri=https://login.salesforce.com/services/oauth2/token,	jwt-

audience=https://login.salesforce.com,	jwt-subject=your@sf-login.com,

				keystore-type=JKS,	keystore-password=changeme,	keystore-

url=${jboss.server.config.dir}/salesforce.jks,	certificate-alias=teiidtest,	

signature-algorithm-name=SHA256withRSA])

reload

this	will	generate	following	XML	in	the	standalone.xml	or	domain.xml	(this	can	also	be	directly	added	to	the	standalone.xml	or
domain.xml	files	instead	of	executing	the	CLI)

standalone.xml

<security-domain	name="oauth2-jwt-security">

				<authentication>

								<login-module	code="org.teiid.jboss.oauth.JWTBearerTokenLoginModule"	flag="required"	module="org.jboss.

teiid.security">

												<module-option	name="client-id"	value="xxxxx"/>

												<module-option	name="client-secret"	value="xxxx"/>

Deploying	VDB	Dependencies

47

												<module-option	name="access-token-uri"	value="https://login.salesforce.com/services/oauth2/token"/>

												<module-option	name="jwt-audience"	value="https://login.salesforce.com"/>

												<module-option	name="jwt-subject"	value="your@sf-login.com"/>

												<module-option	name="keystore-type"	value="JKS"/>

												<module-option	name="keystore-password"	value="changeme"/>

												<module-option	name="keystore-url"	value="${jboss.server.config.dir}/salesforce.jks"/>

												<module-option	name="certificate-alias"	value="teiidtest"/>

												<module-option	name="signature-algorithm-name"	value="SHA256withRSA"/>

								</login-module>

				</authentication>

</security-domain>

7)	Then	to	use	the	above	security	domain	in	the	sales	force	data	source	configuration,	add	"<security-domain>oauth2-jwt-
security</security-domain>"

More	helpful	links

https://developer.salesforce.com/blogs/developer-relations/2011/03/oauth-and-the-soap-api.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US#create_token
http://salesforce.stackexchange.com/questions/31904/how-and-when-does-a-salesforce-saml-oauth2-user-give-permission-to-use-
a-conne	http://salesforce.stackexchange.com/questions/30596/oauth-2-0-jwt-bearer-token-flow
http://salesforce.stackexchange.com/questions/88396/invalid-assertion-error-in-jwt-bearer-token-flow

Logging

Logging,	when	enabled,	will	be	performed	at	an	INFO	level	to	the	org.apache.cxf.interceptor	context.

Per	Resource	Adapter

The	CXF	config	property	may	also	be	used	to	control	the	logging	of	requests	and	responses.

Example	logging	data	source

<resource-adapter	id="salesforce-ds">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.salesforce-34"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.salesforce.SalesForceManagedConnectionFac

tory"	jndi-name="java:/salesforce_bulk_api"	enabled="true"	use-java-context="true"	pool-name="salesforce-ds">

												<config-property	name="password">

																token

												</config-property>

												<config-property	name="URL">

																https://login.salesforce.com/services/Soap/u/34.0

												</config-property>

												<config-property	name="username">

																name

												</config-property>

												<config-property	name="ConfigFile">

																/path/to/cxf.xml

												</config-property>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

Corresponding	cxf.xml

Example	logging	data	source

<beans	xmlns="http://www.springframework.org/schema/beans"

						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Deploying	VDB	Dependencies

48

https://developer.salesforce.com/blogs/developer-relations/2011/03/oauth-and-the-soap-api.html
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_oauth_jwt_flow.htm&language=en_US#create_token
http://salesforce.stackexchange.com/questions/31904/how-and-when-does-a-salesforce-saml-oauth2-user-give-permission-to-use-a-conne
http://salesforce.stackexchange.com/questions/30596/oauth-2-0-jwt-bearer-token-flow
http://salesforce.stackexchange.com/questions/88396/invalid-assertion-error-in-jwt-bearer-token-flow

						xmlns:cxf="http://cxf.apache.org/core"

						xsi:schemaLocation="http://cxf.apache.org/core	http://cxf.apache.org/schemas/core.xsd	http://www.springfr

amework.org/schema/beans	http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

				<bean	id="loggingFeature"	class="org.apache.cxf.feature.LoggingFeature"/>

				<cxf:bus>

								<cxf:features>

												<ref	bean="loggingFeature"/>

								</cxf:features>

				</cxf:bus>

</beans>

All	CXF	Usage

With	the	WildFly	distribution	of	CXF	a	system	property	can	be	used	to	enable	CXF	logging	across	all	usage	in	the	application
server	-	see	the	WildFly	docs.

Example	System	Property

<system-properties>

		<property	name="org.apache.cxf.logging.enabled"	value="true"/>

</system-properties>

Deploying	VDB	Dependencies

49

https://docs.jboss.org/author/display/JBWS/Advanced+User+Guide

Solr	Data	Sources
Solr	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	a	Solr	data	source,	using	CLI,	admin-
console,	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	the	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	URL	and
user	credentials.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"	command
below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS:add(jndi-name=java:/solrDS,	cl

ass-name=org.teiid.resource.adapter.solr.SolrManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS/config-properties=url:add(valu

e=http://localhost:8983/solr/)

/subsystem=resource-adapters/resource-adapter=solr/connection-definitions=solrDS/config-properties=CoreName:add

(value=collection1)

/subsystem=resource-adapters/resource-adapter=solr:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	Solr	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=solr)

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	"<jboss-
install>/docs/teiid/datasources/solr"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server	before
you	edit	this	file,	and	restart	after	the	modifications	are	done.

Deploying	VDB	Dependencies

50

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

Web	Service	Data	Sources
Web	service	data	sources	use	a	built-in	Teiid	specific	JCA	connector.	There	are	many	ways	to	create	the	file	data	source,	using
CLI,	admin-console	etc.	The	example	shown	below	uses	the	CLI	tool,	as	this	works	in	both	Standalone	and	Domain	modes.

Execute	following	command	using	the	CLI	once	you	connected	to	the	Server.	Make	sure	you	provide	the	correct	endpoint	and
other	properties	below.	Add	any	additional	properties	required	by	the	connector	by	duplicating	the	"connection-definitions"
command	below.	Edit	the	JNDI	name	to	match	the	JNDI	name	you	used	in	VDB.

batch

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS:add(jndi-name=java:/wsDS,	

class-name=org.teiid.resource.adapter.ws.WSManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=EndPoint

:add(value={end_point})

/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

To	find	out	all	the	properties	that	are	supported	by	this	Web	Service	Connector	execute	the	following	command	in	the	CLI.

/subsystem=teiid:read-rar-description(rar-name=webservice)

The	Web	Service	Data	Source	supports	specifying	a	WSDL	using	the	Wsdl	property.		If	the	Wsdl	property	is	set,	then	the
ServiceName,	EndPointName,	and	NamespaceUri	properties	should	also	be	set.		The	Wsdl	property	may	be	a	URL	or	file	location
or	the	WSDL	to	use.

Tip

Developer’s	Tip	-	If	WildFly	19.1.0	is	running	in	standalone	mode,	you	can	also	manually	edit	the	"<jboss-
install>/standalone/configuration/standalone-teiid.xml"	file	and	add	the	XML	configuration	defined	in	*"<jboss-
install>/docs/teiid/datasources/web-service"	directory	under	"resource-adapters"	subsystem.	Shutdown	the	server
before	you	edit	this	file,	and	restart	after	the	modifications	are	done.

All	available	configuration	properties	of	web	resource-adapter

Property	Name applies	to Required Default	Value Description

EndPoint HTTP	&
SOAP false n/a

URL	for	HTTP,	Service	Endpoint	for
SOAP.	Not	required	if	using	HTTP
invoke	procedures	that	specify
absolute	URLs.	Will	be	used	as	the
base	URL	if	an	invoke	procedure	uses
a	relative	URL.

SecurityType HTTP	&
SOAP false none

Type	of	Authentication	to	used	with
the	web	service.	Allowed	values
["None","HTTPBasic","WSSecurity",
"Kerberos",	"OAuth"]

AuthUserName HTTP	&
SOAP false n/a Name	value	for	authentication,	used

in	HTTPBasic	and	WsSecurity

AuthPassword HTTP	&
SOAP false n/a Password	value	for	authentication,

used	in	HTTPBasic	and	WsSecurity

ConfigFile HTTP	&
SOAP false n/a CXF	client	configuration	File	or	URL

Deploying	VDB	Dependencies

51

https://docs.wildfly.org/19/Admin_Guide.html#running-the-cli

EndPointName HTTP	&
SOAP false teiid

Local	part	of	the	end	point	QName	to
use	with	this	connection,	needs	to
match	one	defined	in	cxf	file

ServiceName SOAP false n/a Local	part	of	the	service	QName	to
use	with	this	connection

NamespaceUri SOAP false http://teiid.org Namespace	URI	of	the	service
QName	to	use	with	this	connection

RequestTimeout HTTP	&
SOAP false n/a Timeout	for	request

ConnectTimeout HTTP	&
SOAP false n/a Timeout	for	connection

Wsdl SOAP false n/a WSDL	file	or	URL	for	the	web
service

CXF	Configuration

Each	web	service	data	source	may	choose	a	particular	CXF	config	file	and	port	configuration.	The		ConfigFile		config	property
specifies	the	Spring	XML	configuration	file	for	the	CXF	Bus	and	port	configuration	to	be	used	by	connections.	If	no	config	file	is
specified	then	the	system	default	configuration	will	be	used.

Only	1	port	configuration	can	be	used	by	this	data	source.	You	may	explicitly	set	the	local	name	of	the	port	QName	to	use	via	the
	ConfigName		property.	The	namespace	URI	for	the	QName	in	your	config	file	should	match	your	WSDL/namespace	setting	on
the	data	source	or	use	the	default	of	http://teiid.org.	See	the	CXF	Documentation	and	the	sections	below	on	Security,	Logging,	etc.
for	examples	of	using	the	CXF	configuration	file.

Sample	Spring	XML	Configuration	To	Set	Timeouts

<beans	xmlns="http://www.springframework.org/schema/beans"

								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

								xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

								xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

								http://cxf.apache.org/schemas/configuration/http-conf.xsd

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd">

				<http-conf:conduit	name="{http://teiid.org}configName.http-conduit">

								<http-conf:client	ConnectionTimeout="120000"	ReceiveTimeout="240000"/>

				</http-conf:conduit>

</beans>

In	the	conduit	name	{http://teiid.org[http://teiid.org]}configName.http-conduit,	the	namespace,	{http://teiid.org[http://teiid.org]},
may	be	set	via	the	namespace	datasource	property.	Typically	that	will	only	need	done	when	also	supplying	the	wsdl	setting.	The
local	name	is	followed	by	.http-conduit.	It	will	be	based	upon	the	configName	setting,	with	a	default	value	of	teiid.

See	the	CXF	documentation	for	all	possible	configuration	options.

Note It	is	not	required	to	use	the	Spring	configuration	to	set	just	timeouts.	The	ConnectionTimeout	and
ReceiveTimeout	can	be	set	via	the	resource	adapter	connectTimeout	and	requestTimeout	properties	respectively.

Security

Deploying	VDB	Dependencies

52

http://teiid.org
http://teiid.org
http://cxf.apache.org/docs/configuration.html
http://teiid.org
http://teiid.org
http://cxf.apache.org/docs/

To	enable	the	use	of	WS-Security,	the		SecurityType		should	be	set	to	WSSecurity.	At	this	time	Teiid	does	not	expect	a	WSDL	to
describe	the	service	being	used.	Thus	a	Spring	XML	configuration	file	is	not	only	required,	it	must	instead	contain	all	of	the
relevant	policy	configuration.	And	just	as	with	the	general	configuration,	each	data	source	is	limited	to	specifying	only	a	single
port	configuration	to	use.

batch

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS:add(jndi-name=java:/wsDS,	

class-name=org.teiid.resource.adapter.ws.WSManagedConnectionFactory,	enabled=true,	use-java-context=true)

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=ConfigFi

le:add(value=${jboss.server.home.dir}/standalone/configuration/xxx-jbossws-cxf.xml)

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=ConfigNa

me:add(value=port_x)

/subsystem=resource-adapters/resource-adapter=webservice/connection-definitions=wsDS/config-properties=Security

Type:add(value=WSSecurity)

/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

The	corresponding	xxx-jbossws-cxf.xml	file	that	adds	a	timestamp	to	the	SOAP	header

Example	WS-Security	enabled	data	source

<beans	xmlns="http://www.springframework.org/schema/beans"

							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

							xmlns:jaxws="http://cxf.apache.org/jaxws"

							xsi:schemaLocation="http://www.springframework.org/schema/beans

										http://www.springframework.org/schema/beans/spring-beans.xsd

										http://cxf.apache.org/jaxws

										http://cxf.apache.org/schemas/jaxws.xsd">

				<jaxws:client	name="{http://teiid.org}port_x"

								createdFromAPI="true">

								<jaxws:outInterceptors>

												<bean/>

												<ref	bean="Timestamp_Request"/>

								</jaxws:outInterceptors>

				</jaxws:client>

				<bean

								id="Timestamp_Request">

								<constructor-arg>

												<map>

																<entry	key="action"	value="Timestamp"/>

												<map>

								</constructor-arg>

				</bean>

</beans>

Note	that	the	client	port	configuration	is	matched	to	the	data	source	instance	by	the	QName	{http://teiid.org}port_x,	where	the
namespace	will	match	your	namespace	setting	or	the	default	of	http://teiid.org.	The	configuration	may	contain	other	port
configurations	with	different	local	names.

For	more	information	on	configuring	CXF	interceptors,	please	consult	the	CXF	documentation

Kerberos
WS-Security	Kerberos	is	only	supported	when	the	WSDL	property	is	defined	in	resource-adapter	connection	configuration	and
only	when	WSDL	Based	Procedures	are	used.	WSDL	file	must	contain	WS-Policy	section,	then	WS-Policy	section	is	correctly
interpreted	and	enforced	on	the	endpoint.	The	sample	CXF	configuration	will	look	like

Deploying	VDB	Dependencies

53

http://teiid.org
http://cxf.apache.org/docs/security.html

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:http="http://cxf.apache.org/transports/http/configuration"

				xmlns:jaxws="http://cxf.apache.org/jaxws"

				xmlns:cxf="http://cxf.apache.org/core"

				xmlns:p="http://cxf.apache.org/policy"

				xmlns:sec="http://cxf.apache.org/configuration/security"

				xsi:schemaLocation="http://www.springframework.org/schema/beans											http://www.springframework.org/sc

hema/beans/spring-beans.xsd											http://cxf.apache.org/jaxws																											http://cxf.apache.o

rg/schemas/jaxws.xsd											http://cxf.apache.org/transports/http/configuration			http://cxf.apache.org/sche

mas/configuration/http-conf.xsd											http://cxf.apache.org/configuration/security										http://cxf.apac

he.org/schemas/configuration/security.xsd											http://cxf.apache.org/core	http://cxf.apache.org/schemas/co

re.xsd											http://cxf.apache.org/policy	http://cxf.apache.org/schemas/policy.xsd">

				<bean	class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>

				<cxf:bus>

								<cxf:features>

												<p:policies/>

												<cxf:logging/>

								</cxf:features>

				</cxf:bus>

				<jaxws:client	name="{http://webservices.samples.jboss.org/}HelloWorldPort"	createdFromAPI="true">

								<jaxws:properties>

												<entry	key="ws-security.kerberos.client">

																<bean	class="org.apache.cxf.ws.security.kerberos.KerberosClient">

																				<constructor-arg	ref="cxf"/>

																				<property	name="contextName"	value="alice"/>

																				<property	name="serviceName"	value="bob@service.example.com"/>

																</bean>

												</entry>

								</jaxws:properties>

				</jaxws:client>

</beans>

and	you	would	need	to	configure	the	security-domain	in	the	standalone-teiid.xml	file	under	the	'security'	subsystem	as

<security-domain	name="alice"	cache-type="default">

				<authentication>

								<login-module	code="Kerberos"	flag="required">

												<module-option	name="storeKey"	value="true"/>

												<module-option	name="useKeyTab"	value="true"/>

												<module-option	name="keyTab"	value="/home/alice/alice.keytab"/>

												<module-option	name="principal"	value="alice@EXAMPLE.COM"/>

												<module-option	name="doNotPrompt"	value="true"/>

												<module-option	name="debug"	value="true"/>

												<module-option	name="refreshKrb5Config"	value="true"/>

								</login-module>

				</authentication>

</security-domain>

for	complete	list	of	kerberos	properties	please	refer	to	this	testcase

Logging
Logging,	when	enabled,	will	be	performed	at	an	INFO	level	to	the	org.apache.cxf.interceptor	context.

SOAP

The	CXF	config	property	may	also	be	used	to	control	the	logging	of	requests	and	responses	for	specific	or	all	ports.

Example	logging	data	source

Deploying	VDB	Dependencies

54

http://anonsvn.jboss.org/repos/jbossws/stack/cxf/trunk/modules/testsuite/cxf-spring-tests/src/test/java/org/jboss/test/ws/jaxws/samples/wsse/kerberos/KerberosTestCase.java

batch

/subsystem=resource-adapters/resource-adapter=webservice/connection-

definitions=wsDS:add(jndi-name=java:/wsDS,	class-

name=org.teiid.resource.adapter.ws.WSManagedConnectionFactory,	enabled=true,	use-

java-context=true)

/subsystem=resource-adapters/resource-adapter=webservice/connection-

definitions=wsDS/config-

properties=ConfigFile:add(value=${jboss.server.home.dir}/standalone/configuration/x

xx-jbossws-cxf.xml)

/subsystem=resource-adapters/resource-adapter=webservice/connection-

definitions=wsDS/config-properties=ConfigName:add(value=port_x)

/subsystem=resource-adapters/resource-adapter=webservice:activate

runbatch

Corresponding	xxx-jbossws-cxf.xml

Example	logging	data	source

<beans	xmlns="http://www.springframework.org/schema/beans"

							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

							xmlns:jaxws="http://cxf.apache.org/jaxws"

							xsi:schemaLocation="http://www.springframework.org/schema/beans

										http://www.springframework.org/schema/beans/spring-beans.xsd

										http://cxf.apache.org/jaxws

										http://cxf.apache.org/schemas/jaxws.xsd">

				<jaxws:client	name="{http://teiid.org}port_y"

								createdFromAPI="true">

								<jaxws:features>

												<bean	class="org.apache.cxf.feature.LoggingFeature"/>

								</jaxws:features>

				</jaxws:client>

</beans>

All	CXF	Usage

With	the	WildFly	distribution	of	CXF	a	system	property	can	be	used	to	enable	CXF	logging	across	all	usage	in	the	application
server	(including	salesforce)	-	see	the	WildFly	docs.

Example	System	Property

<system-properties>

		<property	name="org.apache.cxf.logging.enabled"	value="true"/>

</system-properties>

Transport	Settings
The	CXF	config	property	may	also	be	used	to	control	low	level	aspects	of	the	HTTP	transport.	See	the	CXF	documentation	for	all
possible	options.

Example	Disabling	Hostname	Verification

<beans	xmlns="http://www.springframework.org/schema/beans"

							xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

							xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

							xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

																											http://cxf.apache.org/schemas/configuration/http-conf.xsd

Deploying	VDB	Dependencies

55

https://docs.jboss.org/author/display/JBWS/Advanced+User+Guide
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

																											http://www.springframework.org/schema/beans

																													http://www.springframework.org/schema/beans/spring-beans.xsd">

		<http-conf:conduit	name="{http://teiid.org}port_z.http-conduit">

					<!--	WARNING	!	disableCNcheck=true	should	NOT	be	used	in	production	-->

					<http-conf:tlsClientParameters	disableCNcheck="true"	/>

		</http-conf:conduit>

</beans>

Configuring	SSL	Support	(Https)
For	using	the	HTTPS,	you	can	configure	CXF	file	as	below

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:sec="http://cxf.apache.org/configuration/security"

				xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

				xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"

				xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration	http://cxf.apache.org/schemas/confi

guration/http-conf.xsd	http://www.springframework.org/schema/beans	http://www.springframework.org/schema/beans/

spring-beans-2.0.xsd	http://cxf.apache.org/configuration/security	http://cxf.apache.org/schemas/configuration/s

ecurity.xsd">

				<http-conf:conduit	name="*.http-conduit">

								<http-conf:client	ConnectionTimeout="120000"	ReceiveTimeout="240000"/>

								<http-conf:tlsClientParameters	secureSocketProtocol="SSL">

										<sec:trustManagers>

												<sec:keyStore	type="JKS"	password="changeit"	file="/path/to/truststore.jks"/>

										</sec:trustManagers>

								</http-conf:tlsClientParameters>

				</http-conf:conduit>

</beans>

for	all	the	http-conduit	based	configuration	see	http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html.	You	can
also	configure	for	HTTPBasic,	kerberos,	etc.

Deploying	VDB	Dependencies

56

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

Kerberos	with	REST	based	Services

Note "Kerberos	in	ws-security	with	SOAP	services"	-

Check	out	the	cxf	configuration	to	allow	Kerberos	in	SOAP	web	services	at	http://cxf.apache.org/docs/security.html

The	kerberos	support	is	based	SPNEGO	as	described	in	http://cxf.apache.org/docs/client-http-transport-including-ssl-
support.html#ClientHTTPTransport%28includingSSLsupport%29-SpnegoAuthentication%28Kerberos%29.	There	two	types	of
kerberos	support

Negotiation

With	this	configuration,	REST	service	is	configured	with	Kerberos	JAAS	domain,	to	negotiate	a	token,	then	use	it	access	the	web
service.	For	this	first	create	a	security	domain	in	standalone.xml	file	as	below

<security-domain	name="MY_REALM"	cache-type="default">

					<authentication>

									<login-module	code="Kerberos"	flag="required">

													<module-option	name="storeKey"	value="true"/>

													<module-option	name="useKeyTab"	value="true"/>

													<module-option	name="keyTab"	value="/home/username/service.keytab"/>

													<module-option	name="principal"	value="host/testserver@MY_REALM"/>

													<module-option	name="doNotPrompt"	value="true"/>

													<module-option	name="debug"	value="false"/>

													<module-option	name="addGSSCredential"	value="true"/>

									</login-module>

					</authentication>

</security-domain>

and	the	jboss-cxf-xxx.xml	file	needs	to	be	set	as

<beans	xmlns="http://www.springframework.org/schema/beans"

								xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

								xmlns:sec="http://cxf.apache.org/configuration/security"

								xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

								xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration	http://cxf.apache.org/schemas/c

onfiguration/http-conf.xsd	http://www.springframework.org/schema/beans	http://www.springframework.org/schema/be

ans/spring-beans-2.0.xsd	http://cxf.apache.org/configuration/security	http://cxf.apache.org/schemas/configurati

on/security.xsd">

							<http-conf:conduit	name="*.http-conduit">

											<http-conf:authorization>

															<sec:AuthorizationType>Negotiate</sec:AuthorizationType>

															<sec:Authorization>MY_REALM</sec:Authorization>

											</http-conf:authorization>

							</http-conf:conduit>

</beans>

The	resource	adapter	creation	needs	to	define	the	following	properties

			<config-property	name="ConfigFile">path/to/jboss-cxf-xxxx.xml</config-property>

			<config-property	name="ConfigName">test</config-property>

Note
Even	though	above	configuration	configures	the	value	of	"ConfigName",	the	cxf	framework	currently	in	the	case
of	JAX-RS	client	does	not	give	option	to	use	it.	For	that	reason	use	"*.http-conduit"	which	will	apply	to	all	the
HTTP	communications	under	this	resource	adapter.

Deploying	VDB	Dependencies

57

http://cxf.apache.org/docs/security.html
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html#ClientHTTPTransport%28includingSSLsupport%29-SpnegoAuthentication%28Kerberos%29

Delegation

If	in	case	the	user	is	already	logged	into	Teiid	using	Kerberos	using	JDBC/ODBC	or	used	SPNEGO	in	web-tier	and	used	pass-
through	authentication	into	Teiid,	then	there	is	no	need	to	negotiate	a	new	token	for	the	Kerberos.	The	system	can	delegate	the
existing	token.

To	configure	for	delegation,	set	up	security	domain	defined	exactly	as	defined	in	"negotiation",	and	jboss-cxf-xxx.xml	file,
however	remove	the	following	line	from	jboss-cxf-xxx.xml	file,	as	it	is	not	going	to	negotiate	new	token.

		<sec:Authorization>MY_REALM</sec:Authorization>

Add	the	following	properties	in	web	service	resource	adapter	creation.	One	configures	that	"kerberos"	security	being	used,	the
second	defines	a	security	domain	to	be	used	at	the	data	source,	in	this	case	we	want	to	use	a	security	domain	that	passes	through	a
logged	in	user

			<config-property	name="SecurityType">Kerberos</config-property>

			<security>

								<security-domain>passthrough-security</security-domain>

			</security>

To	configure	in	"passthrough-security"	security	domain,	the	"security"	subsystem	add	following	XML	fragment

<security-domain	name="passthrough-security"	cache-type="default">

				<authentication>

								<login-module	code="Kerberos"	flag="required"	module="org.jboss.security.negotiation">

												<module-option	name="delegationCredential"	value="REQUIRED"/>

								</login-module>

				</authentication>

</security-domain>

If	in	case	there	is	no	delegationCredential	is	available	on	the	context,	the	access	will	fail.

Deploying	VDB	Dependencies

58

OAuth	Authentication	With	REST	Based	Services

Single	user	OAuth	authentication

Web	Services	resource-adapter	can	be	configured	to	participate	in	OAuth	1.0a	and	OAuth2	authentication	schemes.	Using	Teiid
along	with	"ws"	translator	and	"web-services"	resource	adapter	once	write	applications	communicating	with	web	sites	like	Google
and	Twitter.

In	order	to	support	OAuth	authentication,	there	is	some	preparation	and	configuration	work	involved.	Individual	web	sites
typically	provide	developer	facing	REST	based	APIs	for	accessing	their	content	on	the	web	sites	and	also	provide	ways	to	register
custom	applications	on	user’s	behalf,	where	they	can	manage	the	Authorization	of	services	offered	by	the	web	site.	The	first	step
is	to	register	this	custom	application	on	the	web	site	and	collect	consumer/API	keys	and	secrets.	The	web-sites	will	also	list	the
URLS,	where	to	request	for	various	different	types	of	tokens	for	authorization	using	these	credentials.	A	typical	OAuth
authentication	flow	is	defined	as	below

The	above	image	taken	from	https://developers.google.com/accounts/docs/OAuth2

To	accommodate	above	defined	flow,	Teiid	provides	a	utility	called	"teiid-oauth-util.sh"	or	"teiid-oauth-util.bat"	for	windows	in
the	"bin"	directory	of	your	server	installation.	By	executing	this	utility,	it	will	ask	for	various	keys/secrets	and	URLs	for	the
generating	the	Access	Token	that	is	used	in	the	OAuth	authentication	and	in	the	end	output	a	XML	fragment	like	below.

$./teiid-oauth-util.sh

Select	type	of	OAuth	authentication

1)	OAuth	1.0A

2)	OAuth	2.0

2

===	OAuth	2.0	Workflow	===

Deploying	VDB	Dependencies

59

http://oauth.org
http://google.com
http://twitter.com
https://developers.google.com/accounts/docs/OAuth2

Enter	the	Client	ID	=	10-xxxjb.apps.googleusercontent.com

Enter	the	Client	Secret	=	3L6-xxx-v9xxDlznWq-o

Enter	the	User	Authorization	URL	=	https://accounts.google.com/o/oauth2/auth

Enter	scope	(hit	enter	for	none)	=	profile

Cut	&	Paste	the	URL	in	a	web	browser,	and	Authticate

Authorize	URL		=	https://accounts.google.com/o/oauth2/auth?client_id=10-

xxxjb.apps.googleusercontent.com&scope=profile&response_type=code&redirect_uri=urn%

3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&state=Auth+URL

Enter	Token	Secret	(Auth	Code,	Pin)	from	previous	step	=	4/z-RT632cr2hf_vYoXd06yIM-

xxxxx

Enter	the	Access	Token	URL	=	https://www.googleapis.com/oauth2/v3/token

Refresh	Token=1/xxxx_5qzAF52j-EmN2U

Add	the	following	XML	into	your	standalone-teiid.xml	file	in	security-domains	

subsystem,

and	configure	data	source	securty	to	this	domain

<security-domain	name="oauth2-security">

				<authentication>

								<login-module	code="org.teiid.jboss.oauth.OAuth20LoginModule"	

flag="required"	module="org.jboss.teiid.web.cxf">

												<module-option	name="client-id"	value="10-

xxxjb.apps.googleusercontent.com"/>

												<module-option	name="client-secret"	value="3L6-xxx-v9xxDlznWq-o"/>

												<module-option	name="refresh-token"	value="1/xxxx_5qzAF52j-EmN2U"/>

												<module-option	name="access-token-uri"	

value="https://www.googleapis.com/oauth2/v3/token"/>

								</login-module>

				</authentication>

</security-domain>

The	XML	fragment	at	the	end	defines	the	JAAS	Login	Module	configuration,	edit	the	standalone-teiid.xml	and	add	it	under
"security-domains"	subsystem.	User	needs	to	use	this	security-domain	in	their	resource	adapter	as	the	security	provider	for	this
data	source.	An	example	resource-adapter	configuration	to	define	the	data	source	to	the	web	site	in	standalone-teiid.xml	file	looks
like

<resource-adapter	id="webservice3">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.webservice"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory"	jndi-name=

"java:/googleDS"	enabled="true"	use-java-context="true"	pool-name="teiid-ws-ds">

												<config-property	name="SecurityType">

																OAuth

												</config-property>

Deploying	VDB	Dependencies

60

												<security>

																<security-domain>oauth2-security</security-domain>

												</security>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

Then,	any	query	written	using	the	"ws"	translator	and	above	resource-adapter	will	be	automatically	Authorized	w

ith	the	target	web	site	using	OAuth,	when	you	access	a	protected	URL.

===	OAuth	with	Delegation

In	the	above	configuration	a	single	user	is	configured	to	access	the	web	site,	however	if	you	want	to	delegate	

logged	in	user’s	credential	as	OAuth	authentication,	then	user	needs	to	extend	the	above	LoginModule

(org.teiid.jboss.oauth.OAuth20LoginModule	or	org.teiid.jboss.oauth.OAuth10LoginModule)	and	automate	the	proce

ss	defined	in	the	"teiid-oauth-util.sh"	to	define	the	Access	Token

details	dynamically.	Since	this	process	will	be	different	for	different	web	sites	(it	involves	login	and	authen

tication),	Teiid	will	not	be	able	to	provide	single	solution.	However,	user	can	extend	the	login	module	to	prov

ide	this	feature	much	more	easily	since	they	will	be	working	with	targeted	web	sites.

Deploying	VDB	Dependencies

61

VDB	Versioning
VDB	Versioning	is	a	feature	that	allows	multiple	versions	of	a	VDB	to	be	deployed	at	the	same	time	with	additional	support	to
determine	which	version	will	be	used.	If	a	specific	version	is	requested,	then	only	that	VDB	may	be	connected	to.	If	no	version	is
set,	then	the	deployed	VDBs	are	searched	for	the	appropriate	version.	This	feature	helps	support	more	fluid	migration	scenarios.

Version	Property

When	a	user	connects	to	Teiid	the	desired	VDB	version	can	be	set	as	a	connection	property	(See	the	Client	Developer’s	Guide)	in
JDBC	or	used	as	part	of	the	VDB	name	for	OData	and	ODBC	access.

The	vdb	version	is	set	in	either	the	vdb.xxx	or	through	a	naming	convention	of	the	deployment	name	-	vdbname.version.vdb,	e.g.
marketdata.2.vdb.	The	deployer	is	responsible	for	choosing	an	appropriate	version	number.	If	there	is	already	a	VDB
name/version	that	matches	the	current	deployment,	then	connections	to	the	previous	VDB	will	be	terminated	and	its	cache	entries
will	be	flushed.	Any	new	connections	will	then	be	made	to	the	new	VDB.

Note
When	setting	the	version	in	the	vdb.xml	or	ddl	file	a	unique	deployment	name	must	still	be	used	as	that	is	the
name	the	application	server	internally	uses	for	the	deployment.	Using	the	same	deployment	name	as	a	previous
version	will	simply	overwrite	the	older	deployment.

A	simple	integer	version	actually	treated	as	the	semantic	version	X.0.0.	If	desired	a	full	semantic	version	can	be	used	instead.	A
semantic	version	is	up	to	three	integers	separated	by	periods.

Trailing	version	components	that	are	missing	are	treated	as	zeros	-	version	1	is	the	same	as	1.0.0	and	version	1.1	is	the	same	as
1.1.0.

JDBC	and	ODBC	clients	may	use	a	version	restriction	-	-vdbname.X.	or	vdbname.X.X.	-	note	the	trailing	'.'	which	means	a	VDB
that	must	match	the	partial	version	specified.	For	example	vdbname.1.2.	could	match	any	1.2.X	version,	but	would	not	allow	1.3+
or	1.1	and	earlier.

Connection	Type

Once	deployed	a	VDB	has	an	updatable	property	called	connection	type,	which	is	used	to	determine	what	connections	can	be
made	to	the	VDB.	The	connection	type	can	be	one	of:

NONE-	disallow	new	connections.

BY_VERSION-	the	default	setting.	Allow	connections	only	if	the	version	is	specified	or	if	this	is	the	earliest	BY_VERSION
vdb	and	there	are	no	vdbs	marked	as	ANY.

ANY-	allow	connections	with	or	without	a	version	specified.

The	connection	type	may	be	changed	either	through	the	AdminConsole	or	the	AdminAPI.

Deployment	Scenarios
If	only	a	select	few	applications	are	to	migrate	to	the	new	VDB	version,	then	a	freshly	deployed	VDB	would	be	left	as
BY_VERSION.	This	ensures	that	only	applications	that	know	the	new	version	may	use	it.

If	only	a	select	few	applications	are	to	remain	on	the	current	VDB	version,	then	their	connection	settings	would	need	to	be
updated	to	reference	the	current	VDB	by	its	version.	Then	the	newly	deployed	vdb	would	have	its	connection	type	set	to	ANY,
which	allows	all	new	connections	to	be	made	against	the	newer	version.	If	a	rollback	is	needed	in	this	scenario,	then	the	newly

VDB	Versioning

62

deployed	vdb	would	have	its	connection	type	set	to	NONE	or	BY_VERSION	accordingly.

VDB	Versioning

63

Logging
The	Teiid	system	provides	a	wealth	of	information	via	logging.	To	control	logging	level,	contexts,	and	log	locations,	you	should
be	familiar	with	log4j	and	the	container’s	standalone-teiid.xml	or	domain-teiid.xml	configuration	files	depending	upon	the	start	up
mode	of	WildFly.

All	the	logs	produced	by	Teiid	are	prefixed	by	"org.teiid".	This	makes	it	extremely	easy	to	control	of	of	Teiid	logging	from	a
single	context.	Note	however	that	changes	to	the	log	configuration	file	manually	require	a	restart	to	take	affect.	CLI	based	log
context	modifications	are	possible,	however	details	are	beyond	the	scope	of	this	document.

If	you	expect	a	high	volume	of	logging	information	or	use	expensive	custom	audit/command	loggers,	it	is	a	good	idea	to	use	an
async	appender	to	minimize	the	performance	impact.	For	example	you	can	use	a	configuration	snippet	like	the	one	below	to	insert
an	async	handler	in	front	of	the	target	appender.

<periodic-rotating-file-handler	name="COMMAND_FILE">

				<level	name="DEBUG"	/>

				<formatter>

								<pattern-formatter	pattern="%d{HH:mm:ss,SSS}	%-5p	[%c]	(%t)	%s%E%n"	/>

				</formatter>

				<file	relative-to="jboss.server.log.dir"	path="command.log"	/>

				<suffix	value=".yyyy-MM-dd"	/>

</periodic-rotating-file-handler>

<async-handler	name="ASYNC">

		<level	name="DEBUG"/>

		<queue-length	value="1024"/>

		<overflow-action	value="block"/>

		<subhandlers>

				<handler	name="COMMAND_FILE"/>

		</subhandlers>

</async-handler>

<logger	category="org.teiid.COMMAND_LOG">

				<level	name="DEBUG"	/>

				<handlers>

								<handler	name="ASYNC"	/>

				</handlers>

</logger>

Logging	Contexts
While	all	of	Teiid’s	logs	are	prefixed	with	"org.teiid",	there	are	more	specific	contexts	depending	on	the	functional	area	of	the
system.	Note	that	logs	originating	from	third-party	code,	including	integrated	org.jboss	components,	will	be	logged	through	their
respective	contexts	and	not	through	"org.teiid".	See	the	table	below	for	information	on	contexts	relevant	to	Teiid.

Context Description

com.arjuna Third-party	transaction	manager.	This	will	include
information	about	all	transactions,	not	just	those	for	Teiid.

org.teiid
Root	context	for	all	Teiid	logs.	Note:	there	are	potentially
other	contexts	used	under	org.teiid	than	are	shown	in	this
table.

org.teiid.PROCESSOR Query	processing	logs.	See	also	org.teiid.PLANNER	for
query	planning	logs.

Logging

64

http://logging.apache.org/log4j/

org.teiid.PLANNER Query	planning	logs.

org.teiid.SECURITY Session/Authentication	events	-	see	also	AUDIT	logging

org.teiid.TRANSPORT Events	related	to	the	socket	transport.

org.teiid.RUNTIME Events	related	to	work	management	and	system	start/stop.

org.teiid.CONNECTOR Connector	logs.

org.teiid.BUFFER_MGR Buffer	and	storage	management	logs.

org.teiid.TXN_LOG Detail	log	of	all	transaction	operations.

org.teiid.COMMAND_LOG See	command	logging

org.teiid.AUDIT_LOG See	audit	logging

org.teiid.ADMIN_API Admin	API	logs.

org.teiid.ODBC pg/ODBC	logs.

Command	Logging

Command	logging	captures	executing	commands	in	the	Teiid	System.	This	includes	user	commands	(that	have	been	submitted	to
Teiid	at	an	INFO	level),	data	source	commands	(that	are	being	executed	by	the	connectors	at	a	DEBUG	level),	and	query	plans	(at
a	TRACE	level)	are	tracked	through	command	logging.

The	user	command,	"START	USER	COMMAND",	is	logged	when	Teiid	starts	working	on	the	query	for	the	first	time.	This	does
not	include	the	time	the	query	was	waiting	in	the	queue.	And	a	corresponding	user	command,	"END	USER	COMMAND",	is
logged	when	the	request	is	complete	(i.e.	when	statement	is	closed	or	all	the	batches	are	retrieved).	There	is	only	one	pair	of	these
for	every	user	query.

The	query	plan	command,	"PLAN	USER	COMMAND",	is	logged	when	Teiid	finishes	the	query	planning	process.	There	is	no
corresponding	ending	log	entry,	but	with	trace	logging	enabled	the	query	plan	will	be	included	with	subsequent	user	command
events.

The	data	source	command,	"START	DATA	SRC	COMMAND",	is	logged	when	a	query	is	sent	to	the	data	source.	And	a
corresponding	data	source	command,	"END	SRC	COMMAND",	is	logged	when	the	execution	is	closed	(i.e	all	the	rows	has	been
read).	There	can	be	one	pair	for	each	data	source	query	that	has	been	executed	by	Teiid,	and	there	can	be	any	number	of	pairs
depending	upon	your	user	query.

The	SRC	command	itself	is	then	translated	into	1	or	more	source	statements,	operations,	etc.	For	sources	that	have	textual
representations	of	the	native	source	query,	each	will	be	reported	in	a	"SOURCE	SRC	COMMAND"	event	as	at	the	DEBUG	level
with	the	field	sourceCommand	representing	the	SQL,	SOQL,	LDAP	query	etc.	that	is	actually	issued.

With	this	information	being	captured,	the	overall	query	execution	time	in	Teiid	can	be	calculated.	Additionally,	each	source	query
execution	time	can	be	calculated.	If	the	overall	query	execution	time	is	showing	a	performance	issue,	then	look	at	each	data	source
execution	time	to	see	where	the	issue	maybe.

To	enable	command	logging	to	the	default	log	location,	simply	enable	the	DETAIL	level	of	logging	for	the
org.teiid.COMMAND_LOG	context.

Logging

65

To	enable	command	logging	to	an	alternative	file	location,	configure	a	separate	file	appender	for	the	DETAIL	logging	of	the
org.teiid.COMMAND_LOG	context.	An	example	of	this	is	shown	below	and	can	also	be	found	in	the	standalone-teiid.xml
distributed	with	Teiid.

<periodic-rotating-file-handler	name="COMMAND_FILE">

				<level	name="DEBUG"	/>

				<formatter>

								<pattern-formatter	pattern="%d{HH:mm:ss,SSS}	%-5p	[%c]	(%t)	%s%E%n"	/>

				</formatter>

				<file	relative-to="jboss.server.log.dir"	path="command.log"	/>

				<suffix	value=".yyyy-MM-dd"	/>

</periodic-rotating-file-handler>

<logger	category="org.teiid.COMMAND_LOG">

				<level	name="DEBUG"	/>

				<handlers>

								<handler	name="COMMAND_FILE"	/>

				</handlers>

</logger>

See	the	Developer’s	Guide	to	develop	a	custom	logging	solution	if	file	based	logging,	or	any	other	built-in	Log4j	logging,	is	not
sufficient.

The	following	is	an	example	of	a	data	source	command	and	what	one	would	look	like	when	printed	to	the	command	log:

2012-02-22	16:01:53,712	DEBUG	[org.teiid.COMMAND_LOG]	(Worker1_QueryProcessorQueue11	START	DATA	SRC	COMMAND:	st

artTime=2012-02-22	16:01:53.712

requestID=Ku4/dgtZPYk0.5	sourceCommandID=4	txID=null	modelName=DTHCP	translatorName=jdbc-simple	sessionID=Ku4/d

gtZPYk0

principal=user@teiid-security

sql=HCP_ADDR_XREF.HUB_ADDR_ID,	CPN_PROMO_HIST.PROMO_STAT_DT	FROM	CPN_PROMO_HIST,	HCP_ADDRESS,	HCP_ADDR_XREF

WHERE	(HCP_ADDRESS.ADDR_ID	=	CPN_PROMO_HIST.SENT_ADDR_ID)	AND	(HCP_ADDRESS.ADDR_ID	=	HCP_ADDR_XREF.ADDR_ID)	AND

(CPN_PROMO_HIST.PROMO_STAT_CD	NOT	LIKE	'EMAIL%')	AND	(CPN_PROMO_HIST.PROMO_STAT_CD	<>	'SENT_EM')	AND

(CPN_PROMO_HIST.PROMO_STAT_DT	>	{ts'2010-02-22	16:01:52.928'})

Note	the	following	pieces	of	information:

modelName:	this	represents	the	physical	model	for	the	data	source	that	the	query	is	being	issued.

translatorName:	shows	type	of	translator	used	to	communicate	to	the	data	source.

principal:	shows	the	user	account	who	submitted	the	query

startTime/endTime:	the	time	of	the	action,	which	is	based	on	the	type	command	being	executed.

sql:	is	the	command	submitted	to	the	engine	or	to	the	translator	for	execution	-	which	is	NOT	necessarily	the	final	sql
command	submitted	to	the	actual	data	source.		But	it	does	show	what	the	query	engine	decided	to	push	down.

END	events	will	additionally	contain:

finalRowCount:	the	number	of	rows	returned	to	the	engine	by	the	source	query.

cpuTime:	the	number	of	nanoseconds	of	cpu	time	used	by	the	source	command.	Can	be	compared	to	the	start/end	wall	clock
times	to	determine	cpu	vs.	idle	time.

Audit	Logging

Audit	logging	captures	important	security	events.	This	includes	the	enforcement	of	permissions,	authentication	success/failures,
etc.

Logging

66

To	enable	audit	logging	to	the	default	log	location,	simply	enable	the	DEBUG	level	of	logging	for	the	org.teiid.AUDIT_LOG
context.

Additional	Logging	Information

Once	a	session	has	been	created,	each	log	made	by	Teiid	will	include	the	session	id	and	vdb	name/version	in	the	MDC	(mapped
diagnostic	context)	with	keys	of	teiid-session	and	teiid-vdb	respectively.

Any	log	in	the	scope	of	a	query	will	include	the	request	id	in	the	MDC	with	key	of	teiid-request.

Custom	loggers,	or	format	patterns,	can	take	advantage	of	this	information	to	better	correlate	log	entries.	See	for	example	Teiid
default	standalone-teiid.xml	that	uses	a	pattern	format	which	includes	the	session	id	prior	to	the	message:

<pattern-formatter	pattern="%d{HH:mm:ss,SSS}	%-5p	[%c]	(%t)	%X{teiid-session}	%s%E%n"/>

Logging

67

Clustering	in	Teiid
Since	Teiid	is	installed	in	WildFly,	there	is	no	additional	configuration	needed	beyond	what	was	performed	when	Teiid	is	setup	in
Domain	Mode.	See	the	Domain	Mode	section	in	the	Teiid	Installation	Guide.	Just	make	sure	that	you	installed	Teiid	in	every
WildFly	node	and	started	all	WildFly	instances	in	the	Domain	mode	that	to	be	a	part	of	the	cluster.

Typically	users	create	clusters	to	improve	the	performance	of	the	system	through:

Load	Balancing:	Take	look	at	HAProxy	below	and	in	the	Client	Developer’s	Guide	on	how	to	use	simple	load	balancing
between	multiple	nodes.

Fail	Over:	Take	look	at	the	Client	Developer’s	Guide	on	how	to	use	fail	over	between	multiple	nodes.

Distributed	Caching:	This	is	automatically	done	for	you	once	you	configure	it	as	specified	above.

Event	distribution:	metadata	and	data	modifications	will	be	distributed	to	all	cluster	members.

In	the	Domain	mode,	the	only	way	a	user	can	deploy	any	artifacts	is	using	either	CLI	or	using	the	Admin	API.	Copying	VDB
directly	into	the	"deployments"	directory	is	not	supported.

Note
some	load	balancers	have	timeouts	that	cannot	be	adjusted.	You	may	need	to	adjust	the	tcp_keepalive_time	on
your	client	OS.	The	default	is	typically	2	hours,	which	is	much	too	long	in	many	cases.	See	Custom
Configuration	of	TCP	Socket	Keep-Alive	Timeouts.

HAProxy
HAProxy	may	be	used	for	load-balancing	and	high	availability.	A	good	tutorial	is	located	at	Load	Balancing	JDV-HAProxy	or	see
Luigi	Fugaro’s	example.

The	load	balancer	should	use	an	algorithm	that	supports	sticky	connections	as	Teiid	sessions	as	specific	to	the	original	host.	For
HAProxy	it	is	recommended	that	you	use	leastconn	or	source.

Clustering	in	Teiid

68

http://coryklein.com/tcp/2015/11/25/custom-configuration-of-tcp-socket-keep-alive-timeouts.html
http://blog.everythingjboss.org/articles/Load-Balancing-JDV-HAProxy/
https://github.com/foogaro/jdv-play

Monitoring
Teiid	provides	information	about	its	current	operational	state.	This	information	can	be	useful	in	tuning,	monitoring,	and	managing
load	and	through-put.	The	runtime	data	can	be	accessed	using	administrative	tools	(i.e.	Admin	Console	or	Admin	API).

Query/Session	details:

Name Description

Current	Sessions List	current	connected	sessions

Current	Request List	current	executing	requests

Current	Transactions List	current	executing	transactions

Query	Plan Retrieves	the	query	plan	for	a	specific	request

There	are	administrative	options	for	terminating	sessions,	queries,	and	transactions.

Metrics:

Session/Query

Name Property Description Comment

Session	Count sessionCount
Indicates	the	number	of
user	connections
currently	active

To	ensure	number	of
sessions	are	not
restricted	at	peak	times,
check	max-sessions-
allowed	(default	10000)
is	set	accordingly	and
review	sessions-
expiration-timelimit

Query	Count queryCount Indicates	the	number	of
queries	currently	active.

Active	Query	Plan
Count

ENGINE_STATISTIC.active-
plans-count

Number	of	query	plans
currently	being	processed

To	ensure	maximum
through-put,	see	the
QueryEngine	section	in
Threading	on	tuning.

Waiting	Query	Plan
Count

ENGINE_STATISTIC.waiting-
plans-count

Number	of	query	plans
currently	waiting

Max	Waiting	Query	Plan
Watermark

ENGINE_STATISTIC.max-
waitplan-watermark

The	maximum	number	of
query	plans	that	have
been	waiting	at	one	time,
since	the	last	time	the
server	started

Monitoring

69

Long	Running	Queries longRunningQueries

List	current	executing
queries	that	have
surpassed	the	query
threshold(query-
threshold-in-seconds).

Setup	alert	to	warn	when
one	or	more	queries	are
consuming	resources	for
an	extended	period	of
time.	If	running	too	long,
an	option	is	to	cancel
request	or	increase
threshold.

Buffer	Manager

For	tuning	suggestions,	see	Memory	Management.

Name Property Description Comment

Disk	Write	Count ENGINE_STATISTIC.buffermgr-
disk-write-count

Disk	write	count	for	the
buffer	manager.

Disk	Read	Count ENGINE_STATISTIC.buffermgr-
disk-read-count

Disk	read	count	for	the
buffer	manager.

Cache	Write	Count ENGINE_STATISTIC.buffermgr-
cache-write-count

Cache	write	count	for
the	buffer	manager.

Cache	Read	Count ENGINE_STATISTIC.buffermgr-
cache-read-count

Cache	read	count	for	the
buffer	manager.

Disk	Space	Used	(MB) ENGINE_STATISTIC.buffermgr-
diskspace-used-mb

Indicates	amount	of
storage	space	currently
used	by	buffer	files

Setup	alert	to	warn	when
used	buffer	space	is	at
an	unacceptable	level,
based	on	the	setting	of
max-buffer-space

Total	memory	in	use
(KB)

ENGINE_STATISTIC.total-
memory-inuse-kb

Estimate	of	the	current
memory	usage	in
kilobytes.

Total	memory	in	use	by
active	plans	(KB)

ENGINE_STATISTIC.total-
memory-inuse-active-plans-kb

Estimate	of	the	current
memory	usage	by	active
plans	in	kilobytes

Plan/Result	Cache

For	tuning	suggestions,	see	Cache	Tuning.

Name Property Description

Prepared	Plan	Cache	Size PREPARED_PLAN_CACHE.total-entries Current	number	of	entries	in
cache.

Prepared	Plan	Cache	#	of
Requests PREPARED_PLAN_CACHE.request-count Total	number	of	requests

made	against	cache.

Prepared	Plan	Cache	Hit
Ratio	% PREPARED_PLAN_CACHE.hit-ratio Percentage	of	positive	cache

hits

ResultSet	Cache	Size
QUERY_SERVICE_RESULT_SET_CACHE.total-
entries

Current	number	of	entries	in
cache.

Monitoring

70

ResultSet	Cache	#	of
Requests

QUERY_SERVICE_RESULT_SET_CACHE.request-
count

Total	number	of	requests
made	against	cache.

ResultSet	Cache	Hit	Ratio
% QUERY_SERVICE_RESULT_SET_CACHE.hit-ratio Percentage	of	positive	cache

hits.

Monitoring

71

Performance	Tuning
Performance	tuning	can	be	done	by	changing	the	property	settings	defined	in	the	teiid	subsystem	and	its	sub	components.

Execute	the	following	command	on	CLI	to	see	the	possible	settings	at	the	root	of	the	teiid	subsystem:

/subsystem=teiid:read-resource-description

There	are	several	categories	of	properties:

1.	 Memory	Management

2.	 BufferManager:	all	properties	that	start	with	"buffer-service"

3.	 Cache	Tuning:	all	properties	that	start	with	"resultset-cache"	or	"preparedplan-cache"

4.	 Threading

5.	 LOBs

6.	 Other	Considerations

Socket	Transport	settings	for	one	of	the	supported	transport	types	(i.e.,	jdbc,	odbc,	embedded)	can	be	viewed	by	executing	the
following	command:

/subsystem=teiid/transport={jdbc	|	odbc	|	embedded}:read-resource-description

Performance	Tuning

72

Memory	Management
The	BufferManager	is	responsible	for	tracking	both	memory	and	disk	usage	by	Teiid.	Configuring	the	BufferManager	properly
along	with	data	sources	and	threading	ensures	high	performance.	In	most	instances	though	the	default	settings	are	sufficient	as
they	will	scale	with	the	JVM	and	consider	other	properties	such	as	the	setting	for	max	active	plans.

Execute	following	command	on	CLI	to	find	all	possible	settings	on	BufferManager:

/subsystem=teiid:read-resource

All	the	properties	that	start	with	"buffer-manager"	used	to	configure	BufferManager.	Shown	below	are	the	CLI	write	attribute
commands	to	change	BufferManager’s	settings	(all	show	the	default	setting):

/subsystem=teiid:write-attribute(name=buffer-manager-inline-lobs,value=true)

/subsystem=teiid:write-attribute(name=buffer-manager-processor-batch-size,value=256)

/subsystem=teiid:write-attribute(name=buffer-manager-heap-max-processing-kb,value=-1)

/subsystem=teiid:write-attribute(name=buffer-manager-heap-max-reserve-mb,value=-1)

/subsystem=teiid:write-attribute(name=buffer-manager-storage-enabled,value=true)

/subsystem=teiid:write-attribute(name=buffer-manager-storage-max-object-size-kb,value=8196)

/subsystem=teiid:write-attribute(name=buffer-manager-fixed-memory-buffer-space-mb,value=-1)

/subsystem=teiid:write-attribute(name=buffer-manager-fixed-memory-buffer-off-heap,value=false)

/subsystem=teiid:write-attribute(name=buffer-manager-disk-max-space-mb,value=51200)

/subsystem=teiid:write-attribute(name=buffer-manager-disk-encrypt-files,value=false)

/subsystem=teiid:write-attribute(name=buffer-manager-disk-max-open-files,value=64)

/subsystem=teiid:write-attribute(name=buffer-manager-disk-max-file-size-mb,value=2048)

Note It	is	not	recommend	that	to	change	these	properties	until	there	is	an	understanding	of	the	properties	(elaborated
below)	and	any	potential	issue	that	is	being	experienced.

Some	of	BufferManager’s	properties	are	described	below.	Note	that	the	performance	tuning	advice	is	highlighted	in	info	boxes.

General	Properties

processor-batch-size	(default	256)	-	Specifies	the	target	row	count	of	a	batch	of	the	query	processor.	A	batch	is	used	to	represent
both	linear	data	stores,	such	as	saved	results,	and	temporary	table	pages.	Teiid	will	adjust	the	processor-batch-size	to	a	working
size	based	upon	an	estimate	of	the	data	width	of	a	row	relative	to	a	nominal	expectation	of	2KB.	The	base	value	can	be	doubled	or
halved	up	to	three	times	depending	upon	the	data	width	estimation.	For	example	a	single	small	fixed	width	(such	as	an	integer)
column	batch	will	have	a	working	size	of	processor-batch-size	*	8	rows.	A	batch	with	hundreds	of	variable	width	data	(such	as
string)	will	have	a	working	size	of	processor-batch-size	/	8	rows.	Any	increase	in	the	processor	batch	size	beyond	the	first
doubling	should	be	accompanied	with	a	proportional	increase	in	the	max-storage-object-size	to	accommodate	the	larger	storage
size	of	the	batches.

Note

Additional	considerations	are	needed	if	large	VM	sizes	and/or	datasets	are	being	used.	Teiid	has	a	non-negligible
amount	of	overhead	per	batch/table	page	on	the	order	of	100-200	bytes.	If	you	are	dealing	with	datasets	with
billions	of	rows	and	you	run	into	memory	issues,	then	after	examining	the	root	cause	if	you	see	that	it’s	solely
related	to	memory	held	by	a	significant	number	of	batch	references,	then	consider	increasing	the	processor-batch-
size	to	force	the	allocation	of	larger	batches	and	table	pages.	A	general	guideline	would	be	to	double	processor-
batch-size	for	every	doubling	of	the	effective	heap	for	Teiid	beyond	4	GB	-	processor-batch-size	=	512	for	an	8
GB	heap,	processor-batch-size	=	1024	for	a	16	GB	heap,	etc.

Memory	Management

73

inline-lobs	(default	true)	-	Small	lobs	will	be	stored	in	their	batch	directly	rather	than	managed	out	of	band.	Should	generally	be
left	as	true	to	minimize	the	fetch	costs	of	small	lobs.

Heap	Properties

The	amount	of	estimated	heap	in	direct	object	references	to	batches	/	pages	held	by	the	BufferManager	can	be	adjusted.

heap-max-reserve-mb	(default	-1)	-	setting	determines	the	total	size	in	kilobytes	of	batches	that	can	be	held	by	the
BufferManager	in	memory.	This	number	does	not	account	for	persistent	batches	held	by	soft	(such	as	index	pages)	or	weak
references.	The	default	value	of	-1	will	auto-calculate	a	typical	max	based	upon	the	max	heap	available	to	the	VM.	The	auto-
calculated	value	assumes	a	64bit	architecture	and	will	limit	buffer	usage	to	40%	of	the	first	gigabyte	of	memory	beyond	the	first
300	megabytes	(which	are	assumed	for	use	by	the	AS	and	other	Teiid	purposes)	and	50%	of	the	memory	beyond	that.	The
additional	caveat	here	is	that	if	the	size	of	the	memory	buffer	space	is	not	specified,	then	it	will	effectively	be	allocated	out	of	the
max	reserve	space.	A	small	adjustment	is	also	made	to	the	max	reserve	to	account	for	batch	tracking	overhead.

Note

With	default	settings	and	an	8GB	VM	size[*],	then	heap-max-reserve-mb	will	be:	(1024-300)	*	0.4)	+	(7	*	1024
*	0.5	=	4373.6	MB	before	considering	the	overhead	for	persistent	batches	or	the	fixed	memory	buffer.	The	fixed
memory	buffer	will	by	default	use	40%	of	that	initial	calculation.	Once	additional	overhead	is	removed,	the	actual
heap-max-reserve-mb	will	be	around	2624	MB.

[*]	Teiid	will	use	the	max	memory	reported	by	the	runtime.	This	value	may	be	lower	than	the	Xmx	setting	used	as	a	VM	argument
as	the	VM	will	adjust	for	necessary	overheads.

The	BufferManager	automatically	triggers	the	use	of	a	canonical	value	cache	if	enabled	when	more	than	25%	of	the	reserve	is	in
use.	This	can	dramatically	cut	the	memory	usage	in	situations	where	similar	value	sets	are	being	read	through	Teiid,	but	does
introduce	a	lookup	cost.	If	you	are	processing	small	or	highly	similar	datasets	through	Teiid,	and	wish	to	conserve	memory,	you
should	consider	enabling	value	caching.

Warning

Memory	consumption	can	be	significantly	more	or	less	than	the	nominal	target	depending	upon	actual	column
values	and	whether	value	caching	is	enabled.	Large	non	built-in	type	objects	can	exceed	their	default	size
estimate.	If	an	out	of	memory	errors	occur,	then	set	a	lower	heap-max-reserve-mb	value.	Also	note	that	source
lob	values	are	held	by	memory	references	that	are	not	cleared	when	a	batch	is	persisted.	With	heavy	lob	usage
you	should	ensure	that	buffers	of	other	memory	associated	with	lob	references	are	appropriately	sized.

heap-max-processing-kb	(default	-1)	-	setting	determines	the	total	size	in	kilobytes	of	batches	that	can	be	guaranteed	for	use	by
one	active	plan	and	may	be	in	addition	to	the	memory	held	based	on	heap-max-reserve-mb.	Typical	minimum	memory	required
by	Teiid	when	all	the	active	plans	are	active	is	#active-plans*heap-max-processing-kb.	The	default	value	of	-1	will	auto-calculate
a	typical	max	based	upon	the	max	heap	available	to	the	VM	and	max	active	plans.	The	auto-calculated	value	assumes	a	64bit
architecture	and	will	limit	nominal	processing	batch	usage	to	less	than	10%	of	total	memory.

Note

With	default	settings	including	20	active-plans	and	an	8GB	VM	size,	then	heap-max-processing-kb	will	be:	(.07
*	8	*	1024)/20^.8	=	537.4	MB/11	=	52.2	MB	or	53,453	KB	per	plan.	This	implies	a	nominal	range	between	0
and	1060	MB	that	may	be	reserved	with	roughly	53	MB	per	plan.	You	should	be	cautious	in	adjusting	heap-max-
processing-kb.	Typically	it	will	not	need	adjusted	unless	you	are	seeing	situations	where	plans	seem	memory
constrained	with	low	performing	large	sorts.

Storage	Properties
The	tiers	of	memory	below	the	heap	hold	the	batches	/	pages	in	a	denser	serialized	columnar	form.	The	lowest	level	is	disk
storage.	Fronting	disk	is	a	fixed	memory	buffer,	which	can	be	allocated	on	or	off	heap,	that	acts	as	a	serialization	buffer	and	cache
for	reads/writes	to	disk.

storage-enabled	(default	true)	-	If	disabled,	batches	/	pages	that	are	pushed	to	the	storage	layer	are	instead	held	in	memory.	Also
all	temporary	lob	space	will	be	allocated	from	memory	as	well.	Generally	only	useful	in	constrained	or	testing	situations.

Memory	Management

74

storage-max-object-size-kb	(default	8196	or	8MB)	-	The	maximum	size	of	a	buffered	managed	object	in	bytes	and	represents	the
individual	batch	page	size.	If	the	processor-batch-size	is	increased	and/or	you	are	dealing	with	extremely	wide	result	sets	(several
hundred	columns),	then	the	default	setting	of	8MB	for	the	max-storage-object-size	may	be	too	low.	The	inline-lobs	setting	also
can	increase	the	size	of	batches	containing	small	lobs.	The	sizing	for	max-storage-object-size	is	in	terms	of	serialized	size,	which
will	be	much	closer	to	the	raw	data	size	than	the	Java	memory	footprint	estimation	used	for	max-reserved-mb.	max-storage-
object-size	should	not	be	set	too	large	relative	to	memory-buffer-space	since	it	will	reduce	the	performance	of	the	memory	buffer.
The	memory	buffer	supports	only	1	concurrent	writer	for	each	max-storage-object-size	of	the	memory-buffer-space.	Note	that	this
value	does	not	typically	need	to	be	adjusted	unless	the	processor-batch-size	is	adjusted,	in	which	case	consider	adjusting	it	in
proportion	to	the	increase	of	the	processor-batch-size.

Note
If	exceptions	occur	related	to	missing	batches	and	"TEIID30001	Max	block	number	exceeded"	is	seen	in	the
server	log,	then	increase	the	storage-max-object-size-kb	to	support	larger	storage	objects.		Alternatively	you	could
make	the	processor-batch-size	smaller.

Fixed	Memory	Properties

fixed-memory-buffer-space-mb	(default	-1)	-	This	controls	the	amount	of	on	or	off	heap	memory	allocated	as	byte	buffers	for
use	by	the	Teiid	buffer	manager	measured	in	megabytes.	This	setting	defaults	to	-1,	which	automatically	determines	a	setting
based	upon	whether	it	is	on	or	off	heap	and	the	value	for	heap-max-reserve-mb.	The	memory	buffer	supports	only	1	concurrent
writer	for	each	storage-max-object-size-mb	of	the	fixed-memory-buffer-space-mb.	Any	additional	space	serves	as	a	cache	for	the
serialized	for	of	batches.

Note

When	left	at	the	default	setting	the	calculated	memory	buffer	space	will	be	approximately	40%	of	the	heap-max-
reserve-mb	size.	If	the	memory	buffer	is	on	heap	and	the	heap-max-reserve-mb	is	automatically	calculated,	then
the	memory	buffer	space	will	be	subtracted	out	of	the	effective	heap-max-reserve-mb.	If	the	memory	buffer	is	off
heap	and	the	heap-max-reserve-mb	is	automatically	calculated,	then	it’s	size	will	be	reduced	slightly	to	allow	for
effectively	more	working	memory	in	the	vm.

fixed-memory-buffer-off-heap	(default	false)	-	Setting	fixed-memory-buffer-off-heap	to	"true"	will	allocate	the	Teiid	memory
buffer	off	heap.	Depending	on	whether	your	installation	is	dedicated	to	Teiid	and	the	amount	of	system	memory	available,	this
may	be	preferable	to	on-heap	allocation.	The	primary	benefit	is	additional	memory	usage	for	Teiid	without	additional	garbage
collection	tuning.	This	becomes	especially	important	in	situations	where	more	than	32GB	of	memory	is	desired	for	the	VM.	Note
that	when	using	off-heap	allocation,	the	memory	must	still	be	available	to	the	java	process	and	that	setting	the	value	of	memory-
buffer-space	too	high	may	cause	the	VM	to	swap	rather	than	reside	in	memory.	With	large	off-heap	buffer	sizes	(greater	than
several	gigabytes)	you	may	also	need	to	adjust	VM	settings.

Note

Oracle/Sun	VM	-	the	relevant	VM	settings	are	MaxDirectMemorySize	and	UseLargePages.	For	example	adding:
'-XX:MaxDirectMemorySize=12g	-XX:+UseLargePages'	to	the	VM	process	arguments	would	allow	for	an
effective	allocation	of	approximately	an	11GB	Teiid	memory	buffer	(the	fixed-memory-buffer-space-mb
setting)	accounting	for	any	additional	direct	memory	that	may	be	needed	by	the	AS	or	applications	running	in	the
AS.

Disk	Properties

disk-max-space-mb	(default	51200)	-	For	table	page	and	result	batches	the	buffer	manager	will	have	a	limited	number	of	files
that	are	dedicated	to	a	particular	storage	size.	However,	as	mentioned	in	the	installation,	creation	of	Teiid	lob	values	(for	example
through	SQL/XML)	will	typically	create	one	file	per	lob	once	the	lob	exceeds	the	allowable	in	memory	size	of	32KB.	In	heavy
temporary	lob	usage	scenarios,	consider	pointing	the	buffer	directory	on	a	partition	that	is	routinely	defragmented.	By	default
Teiid	will	use	up	to	50GB	of	disk	space.	This	is	tracked	in	terms	of	the	number	of	bytes	written	by	Teiid.	For	large	data	sets,	you
may	need	to	increase	the	disk-max-space-mb	setting.

disk-max-file-size-mb	(default	2048)	-	Each	intermediate	result	buffer,	temporary	LOB,	and	temporary	table	is	stored	in	its	own
set	of	buffer	files,	where	an	individual	file	is	limited	to	disk-max-file-size-mb	megabytes.	Consider	increasing	the	storage	space
available	to	all	such	files	by	increasing	disk-max-space-mb,	if	your	installation	makes	use	of	internal	materialization,	makes	heavy
use	of	SQL/XML,	or	processes	large	row	counts.

Memory	Management

75

Limitations

It’s	also	important	to	keep	in	mind	that	Teiid	has	memory	and	other	hard	limits	which	breaks	down	along	several	lines	in	terms	of
#	of	storage	objects	tracked,	disk	storage,	streaming	data	size/row	limits,	etc.

1.	 The	buffer	manager	has	a	max	addressable	space	of	16	terabytes	-	but	due	to	fragmentation	you’d	expect	that	the	max	usable
would	be	less.	This	is	the	maximum	amount	of	storage	available	to	Teiid	for	all	temporary	lobs,	internal	tables,	intermediate
results,	etc.

2.	 The	max	size	of	an	object	(batch	or	table	page)	that	can	be	serialized	by	the	buffer	manager	is	32	GB	-	but	you	should
approach	that	limit	(the	default	limit	is	8	MB).	A	batch/page	is	set	or	rows	that	are	flowing	through	Teiid	engine	and	is
dynamically	scaled	based	upon	the	estimated	data	width	so	that	the	expected	memory	size	is	consistent.

3.	 The	heap-max-processing-kb	and	heap-max-reserve-mb	are	based	upon	memory	footprint	estimations	and	not	exact	sizes	-
actual	memory	usage	and	garbage	collection	cycles	are	influenced	by	a	lot	of	other	factors.

4.	 The	maximum	row	count	for	any	interface,	JDBC/ODBC/OData,	is	2^31-1	rows.

Handling	a	source	that	has	tera/petabytes	of	data	doesn’t	by	itself	impact	Teiid	in	any	way.	What	matters	is	the	processing
operations	that	are	being	performed	and/or	how	much	of	that	data	do	we	need	to	store	on	a	temporary	basis	in	Teiid.	With	a	simple
forward-only	query,	Teiid	will	return	a	petabytes	of	data	with	minimal	memory	usage.

Other	Limits

To	prevent	run	away	memory	or	disk	consumption:

1.	 Error	code	TEIID31260.	A	single	lob	(xml,	clob,	blob,	json)	created	on	the	server	side	is	limited	to	the	.25	*	(max	buffer
space)	/	(max	active	plans).

2.	 Error	code	TEIID31261.	A	single	table	or	tuple	buffer	is	limited	to	a	portion	of	the	total	max	reserve,	fixed	memory	buffer,
and	disk	space.

If	needed	an	administrator	can	further	restrict	memory	usage	from	each	session	by	setting	the	system	property
org.teiid.maxSessionBufferSizeEstimate	to	the	desired	size	in	bytes.	This	is	based	upon	the	memory	footprint	estimate	and	may
not	correspond	exactly	to	heap	or	disk	consumption.

Other	Considerations	for	Sizing

Each	batch/table	page	requires	an	in	memory	cache	entry	of	approximately	~	128	bytes	-	thus	the	total	tracked	max	batches	are
limited	by	the	heap	and	is	also	why	we	recommend	to	increase	the	processing	batch	size	on	larger	memory	or	scenarios	making
use	of	large	internal	materializations.	The	actual	batch/table	itself	is	managed	by	buffer	manager,	which	has	layered	memory
buffer	structure	with	spill	over	facility	to	disk.

Using	internal	materialization	is	based	on	the	BufferManager.	BufferManager	settings	may	need	to	be	updated	based	upon	the
desired	amount	of	internal	materialization	performed	by	deployed	vdbs.

If	an	out	of	memory	error	occurs	it	is	best	to	first	capture	a	heap	dump	to	determine	where	memory	is	being	held	-	tweaking	the
BufferManager	settings	may	not	be	necessary	depending	upon	the	cause.

Common	Configuration	Scenarios
In	addition	to	scenarios	outlined	above,	a	common	scenario	would	be	to	minimize	the	amount	of	on	heap	space	consumed	by
Teiid.	This	can	be	done	by	moving	the	memory	buffer	to	off	heap	with	the	fixed-memory-buffer-off-heap	setting	or	by	restricting
the	heap-max-reserve-mb	setting.	Reducing	the	heap-max-processing-kb	setting	should	generally	not	be	necessary,	unless	there	is
a	need	to	severely	restrict	the	heap	usage	beyond	the	heap-max-reserve-mb	setting.

Memory	Management

76

Memory	Management

77

Transport

max-socket-threads	(default	0)	-	The	max	number	of	threads	dedicated	to	the	initial	request	processing.	Zero	indicates	to	use	the
system	default	of	max	available	processors.	All	the	access	to	Teiid	(JDBC,	ODBC,	etc)	is	controlled	by	"transport"	element	in	the
configuration.	Socket	threads	are	configured	for	each	transport.	They	handle	NIO	non-blocking	IO	operations	as	well	as	directly
servicing	any	operation	that	can	run	without	blocking.	For	longer	running	operations,	the	socket	threads	queue	with	work	the
query	engine.

Query	Engine

max-threads	(default	64)	-	The	query	engine	has	several	settings	that	determine	its	thread	utilization.		max-threads		sets	the	total
number	of	threads	available	in	the	process	pool	for	query	engine	work	(processing	plans,	transaction	control	operations,
processing	source	queries,	etc.).	You	should	consider	increasing	the	maximum	threads	on	systems	with	a	large	number	of
available	processors	and/or	when	it’s	common	to	issue	non-transactional	queries	that	issue	a	large	number	of	concurrent	source
requests.

max-active-plans	(default	20)	-	Should	always	be	smaller	than	max-threads.	By	default,	thread-count-for-source-concurrency	is
calculated	by	(max-threads	/	max_active_plans)	*	2	to	determine	the	threads	available	for	processing	concurrent	source	requests
for	each	user	query.	Increasing	the	max-active-plans	should	be	considered	for	workloads	with	a	high	number	of	long	running
queries	and/or	systems	with	a	large	number	of	available	processors.	If	memory	issues	arise	from	increasing	the	max-threads	and
max-active-plans,	then	consider	decreasing	the	amount	of	heap	held	by	the	buffer	manager	or	decreasing	the	processor-batch-size
to	limit	the	base	number	of	memory	rows	consumed	by	each	plan.

thread-count-for-source-concurrency	(default	0)	-	Should	always	be	smaller	than	max-threads,	sets	the	number	of	concurrently
executing	source	queries	per	user	request.	0	indicates	to	use	the	default	calculated	value	based	on	2	*	(max-threads	/	max-active-
plans).	Setting	this	to	1	forces	serial	execution	of	all	source	queries	by	the	processing	thread.	Any	number	greater	than	1	limits	the
maximum	number	of	concurrently	execution	source	requests	according.	Using	the	respective	defaults,	this	means	that	each	user
request	would	be	allowed	6	concurrently	executing	source	queries.	If	the	default	calculated	value	is	not	applicable	to	your
workload,	for	example,	if	you	have	queries	that	generate	more	concurrent	long	running	source	queries,	you	should	adjust	this
value.

time-slice-in-milliseconds	(default	2000)	-	Provides	course	scheduling	of	long	running	processor	plans.	Plans	whose	execution
exceed	a	time	slice	will	be	re-queued	for	additional	processing	to	allow	for	other	plans	to	be	initiated.	The	time	slice	is	from	the
perspective	of	the	engine	processing	thread.	This	value	is	not	honored	exactly	as	the	plan	may	not	be	at	a	re-startable	point	when
the	time	slice	expires.	This	is	not	a	replacement	for	the	thread	scheduling	performed	by	Java	and	the	operating	system,	rather	it
just	ensures	that	Teiid	allows	other	work	to	be	started	if	the	current	set	of	active	plans	includes	long	running	queries.

Async	Operations

async-thread-pool-max-thread-count	(default	10)	-	Controls	the	number	of	threads	available	for	system	level	async	operations,
such	as	metadata	load.

Threading

78

Cache	Tuning
Caching	can	be	tuned	for	cached	results	(including	user	query	results	and	procedure	results)	and	prepared	plans	(including	user
and	stored	procedure	plans).	Even	though	it	is	possible	to	disable	or	otherwise	severely	constrain	these	caches,	this	would
probably	never	be	done	in	practice	as	it	would	lead	to	poor	performance.

Cache	statistics	can	be	obtained	through	the	Admin	Console	or	the	AdaminAPI.	The	statistics	can	be	used	to	help	tune	cache
parameters	and	ensure	a	hit	ratio.

Plans	are	currently	fully	held	in	memory	and	may	have	a	significant	memory	footprint.	When	making	extensive	use	of	prepared
statements	and/or	virtual	procedures,	the	size	of	the	plan	cache	may	be	increased	proportionally	to	number	of	gigabytes	intended
for	use	by	Teiid.

While	the	result	cache	parameters	control	the	cache	result	entries	(max	number,	eviction,	etc.),	the	result	batches	themselves	are
accessed	through	the	BufferManager.	If	the	size	of	the	result	cache	is	increased,	you	may	need	to	tune	the	BufferManager
configuration	to	ensure	there	is	enough	buffer	space.

Result	set	and	prepared	plan	caches	have	their	entries	invalidated	by	data	and	metadata	events.	By	default	these	events	are
captured	by	running	commands	through	Teiid.	See	the	Developers	Guide	for	further	customization.	Teiid	stores	compiled	forms	of
update	plans	or	trigger	actions	with	the	prepared	plan,	so	that	if	metadata	changes,	for	example	by	disabling	a	trigger,	changes
may	take	effect	immediately.	The	default	max-staleness	for	result	set	caching	is	0	seconds	or	immediate	invalidation.	Consider
increasing	this	value	to	increase	result	set	cache	hits.	Even	with	a	setting	of	0,	full	transactional	consistency	is	not	guaranteed	-
rather	the	underlying	Infinispan	cache	must	be	configured	with	a	transaction	mode	of	XA.

Cache	Tuning

79

Socket	Transports
Teiid	separates	the	configuration	of	its	socket	transports	for	JDBC	and	pg/ODBC.	You	have	the	option	of	also	configuring	secure
versions	of	these	transports.	Typical	installations	will	not	need	to	adjust	the	default	thread	and	other	low	level	settings.

The	default	values	for	input-buffer-size	and	output-buffer-size	are	set	to	0,	which	will	use	the	system	default.	Before	adjusting
these	values,	keep	in	mind	that	each	JDBC/ODBC	connection	will	create	a	new	socket.	Setting	these	values	to	a	large	buffer	size
should	only	be	done	if	the	number	of	clients	are	constrained.	All	JDBC/ODBC	socket	operations	are	non-blocking,	so	setting	the
number	of	max-socket-threads	higher	than	the	maximum	effective	parallelism	of	the	machine	should	not	result	in	greater
performance.	The	default	value	0	indicates	the	system	default	of	2	*	available	processors	will	be	used.

Note
If	you	are	using	more	than	the	2	default	socket	transports	on	a	machine	with	a	high	number	of	actual	or	virtual
cores,	you	may	need	to	consider	manually	configuring	the	max	threads	for	each	to	transport	to	cut	down	on	the
number	of	threads	created.

JDBC	clients	may	need	to	adjust	low-level	transport	values,	in	addition	to	SSL	Client	Connection	properties	via	a	teiid-client-
settings.properties	file.	This	file	also	contains	buffer,	socket	pooling,	and	maxObjectSize	(effectively	the	maximum	response	size)
settings.

Socket	Transports

80

LOBs
LOBs	and	XML	documents	are	streamed	from	the	Teiid	Server	to	the	Teiid	JDBC	API.			Normally,	these	values	are	not
materialized	in	the	server	memory	-	avoiding	potential	out-of-memory	issues.	When	using	style	sheets	and	non-streaming	XQuery
whole	XML	documents	must	be	materialized	on	the	server.	Even	when	using	the	XMLQuery	or	XMLTable	functions	and
document	projection	is	applied,	memory	issues	may	occur	for	large	documents.

LOBs	are	broken	into	pieces	when	being	created	and	streamed.		The	maximum	size	of	each	piece	when	fetched	by	the	client	can
be	configured	with	the	"lob-chunk-size-in-kb"	property	on	Teiid	configuration.	The	default	value	is	100	KB.	When	dealing	with
extremely	large	LOBs,	you	may	consider	increasing	this	value	to	decrease	the	amount	of	round-trips	to	stream	the	result.	Setting
the	value	too	high	may	cause	the	server	or	client	to	have	memory	issues.

Source	LOB	values	(LOBs	from	physical	sources)	are	typically	accessed	by	reference,	rather	than	having	the	value	copied	to	a
temporary	location.	Thus	care	must	be	taken	to	ensure	that	source	LOBs	are	returned	in	a	memory-safe	manner.	This	caution	is
more	for	the	source	driver	vendors	to	not	to	consume	VM	memory	for	LOBs.	Translators	via	the	copyLobs	property	can	instead
copy	lob	values	to	a	temporary	location.

Cached	lobs	will	be	copied	rather	than	relying	on	the	reference	to	the	source	lob.

Temporary	lobs	created	by	Teiid	will	be	cleaned	up	when	the	result	set	or	statement	is	closed.	To	rely	on	implicit	garbage
collection	based	cleanup	instead	of	statement	close,	the	Teiid	session	variable	clean_lobs_onclose	can	be	set	to	false	(by	issuing
the	query	"SELECT	teiid_session_set('clean_lobs_onclose',	false)"	-	which	can	be	done	for	example	via	the	new	connection	sql	in
the	datasource	definition).	This	can	be	used	for	local	client	scenarios	that	relied	on	the	implicit	behavior.

LOBs

81

Other	Considerations
When	using	Teiid	in	a	development	environment,	you	may	consider	setting	the	max-source-rows-allowed	property	to	reasonably
small	level	value	(e.g.	10000)	to	prevent	large	amounts	of	data	from	being	pulled	from	sources.	Leaving	the	exception-on-max-
source-rows	set	to	"true"	will	alert	the	developer	through	an	exception	that	an	attempt	was	made	to	retrieve	more	than	the
specified	number	of	rows.

Other	Considerations

82

Teiid	Console
Teiid	Console	is	a	web	based	administrative	and	monitoring	tool	for	Teiid.	Teiid	Console	is	extension	of	WildFly	console	that	is
built	using	GWT	based	technologies.	There	are	two	primary	Teiid	kits	-	an	overlay	for	an	existing	WildFly	install,	and	an	all	in
one	that	includes	the	WildFly	server	and	Teiid	console.

The	Web	Console	is	now	maintenance	only.	New	work	related	to	web	tooling	will	be	alligned	with	OpenShift	efforts.

Installation

If	you	start	with	just	the	overlay,	you	may	separately	install	the	Teiid	Console.	Unzip	the	contents	over	the	WildFly	root	directory
and	all	the	required	files	will	be	overlayed	correctly	to	install	Teiid	Console.	See	all	downloads	on	teiid.io.

Management	User

The	Teiid	Console,	by	default	is	secured,	so	you	would	need	a	management	realm	user	id	and	password	to	log	in.	In	the
<install>/bin	directory,	use

Adding	a	management	user	in	linux

./add-user.sh

Adding	a	management	user	in	Windows

add-user.bat

then	follow	the	prompts	to	create	Management	Realm	user.	Once	you	have	created	a	management	user,	you	need	to	use	these
credentials	to	log	in	to	the	Teiid	Console.

Accessing	The	Console

If	you	have	started	your	WildFly	in	default	mode,	then	you	can	access	the	Teiid	Console	at
http://localhost:9990/console/App.html.	If	you	have	altered	the	binding	or	port	numbers	then	modify	the	address	accordingly.

Configuration

Click	on	the	configuration	tab	at	the	top	of	the	main	console	screen.	Under	Subsystems	click	on	"Teiid"	in	left	navigation	tree.
There	you	have	four	choices:

Query	Engine	-	view	and	configure	core	Teiid	engine	properties.

Translators	-	view,	add	and	remove	the	Translators	configured	in	Teiid.

Transports	-	view,	add	and	remove	transports	to	the	Teiid	engine.

Logging	-	toggle	command	/	audit	/	trace	logging.

Teiid	Console

83

http://teiid.io/teiid_runtimes/teiid_wildfly/downloads/
http://localhost:9990/console/App.html

Using	this	view	you	can	change	any	configuration	value	of	Teiid.	Note	that	various	different	configuration	properties	are	sub-
divided	into	different	tabs.	You	can	click	"Need	Help"	link	on	these	pages	to	see	the	description	of	each	field	on	the	page.

Note Server	Restart	-	some	properties	require	you	to	restart	the	server	before	they	can	take	effect.

Runtime	View
Runtime	view	shows	runtime	information	about	WildFly	and	the	subsystems	including	Teiid.	Click	on	the	Runtime	tab,	select	the
Standalone	Server	(or	whatever	server	is	appropriate),	select	Subsystems,	then	Teiid.

Using	this	page	user	can	view	many	different	settings	in	the	context	a	VDB.	All	the	VDBs	deployed	in	the	server	are	shown	in	top
level	table.	When	you	select	and	highlight	a	VDB,	more	details	about	that	VDB	are	displayed	in	the	sub-tabs	below.	Each	of	these
sub-tabs	are	divided	into	grouping	of	the	functionality.

Teiid	Console

84

Summary

This	tab	shows	the	description	and	any	properties	associated	with	VDB,	along	with	any	other	VDBs	this	VDB	imports.	This	tab	is
designed	to	give	a	quick	overview	of	the	VDB	status.

Models

This	panel	shows	all	the	models	that	are	defined	in	a	given	VDB,	and	shows	each	models	translator	name	and	source	connection
JNDI	name.	It	also	shows	the	type	of	models	and	if	it	is	multi-source	or	not.	When	a	particular	model	is	selected	it	will	show	all
properties	of	that	model	that	are	defined	and	also	shows	any	errors	associated	with	the	model.	When	your	VDB	is	not	deployed	in
the	"active"	status,	you	would	need	to	verify	these	errors	and	fix	to	resolve	any	deployment	issues.

The	"DDL"	button	shows	the	schema	for	the	given	model.

The	tool	lets	the	user	edit	the	translator	name	or	JNDI	name	by	double	clicking	on	them	and	modifying	them.	This	useful	if	you
would	like	to	change	the	JNDI	name	in	a	given	environment.

Overrides

If	you	have	overridden	any	translators	this	panel	will	show	the	all	the	overridden	translators	and	their	properties.

Caching

Caching	panel	shows	caching	statistics	of	resultset	cache	as	to	how	effectively	the	cache	is	being	used.	It	also	shows	all	the
internal	materialized	views	in	the	VDB	and	their	load	status	as	to	when	they	were	loaded.	It	also	gives	options	to	invalidate	a
specific	view	or	all	the	views	in	a	VDB,	so	that	they	can	refresh/reload	the	contents	from	source.

This	panel	also	provides	a	UI	to	flush	the	entire	the	resultset	cache	contents	or	prepared	plan	cache	contents	for	the	selected	VDB.

Data	Roles

Data	Roles	panel	shows	the	all	the	policies	that	defined	in	the	VDB.	For	each	selected	policy,	it	will	also	list	the	"permissions"	for
that	policy	as	to	what	kind	of	authorizations	user	has	and	shows	the	mapped	enterprise	role	assignments	to	that	policy.	You	can
even	add/remove	a	enterprise	role	to	the	policy	using	the	this	UI.

Requests

This	panel	shows	all	the	current	requests	against	the	selected	VDB	at	the	time	of	VDB	selection.	You	can	click	"refresh"	to	get	a
more	up	to	date	requests.	The	top	table	in	the	panel	shows	the	user	submitted	requests	to	the	teiid	engine,	when	one	of	those
requests	are	selected,	then	the	bottom	table	shows	all	the	source	level	queries	that	are	submitted	to	the	physical	sources	by	Teiid
engine.

Using	this	UI,	user	can	also	submit	a	"cancel"	request	to	a	user	level	query.	Since	"cancel"	asynchronous	operation,	the	operation
is	not	guaranteed	as	query	may	already	been	finished,	by	the	time	cancel	is	submitted.

Sessions

This	panel	shows	all	the	active	sessions	that	are	connected	to	the	selected	VDB.	It	shows	their	connection	properties	and	also
gives	an	option	to	terminate	either	a	selected	session	or	all	the	sessions.

FAQ

How	to	deploy	a	VDB	in	standalone	mode?

Teiid	Console

85

In	the		Deployments		view,	click		add		and	select	the	VDB	to	deploy.	Also	make	sure	you		enable		the	VDB	once	it	is	deployed.

How	to	create	Data	source?

In	the		Configuration		view,	go	to		Subsystem		→		Datasources		→		XA/Non-XA	,	click		add		and	follow	the	wizard	to	create
JDBC	data	source.

If	you	trying	to	create	connection	to	Teiid	based	File,	Salesforce	or	WS	based	connections,	select		Subsystem		→		Resource
Adaptors		and	click		add	.

How	to	add	COMMAND	Logging?

In	the		Configuration		view,	go	to		Subsystem		→		Logging	,	click	view,	on		Log	Categories		tab,	click	add
	org.teiid.COMMAND_LOG		in		DEBUG		mode.	The	default	log	will	be	in	the	FILE	handler.	You	can	even	add	other	handler	if	choose
to	do	so.

Change	Teiid	JDBC	Port	in	standalone	mode?

In	the		Configuration		view,	go	to		Socket	Binding		click		View	,	view	the		standard-sockets		select		teiid-jdbc		and	edit.

Teiid	Console

86

System	Properties	and	Environment	Variables
Some	of	Teiid’s	low-level	behavior	can	be	configured	via	system	or	env	properties,	rather	than	through	configuration	files.

A	typical	place	to	set	system	properties	for	WildFly	launches	is	in	the	<install>/bin/<mode>.conf.	A	property	setting	has	the
format		-Dproperty=value	.

With	13.0	environment	variables	will	be	checked	after	the	corresponding	system	property.	This	allows	for	Teiid	client	and	server
code	running	in	Docker	or	on	OpenShift	to	be	easily	configured.	The	environment	property	key	will	be	checked	by	converting	it
first	to	upper	snake	case	-	which	replaces	lower	case	with	upper	case,	any	period	with	_	and	separates	words	with	_.	For	example
org.teiid.allowNanInfinity	would	check	the	environment	key	ORG_TEIID_ALLOW_NAN_INFINITY.

Table	of	Contents
General
Security
PostgreSQL	Compatibility
Client

General

Setting Description Default	Value

org.teiid.allowNanInfinity

Set	to	true	to	allow	numeric	functions
to	return	NaN	(Not	A	Number)	and
+-Infinity.	Note	that	these	values	are
not	covered	by	the	SQL	specification.

false

org.teiid.useValueCache

Set	to	true	to	enable	the	canonical
value	cache.	Value	caching	is	used
dynamically	when	buffer	memory	is
consumed	to	reuse	identical	values
and	thus	reduce	the	memory
consumed	by	Teiid.	There	is	a
computation	cost	associated	with	the
cache	lookup,	so	enabling	this	setting
is	not	appropriate	for	installations
handling	large	volumes	of	dissimilar
data.

false

org.teiid.ansiQuotedIdentifiers

Set	to	false	to	emulate	Teiid	6.x	and
prior	behavior	of	treating	double
quoted	values	without	leading
identifier	parts	as	string	literals,
which	is	not	expected	by	the	SQL
specification.

true

org.teiid.subqueryUnnestDefault

If	true,	the	optimizer	will
aggressively	unnest	subqueries	in
WHERE	predicates.	If	possible	the
predicate	will	be	unnested	to	a
traditional	join	and	will	be	eligible
for	dependent	join	planning.

false

org.teiid.ODBCPacketSize

Target	size	in	bytes	of	the	ODBC
results	buffer.	This	is	not	a	hard
maximum,	lobs	and	wide	rows	may

use	larger	buffers.

307200

System	Properties

87

org.teiid.decimalAsDouble

Set	to	true	to	parse	exact	fixed	point
literals,	e.g.	1.0,	as	double	values
rather	than	as	decimal/BigDecimal
values	and	to	return	a	double	value
from	the	AVG	function	for	integral
values	in	the	same	way	as	releases
earlier	than	8.0.

false

org.teiid.comparableLobs

Set	to	true	to	allow	blob	and	clob
column	values	to	be	comparable	in
Teiid.	Source	type	metadata	will
determine	if	the	comparison	can	be
pushed	down.

false

org.teiid.comparableObject

Set	to	true	to	allow	object	column
values	to	be	comparable	in	Teiid.
Source	type	metadata	will	determine
if	the	comparison	can	be	pushed
down.	The	object	instances	are
expected	to	correctly	implement
java.lang.Comparable.compareTo.	If
the	instance	object	is	not
Comparable,	then
ClassCastExceptions	may	the	thrown.

false

org.teiid.padSpace

Set	to	true	to	compare	strings	as	if
PAD	SPACE	collation	is	being	used,
that	is	strings	are	effectively	right
padded	to	the	same	length	for
comparison.	If	this	property	is	set,	it
is	not	necessary	to	use	the	trimStrings
translator	option.

false

org.teiid.collationLocale

Set	to	a	Java	locale	string
language[_country[_varient]],	where
language,	country,	and	variant	are
two	letter	codes	-	see	java.util.Locale
for	more	on	valid	codes.		Note	that
even	if	org.teiid.comparableLobs	is
set,	clob	values	will	not	be	compared
using	the	locale	collator.

Not	set	by	default,	which	means	that
Java’s	natural	(UTF-16)	string
comparison	will	be	used.

org.teiid.clientVdbLoadTimeoutMillis

The	default	amount	of	time	a	client
(currently	only	local	clients)	will	wait
to	make	a	connection	to	an	active
VDB	before	throwing	an	exception.
Clients	may	override	this	setting	via
the	loginTimeout	connection
property.

5	minutes

org.teiid.enDateNames

Set	to	true	to	use	English	month	and
day	names	for	the	system	function
dayName	and	monthName,	rather
than	returning	names	from	the	Java
default	locale.		Prior	to	8.2	dayName
and	monthName	always	returned
English	names.

false

org.teiid.pushdownDefaultNullOrder

Set	to	true	to	mimic	8.1	and	prior
release	behavior	of	pushing	the
Teiid’s	default	null	order	of	nulls	low

false

System	Properties

88

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

if	the	source	has	a	different	default
null	order	and	supports	explicit	null
ordering.

org.teiid.requireTeiidCollation
Set	to	true	to	force	all	sorts	to	be	in
Teiid’s	collation	(see
org.teiid.collationLocale).

false

org.teiid.implicitMultiSourceJoin

Set	to	false	to	disable	Teiid	8.2	and
prior	release	behavior	of	implicitly
partitioning	joins	between	multi-
source	tables.	When	set	to	false	and
explicit	predicate	such	as
tbl1.source_name	=
tbl2.source_name	is	required	to
partition	the	results	of	the	join.

true

org.teiid.maxStringLength

Sets	the	nominal	maximum	length	of
strings	in	Teiid	-	most	operations	in
Teiid	will	truncate	strings	that	are
larger	than	this	value.	Setting	this
value	can	also	adjust	the	max	size	of
lob	bytes	held	in	memory.	NOTE:
sources	may	not	appropriately	handle
string	values	that	are	larger	than	the
source	supports.

4000

Warning Strings	are	always	fully	held	in	memory.	Do	not	set	this	value	too	high	as	you	may	experience	out	of	memory
errors.

org.teiid.assumeMatchingCollation

If	false	and	a	translator	does	not
specify	a	collationLocale,	then	a	sort
involving	character	data	for	a
sort/merge	join	will	not	be	pushed.
Teiid	defaults	to	the	Java	UCS-2
collation,	which	may	not	match	the
default	collation	for	sources,
particular	tables,	or	columns.	You
may	set	the	system	property
org.teiid.assumeMatchingCollation
to	true	to	restore	the	old	default
behavior	or	selectively	update	the
translators	to	report	a	collationLocale
matching	org.teiid.collationLocale
(UCS-2	if	unset).

false

org.teiid.calendarTimestampDiff

Set	to	false	to	use	the	Teiid	8.2	and
old	computation	of	timestampdiff.
note	that:	using	the	old	behavior	can
result	in	differing	results	between
pushed	and	non-pushed	versions	of
timestampdiff	for	intervals	greater
than	seconds	as	sources	use	date	part
and	not	approximate	interval
differences.

true

org.teiid.compactBufferFiles
Set	to	true	to	have	Teiid	keep	the
buffer	files	more	compact
(minimizing	sparse	regions).

false

System	Properties

89

org.teiid.maxMessageSize
The	maximum	size	of	messages	in
bytes	that	are	allowed	from	clients.
Increase	only	if	clients	routinely	use
large	queries	and/or	non-lob	bind
values.

2097152

org.teiid.maxStreamingLobSize
The	maximum	size	of	lobs	in	bytes
that	are	allowed	to	be	streamed	as
part	of	the	message	from	clients.

4294967296

org.teiid.defaultIndependentCardinality

The	number	of	independent	rows	or
less	that	can	automatically	trigger	a
dependent	join.	Increase	when	tables
typically	only	have	cardinality	set
and	more	dependent	joins	are
desired.

10

org.teiid.checkPing

Can	be	set	to	false	to	disable	ping
checking	for	remote	JDBC
connections.	Ping	checking	should
only	be	disabled	in	specific
circumstances,	such	as	when	using
an	external	load	balancer	and	not
utilizing	the	Teiid	default	load
balancing	logic.	Deprecated	as	of
Teiid	10.2.

true

org.teiid.defaultNullOrder

Can	be	one	of	LOW,	FIRST,	HIGH,
LAST.	Sets	the	default	null	order	for
the	Teiid	engine.	This	will	not	be
used	for	source	ordering	unless
org.teiid.pushdownDefaultNullOrder
is	also	set.

LOW

org.teiid.iso8601Week

Set	to	true	to	use	ISO	8601	rules	for
week	calculations	regardless	of	the
locale.	When	true	the	week	function
will	require	that	week	1	of	a	year
contains	the	year’s	first	Thursday.
Pushdown	week	values	will	be
calculated	as	ISO	regardless	of	this
setting.

true

org.teiid.widenComparisonToString

Set	to	true	to	enable	widening	of
values	to	string	in	comparisons,
which	was	the	default	behavior	prior
to	Teiid	9.	For	example	with	this
setting	as	false	timestamp_col	<	'a'
will	produce	an	exception	whereas
when	set	to	true	it	would	effectively
evaluate	cast(timestamp_col	as
string)	<	`a'.

false

org.teiid.aggressiveJoinGrouping

Set	to	false	to	not	aggressively	group
joins	(typically	allowed	if	there
exists	an	explicit	relationship)
against	the	same	source	for
pushdown	and	rely	more	upon	a	cost
based	ordering.

true

Set	to	the	desired	size	in	bytes	to
limit	the	amount	of	buffer	resources
(heap	and	disk)	consumed	by	a
single	session’s	tuple	buffers	and

System	Properties

90

org.teiid.maxSessionBufferSizeEstimate

table	structures.	This	is	based	upon
the	heap	memory	footprint	estimate
and	may	not	correspond	exactly	to
heap	and	especially	to	disk
consumption.	In	general	data	in
serialized	from,	whether	on	disk	or
in	the	fixed	memory	buffer,	is
between	3	and	8	times	smaller	than
its	heap	representation	which
includes	overhead	such	as	additional
object	wrappers,	lists,	and	less
compact	strings.

2^63	-	1

org.teiid.enforceSingleMaxBufferSizeEstimate

The	system	will	determine	an	upper
limit	from	all	available	memory	for	a
single	set	of	managed	batches/pages
-	which	could	be	a	table,	result	set,	or
intermediate	result	-	from	all	of	the
available	buffer	manager	memory
and	disk.	When	this	property	is	true
an	exception	will	be	thrown	when
the	limit	is	exceeded.	When	this
property	is	false	a	TEIID31292
warning	will	be	logged,	which	can
be	a	good	indicator	of	a	query	or
environment	that	should	be
reviewed.

false

org.teiid.resultAnyPosition
Set	to	true	to	allow	a	RESULT
parameter	to	appear	at	in	position	in
a	procedure	parameter	list.

false

org.teiid.requireUnqualifiedNames

Set	to	false	to	allow	the	pre-10.1
behavior	of	allowing	qualified	names
in	create	to	be	used.	For	example
'create	foreign	table	x.y	…',	rather
than	'create	foreign	table	"x.y"	…'

true

org.teiid.useXMLxEscape

If	_x	escaping	should	be	used	for
invalid	characters	in	SQL/XML
names.	Set	to	false	to	use	the	older
behavior	of	an	_u	escape.

true

org.teiid.tracingWithActiveSpanOnly
Set	to	false	to	always	generate
OpenTracing	information	even	if	no
Span	is	active.

true

org.teiid.longRanks

Set	to	true	to	have	the	ranking
functions	RANK,	DENSE_RANK,
and	ROW_NUMBER	return	long
instead	of	integer.

false

org.teiid.relativeXPath

Set	to	true	to	have	XPath	PATH
values	beginning	with	/	and	//	in
XMLTABLE	always	be	relative	to
the	context	item	(the	same	behavior
as	Oracle).	Set	to	false	to	have	/	and
//	PATH	values	to	be	evaluated	from
the	root	of	the	context	item	(the	same
behavior	as	PostgreSQL).

true

System	Properties

91

Security

Setting Description Default	Value

org.teiid.allowAlter

If	true	alter	and
(sysdamin.setProperty)	will	be
allowed	at	runtime	to	alter	possibly
ephemerally	the	metadata.	If	false
those	metadata	alterations	will	not
be	allowed.

true

org.teiid.allowCreateTemporaryTablesByDefault

Set	to	true	to	use	the	pre-8.0
behavior	of	allowing	any
authenticated	user	to	create	temp
tables	without	an	explicit
permission.

false

org.teiid.allowFunctionCallsByDefault

Set	to	true	to	use	the	pre-8.0
behavior	of	allowing	any
authenticated	user	to	call	any	non-
system	function	without	an	explicit
permission.

false

org.teiid.hiddenMetadataResolvable

If	true	pg/JDBC	objects	under	a
hidden	schema	are	still	resolvable
if	fully	qualified.	If	false	objects
under	a	hidden	schema	are	never
directly	resolvable	by	an	end	user.

true

org.teiid.ignoreUnauthorizedAsterisk

If	true	unauthorized	columns	(as
determined	by	data	role	checking)
are	not	part	of	select	all	or
qualified	select	all	expansion.	If
false,	the	client	may	set	the	session
variable
ignore_unauthorized_asterisk	to
true	to	achieve	the	same	behavior.

false

org.teiid.metadataRequiresPermission

If	true	metadata	will	only	be
visible	in	SYS/SYSADMIN	tables
if	the	user	is	permissioned	in	some
way	for	the	given	object.	If	false
the	non-hidden	schema	metadata
will	be	visible	to	any	authenticated
user.

true

org.teiid.ODBCRequireSecure

If	true	setting	the	SSL	config	to
login	or	enabled	will	require
clients	to	connect	appropriately
with	either	a	GSS	login	or	SSL
respectively.	Setting	the	property
to	false	will	allow	client	to	use	any
authentication	and	no	SSL	(which
was	the	behavior	of	the	pg
transport	prior	to	8.9	CR2).

true

org.teiid.sanitizeMessages

If	true	query	related	exception	and
warnings	will	have	their	messages
replaced	with	just	the	Teiid	code.
Server	side	stacktraces	will	also	be
removed	when	sent	to	the	client.
This	should	be	enabled	if	there	is	a
concern	about	SQL	or	values	being false

System	Properties

92

present	in	the	exception/logs.	If	the
log	level	is	increased	to	debug	for
the	relevant	logger,	then	the
sanitizeMessages	setting	will	have
no	effect.

PostgreSQL	Compatibility

Note These	affect	Teiid	globally,	and	not	just	through	the	ODBC	transport.

Setting Description Default	Value

org.teiid.addPGMetadata
When	set	to	false,	the	VDB	will	not
include	Postgresql	based	system
metadata.

true

org.teiid.backslashDefaultMatchEscape

Set	to	true	to	use	'\'	as	the	default
escape	character	for	LIKE	and
SIMILAR	TO	predicates	when	no
escape	is	specified.	Otherwise	Teiid
assumes	the	SQL	specification
compliant	behavior	of	treating	each
non-wildcard	character	as	an	exact
match	character.

false

org.teiid.honorDeclareFetchTxn

When	false	the	wrapping
begin/commit	of	a	UseDeclareFetch
cursor	will	be	ignored	as	Teiid	does
not	require	a	transaction.

false

org.teiid.pgVersion Is	the	value	that	will	be	reported	by
the	server_version	function. "PostgreSQL	8.2"

Client
System	properties	can	also	be	set	for	client	VMs.	See	Additional	Socket	Client	Settings.

System	Properties

93

Teiid	Management	CLI
The	WildFly	CLI	is	a	command	line	based	administrative	and	monitoring	tool	for	Teiid.	Many	snippets	of	CLI	scripting	are	shown
throughout	the	Admin	Guide	-	especially	around	managing	data	sources.	AdminAPI	provides	higher	level	methods	that	are	often
needed	when	interacting	with	Teiid.	It	is	also	useful	to	know	the	underlying	CLI	commands	in	many	circumstances.	The	below	is
a	series	useful	CLI	commands	for	administering	a	Teiid	Server.	Please	also	refer	to	the	AS	documentation	for	more	on	interacting
with	the	CLI	-	including	how	to	navigate,	list	operations,	etc.

Table	of	Contents
VDB	Operations
Authentication	Operations
Source	Operations
Translator	Operations
Runtime	Operations

VDB	Operations

deploy	adminapi-test-vdb.xml

undeploy	adminapi-test-vdb.xml

/subsystem=teiid:restart-vdb(vdb-name=AdminAPITestVDB,	vdb-version=1,	model-names=TestModel)

/subsystem=teiid:list-vdbs()

/subsystem=teiid:get-vdb(vdb-name=AdminAPITestVDB,vdb-version=1)

/subsystem=teiid:change-vdb-connection-type(vdb-name=AdminAPITestVDB,	vdb-version=1,connection-type=ANY)

/subsystem=teiid:add-data-role(vdb-name=AdminAPITestVDB,	vdb-version=1,	data-role=TestDataRole,	mapped-role=tes

t)

/subsystem=teiid:remove-data-role(vdb-name=AdminAPITestVDB,	vdb-version=1,	data-role=TestDataRole,	mapped-role=

test)

/subsystem=teiid:read-attribute(name=async-thread-pool-max-thread-count)

/subsystem=teiid:write-attribute(name=async-thread-pool-max-thread-count,value=15)

Authentication	Operations

/subsystem=teiid:read-attribute(name=authentication-security-domain)

/subsystem=teiid:write-attribute(name=authentication-security-domain,value=teiid-security)

/subsystem=teiid:read-attribute(name=authentication-max-sessions-allowed)

/subsystem=teiid:write-attribute(name=authentication-max-sessions-allowed,value=1000)

/subsystem=teiid:read-attribute(name=authentication-sessions-expiration-timelimit)

/subsystem=teiid:write-attribute(name=authentication-sessions-expiration-timelimit,value=0)

/subsystem=teiid:read-attribute(name=authentication-type)

/subsystem=teiid:write-attribute(name=authentication-type,value=USERPASSWORD)

/subsystem=teiid:read-attribute(name=authentication-trust-all-local)

/subsystem=teiid:write-attribute(name=authentication-trust-all-local,value=true)

Source	Operations

Teiid	Management	CLI

94

/subsystem=teiid:add-source(vdb-name=AdminAPITestVDB,	vdb-version=1,	source-name=text-connector-test,	translato

r-name=file,	model-name=TestModel,	ds-name=java:/test-file)

/subsystem=teiid:remove-source(vdb-name=AdminAPITestVDB,	vdb-version=1,	source-name=text-connector-test,	model-

name=TestModel)

/subsystem=teiid:update-source(vdb-name=AdminAPITestVDB,	vdb-version=1,	source-name=text-connector-test,	transl

ator-name=file,	ds-name=java:/marketdata-file)

Translator	Operations

/subsystem=teiid:list-translators()

/subsystem=teiid:get-translator(translator-name=file)

/subsystem=teiid:read-translator-properties(translator-name=file,type=OVERRIDE)

/subsystem=teiid:read-rar-description(rar-name=file)

Runtime	Operations

/subsystem=teiid:workerpool-statistics()

/subsystem=teiid:cache-types()

/subsystem=teiid:clear-cache(cache-type=PREPARED_PLAN_CACHE)

/subsystem=teiid:clear-cache(cache-type=QUERY_SERVICE_RESULT_SET_CACHE)

/subsystem=teiid:clear-cache(cache-type=PREPARED_PLAN_CACHE,	vdb-name=AdminAPITestVDB,vdb-version=1)

/subsystem=teiid:clear-cache(cache-type=QUERY_SERVICE_RESULT_SET_CACHE,	vdb-name=AdminAPITestVDB,vdb-version=1)

/subsystem=teiid:cache-statistics(cache-type=PREPARED_PLAN_CACHE)

/subsystem=teiid:cache-statistics(cache-type=QUERY_SERVICE_RESULT_SET_CACHE)

/subsystem=teiid:engine-statistics()

/subsystem=teiid:list-sessions()

/subsystem=teiid:terminate-session(session=sessionid)

/subsystem=teiid:list-requests()

/subsystem=teiid:cancel-request(session=sessionId,	execution-id=1)

/subsystem=teiid:list-requests-per-session(session=sessionId)

/subsystem=teiid:list-transactions()

/subsystem=teiid:mark-datasource-available(ds-name=java:/accounts-ds)

/subsystem=teiid:get-query-plan(session=sessionid,execution-id=1)

Teiid	Management	CLI

95

Diagnosing	Issues
You	may	experience	situations	where	you	incur	performance	issues	or	unexpected	results/exceptions.	The	rest	of	this	chapter	will
focus	on	query	planning	and	processing	issues.	Configuration	or	operational	issues	related	to	the	container	are	typically	more
isolated	and	easier	to	resolve.

Table	of	Contents
General	Diagnostic	Process

Query	Plans
Pushdown	Inhibited
Common	Issues
XQuery
Out	of	Memory
Logging
Plan	Debug	Log

General	Diagnostic	Process

When	there	is	an	issue	start	by	isolating	a	problem	query	as	much	as	possible.	OData,	REST,	and	pg/ODBC	access	are
layered	on	JDBC.	If	not	accessing	through	JDBC,	does	the	issue	occur	when	using	JDBC?	If	not,	then	the	issue	is	at	the
transport	layer	rather	than	at	the	engine	level.	In	whatever	scenario	the	issue	occurs,	the	particulars	matter	-	what	sources,	if
there	is	a	transaction,	load,	etc.

Don’t	make	too	many	assumptions

For	example	memory	consumption	can	be	heavily	dependent	upon	drivers,	and	a	resulting	out	of	memory	issue	may
only	be	indirectly	related	to	Teiid

Start	with	the	query	plan	-	especially	with	performance	issues

There	may	be	simplifications	or	changes	possible	to	views	and	procedures	utilized	by	the	user	query.

Ensure	that	relevant	costing	metadata	is	set	and/or	that	hints	you	have	provided	are	being	applied	as	expected.

Utilize	Logging

Planning	issues	may	be	understood	with	the	debug	plan

The	command	log

A	full	debug/trace	level	log	can	shed	even	more	light	–	but	it	may	not	be	easy	to	follow.

You	can	correlate	what	is	happening	by	context,	thread,	session	id,	and	request	id.

If	no	resolution	is	found,	engage	the	community	and	utilize	professional	support

Query	Plans

Once	the	problem	has	been	isolated	as	much	as	possible,	you	should	further	examine	the	query	plan.	The	only	circumstance	when
this	is	not	possible	is	when	there	are	planning	errors.	In	this	case	the	logs,	either	full	debug	or	just	the	debug	plan,	is	still	useful	to
then	log	an	issue	with	the	community	or	with	support.

If	you	haven’t	done	so	already,	you	should	start	by	familiarizing	yourself	with	Federated	Planning	-	especially	the	sections	on	the
query	plan.

Diagnosing	Issues

96

The	final	processor	plan	is	generally	what	is	meant	when	referring	to	by	“the	query	plan”.	The	plan	can	be	viewed	in	an	XML	or	a
plain	text	format.

You	can	also	use	Teiid	Extensions,	or	SET/SHOW	statements:

SET	SHOWPLAN	ON

SELECT	...

SHOW	PLAN

or	an	Explain	Statement:

EXPLAIN	SELECT	...

Once	you	have	the	plan,	you	can:

Double	check	that	hints	are	taking	effect

Make	sure	things	seem	correct

Look	first	at	all	of	the	source	queries	on	the	access	nodes.	Generally	a	missing	pushdown,	such	as	predicate	is	easy	to
spot

Focus	on	problem	source	queries	and	their	parent	nodes	if	you	already	have	execution	times

It’s	also	a	good	idea	to	validate	query	plans	during	the	development	and	testing	of	a	VDB.	Also	any	engagement	with	the
community	or	support	will	likely	need	the	query	plan	as	well.

If	the	plan	is	obtained	from	an	executed	query,	then	the	plan	will	also	show	execution	statistics.	It	is	especially	useful	to	see	the
stats	when	processing	has	finished	and	all	rows	have	been	fetched.	While	several	stats	are	collected,	it’s	most	useful	to	see	“Node
Output	Rows”	and	“Node	Next	Batch	Process	Time”.

Example	text	form	of	a	query	plan	showing	stats:

ProjectNode

		+	Relational	Node	ID:6

		+	Output	Columns:x	(double)

		+	Statistics:

				0:	Node	Output	Rows:	6

				1:	Node	Next	Batch	Process	Time:	2

				2:	Node	Cumulative	Next	Batch	Process	Time:	2

				3:	Node	Cumulative	Process	Time:	2

				4:	Node	Next	Batch	Calls:	8

				5:	Node	Blocks:	7

		+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

		+	Child	0:

				AccessNode

						+	Relational	Node	ID:7

						+	Output	Columns

						+	Statistics:

								0:	Node	Output	Rows:	6

								1:	Node	Next	Batch	Process	Time:	0

								2:	Node	Cumulative	Next	Batch	Process	Time:	0

								3:	Node	Cumulative	Process	Time:	0

								4:	Node	Next	Batch	Calls:	2

								5:	Node	Blocks:	1

...

In	addition	to	the	execution	stats,	note	there	are	also	cost	estimates.	The	values	for	the	cost	estimates	are	derived	from	the	statistic
values	set	of	each	table/column	about	the	row	count,	number	of	distinct	values,	number	of	null	values,	etc.	Unlike	systems	that
own	the	data,	Teiid	does	not	build	histograms	or	other	in-depth	models	of	the	data.	Theses	values	are	meant	to	be	approximations
with	nominally	distribution	assumptions.	The	costing	information	from	the	metadata	only	matters	for	physical	entities	as	we’ll

Diagnosing	Issues

97

recompute	the	higher	values	in	planning	after	merge	virtual	and	other	plan	modifications.	If	you	see	that	join	is	being
implemented	inefficiently,	then	first	make	sure	reasonable	costing	values	are	being	set	on	the	tables	involved.	Statistics	can	be
gathered	for	some	sources	at	design	time	or	deploy	time.	In	environments	that	fluctuate	rapidly,	you	may	need	to	issue	runtime
costing	updates	via	system	procedures.

Note:	if	you	cardinality	values	are	unknown	-	shown	as	'Node	Cardinality:	-1.0'	in	the	plan	-	and	no	hints	are	used,	then	the
optimizer	will	not	assume	that	dependent	join	plans	should	be	used.

Pushdown	Inhibited

One	of	the	most	common	issues	that	causes	performance	problems	is	when	not	enough	of	the	plan	is	pushed	to	a	given	source
leading	to	too	many	rows	being	fetched	and/or	too	much	processing	in	Teiid.

Pushdown	problems	fall	into	two	categories:

Something	that	cannot	be	pushed	down.	For	example	not	all	system	functions	are	supported	by	each	source.	Formatting
functions	in	particular	are	not	broadly	supported.

A	planning	or	other	issue	that	prevents	other	constructs	from	being	pushed	down

Temp	tables	or	materialization	can	inhibit	pushdown	when	joining

Window	functions	and	aggregation	when	not	pushed	can	prevent	further	pushdown

If	pushdown	is	inhibited	then	the	construct	will	be	missing	from	the	access	node	issuing	the	source	query,	and	will	instead	be	be	at
a	higher	node:

<node	name="SelectNode">...<property	name="Criteria"><value>pm1.g1.e2	=	1</value>

		<node	name="AccessNode">...<property	name="Query"><value>SELECT	pm1.g1.e1,	pm1.g1.e2	FROM	pm1.g1</value>

When	pushdown	is	inhibited	by	the	source,	it	should	be	easy	to	spot	in	the	debug	plan	with	log	line	similar	to:

LOW	Relational	Planner	SubqueryIn	is	not	supported	by	source	pm1	-	e1	IN	/*+	NO_UNNEST	*/	(SELECT	e1	FROM	pm2.g

1)	was	not	pushed

Common	Issues

Beyond	pushdown	being	inhibited,	other	common	issues	are:

Slight	differences	in	Teiid/Pushdown	results

for	example	Teiid	produces	a	different	for	a	given	function	than	the	source

Source	query	form	is	not	optimal	or	incorrect

There	is	an	unaccounted	for	type	conversion

for	example	there	is	no	char(n)	type	in	Teiid

A	cast	may	cause	a	source	index	not	to	be	used

Join	Performance

Costing	values	not	set	leading	to	a	non-performant	plan.

Use	hints	if	needed.

Teiid	will	replace	outer	with	inner	joins	when	possible,	but	just	in	case	review	outer	join	usage	in	the	user	query	and
view	layers

Diagnosing	Issues

98

XQuery

XQuery/XPath	can	be	difficult	to	get	correct	when	not	assisted	by	tooling.	Having	an	incorrect	namespace	for	example	could
simply	result	in	no	results	rather	than	exception.

With	XMLQUERY/XMLTABLE	each	XPath/XQuery	expression	can	have	a	large	impact	on	performance.	In	particular
descendant	access	'//'	can	be	costly.	Just	accessing	elements	in	the	direct	parentage	is	efficient	though.

The	larger	the	document	being	processed,	the	more	careful	you	need	to	be	to	ensure	that	document	projection	and	stream
processing	can	be	used.	Streaming	typically	requires	a	simple	context	path	-	'a/b/c'

Out	of	Memory

Out	of	memory	errors	can	be	difficult	to	track	down.	In	almost	all	cases,	it	is	best	to	determine	the	actual	memory	consumption
utilizing	a	heap	dump	-	which	can	be	obtained	using	the	vm	HeapDumpOnOutOfMemoryError	option	or	via	a	tool	such	as
VisualVM.	You	may	also	simply	increase	the	size	of	the	heap,	but	that	may	simply	delay	the	issue	from	reappearing.

Logging

The	query	plan	alone	does	not	provide	a	full	accounting	of	processing.	Some	decisions	are	delayed	until	execution	or	can	only	be
seen	in	the	server	logs:

The	ENAHANCED	SORT	JOIN	node	may	execute	can	execute	one	of	three	different	join	strategies	depending	on	the
actually	row	counts	found,	this	will	not	be	seen	unless	the	query	plan	is	obtained	at	the	end	of	execution.

The	effect	of	translation	is	not	yet	accounted	for	as	the	plan	shows	the	engine	form	of	the	query

The	full	translation	can	be	seen	in	with	command	logging	at	a	trace	level	or	with	debug/trace	logging	in	general.

The	query	plan	doesn’t	show	the	execution	stats	of	individual	the	source	queries,	which	is	shown	in	the	command	log

The	for	full	picture	of	execution	down	to	all	the	batch	fetches,	you’ll	just	need	the	full	server	debug/trace	log

Plan	Debug	Log

The	logical	plan	optimization	is	represented	by	the	planning	debug	log	and	is	more	useful	to	understand	why	planning	decisions
were	made.

SET	SHOWPLAN	DEBUG

SELECT	...

SHOW	PLAN

You	will	typically	not	need	to	use	this	level	of	detail	to	diagnose	issues,	but	it	is	useful	to	provide	the	plan	debug	log	to	support
when	planning	issues	occur.

Diagnosing	Issues

99

Migration	Guide	From	Teiid	13.x	to	14.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	12.x.

If	possible	you	should	make	your	migration	to	Teiid	15	by	first	using	Teiid	14.0.x.	Teiid	15	requires	Java	8	and	WildFly	19.1	(the
same	as	Teiid	14).	See	also	13	to	14	Migration	Guide

Configuration	Changes
TEIID-6007	The	meaning	of	the	transport	authentication	mode	was	changed	to	specifically	be	the	client	authentication	mode,
1-way	has	been	replace	by	NONE,	2-way	has	been	replaced	by	NEED,	and	a	new	value	WANT	is	supported.

TEIID-5998	The	restriction	on	the	size	of	a	single	file	store	for	a	temporary	lob	was	greatly	relaxed.	If	you	were	allocating
more	disk	space	than	desired	to	work	around	that	limitation,	you	should	be	able	to	allocate	less.

Migration	Guide	From	Teiid	14.x

100

https://issues.redhat.com/browse/TEIID-6007
https://issues.redhat.com/browse/TEIID-5998

Migration	Guide	From	Teiid	13.x	to	14.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	13.x.

If	possible	you	should	make	your	migration	to	Teiid	14	by	first	using	Teiid	13.1.x.	Teiid	14	requires	Java	8	and	WildFly	19.1.	See
also	12	to	13	Migration	Guide

Configuration	Changes
The	mysql5	translator	name	has	been	deprecated.	Similar	to	the	handling	of	other	JDBC	translators,	the	mysql	translator	now	can
handle	MySQL	5	and	later.

Migration	Guide	From	Teiid	13.x

101

Migration	Guide	From	Teiid	12.x	to	13.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	12.x.

If	possible	you	should	make	your	migration	to	Teiid	13	by	first	using	Teiid	12.2.x.	Teiid	13	requires	Java	8	and	WildFly	17.	See
also	11	to	12	Migration	Guide

Configuration	Changes
The	salesforce	translators	no	longer	support	the	ModelAuditFields	execution	property	-	the	import	property	should	be	used
instead.

Compatibility	Changes

SET	NAMESPACE

SET	NAMESPACE	should	no	longer	be	used.	An	exception	will	be	thrown	if	the	a	custom	namepsace	or	prefix	is	defined	-	only
built-in	namespaces/prefixes	are	allowed.	Methods	and	constants	related	to	namespaces	have	been	removed.	For	now
SYS.PROPERTIES	will	present	built-in	keys	in	both	the	old	FQN	format	"{http…}key"	and	the	new	prefix	format	"teiid_…:key"
so	that	existing	SQL	queries	will	work,	but	the	legacy	format	will	be	removed	in	the	next	major	release.

Security	Changes

The	target	of	GRANT/REVOKE	statements	will	be	validated	against	the	metadata	to	ensure.	Previous	versions	allowed	the	target
to	be	any	string.

The	default	data	role	enforcement	will	now	check	the	strict	hierarchy	of	a	schema	object,	rather	than	every	potential	name	part.	In
previous	versions	a	table	with	a	name	containing	"."	such	as	"long.table.name"	could	have	resulted	in	checks	against	permissions
specified	against	the	partial	table	names	"long.table"	and	"long"	as	well.	Now	the	will	be	a	check	only	against	the	full	table	name,
and	then	the	schema.

The	PolicyDecider	was	changed	to	reference	the	metadata	objects	rather	than	just	strings.	Any	custom	implementation	will	need
to	updated	accordingly.

Kitting/Build	Changes

The	teiid-admin	module/jar	has	been	combined	with	teiid-api.	Any	references	in	custom	development	to	teiid-admin	should	be
replaces	with	teiid-api.

Migration	Guide	From	Teiid	12.x

102

Migration	Guide	From	Teiid	11.x	to	12.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	11.x.

If	possible	you	should	make	your	migration	to	Teiid	12	by	first	using	Teiid	11.2.x.	Teiid	12	requires	Java	8	and	WildFly	14.	See
also	10	to	11	Migration	Guide

Configuration	Changes

System	Properties

The	default	for	org.teiid.longRanks	changed	to	true.	This	is	more	inline	with	other	platforms.	You	may	switch	it	back	to	false	for
compatibility	or	make	appropriate	updates	to	your	views	and	other	sql	that	may	expect	integer	values	to	be	returned.

The	default	for	org.teiid.enforceSingleMaxBufferSizeEstimate	changed	to	false.	Proactively	limiting	the	size	of	a	single	operation
does	not	match	well	to	many	Teiid	usage	scenarios,	which	could	run	just	fine	as	long	as	enough	disk	was	allocated.	The	default
behavior	will	no	selective	kill	sessions	that	are	consuming	the	most	amount	of	memory	in	response	to	running	out	of	disk.	It
cannot	be	guaranteed	that	the	current	operation	for	with	the	disk	running	out	will	succeed	however	-	in	those	circumstances	it
would	be	advisable	to	engage	proactive	limits.

Buffer	Manager

The	configuration	property	names	for	the	buffer	manager	have	been	refined	to	greater	consistency.

Old New Notes

buffer-service-processor-batch-size buffer-manager-processor-batch-size

buffer-service-inline-lobs buffer-manager-inline-lobs	instead

buffer-service-max-processing-kb buffer-manager-heap-max-
processing-kb

buffer-service-max-reserve-kb buffer-manager-heap-max-reserve-
mb

The	unit	change	from	kilobytes	to
megabytes

buffer-service-use-disk buffer-manager-storage-enabled
Renamed	to	storage	-	which	is	both
the	fixed	memory	buffer	and	disk
tiers	below	the	buffer	managed	heap

buffer-service-max-storage-object-
size

buffer-manager-storage-max-object-
size-kb

The	units	changed	from	bytes	to
kilobytes

buffer-service-memory-buffer-space buffer-manager-fixed-memory-space-
mb

buffer-service-memory-buffer-off-
heap

buffer-manager-fixed-memory-off-
heap

Migration	Guide	From	Teiid	11.x

103

buffer-service-max-file-size buffer-manager-disk-max-file-size-
mb

buffer-service-max-buffer-space buffer-manager-disk-max-space-mb

buffer-service-max-open-files buffer-manager-disk-max-open-files

buffer-service-encrypt-files buffer-manager-disk-encrypt-files

This	change	introduced	a	new	version	of	the	WildFly	xml	configuration	for	Teiid.	Older	xml	and	cli	are	still	compatible	and	are
automatically	converted	to	the	new	configuration.	You	should	not	mix	the	usage	of	new	and	old	properties.

Compatibility	Changes
The	ability	to	specify	a	jgroups	configuration	file	directly	to	Teiid	Embedded	has	been	removed.	If	you	need	Teiid	Embedded	to
support	clustering,	please	log	an	issue.

Kitting/Build	Changes

AdminShell

The	AdminShell	has	been	removed	from	the	build.	AdminShell	has	releases	between	10.x	and	11.x	are	effectively	identical.	You
may	still	use	one	of	those	versions	if	you	wish	to	continue	using	AdminShell.	Alternatively	you	may	use	the	AdminAPI	directly
from	Java	or	with	the	scripting	language	binding	of	your	choice.

WildFly/JEE	Restructuring

The	maven	coordinates	for	the	full	source,	wildfly,	and	combined	wildfly	artifacts	have	changed.	They	were	under	org.teiid:teiid
with	classifiers	that	began	with	wildfly-.	For	example,	instead	of:

<groupId>org.teiid</groupId>

<artifactId>teiid</artifactId>

<classifier>wildfly-server</classifier>

<type>zip</type>

Use:

<groupId>org.teiid.wildfly</groupId>

<artifactId>teiid-wildfly</artifactId>

<classifier>server</classifier>

<type>zip</type>

Similarly	all	of	the	org.teiid:connector-xxx	artifacts	have	moved	to	org.teiid.wildfly:connector-xxx.	The	Teiid	embedded	examples
will	be	updated	to	reflect	this	change.

Dependencies	on	JEE	have	been	pushed	to	non-core	modules	of	Teiid.	This	should	not	affect	anyone	using	a	base	Teiid
distribution.	However	if	you	have	done	custom	development	it	may	affect	you.	The	changes	include:

Migration	Guide	From	Teiid	11.x

104

The		org.teiid.resource.spi		package	was	moved	from	the	teiid-api	jar	to	the	org.teiid.wildfly:teiid-resource-spi	jar.	Poms
will	need	to	be	updated	accordingly.	There	is	no	change	needed	for	jboss	modules	as	the	teiid-resource-spi	artifact	is	already
included	in	org.jboss.teiid.api.

ResourceException	has	been	replaced	by	TranslatorException	on	Teiid	connection	interfaces	such	as	SalesforceConnection.

The	file	translator	resource	adapter	translator	and	connector	logic	were	refactored	to	use	a	Teiid	VirtualFile	interface	rather
than	directly	expose	both	a	Java	File	and	VFS.	If	you	were	developing	based	upon	FileConnection,	please	use
VirtualFileConnection	org.teiid.connectors:file-api	instead.

	org.teiid.translator.WSConnection		has	been	moved	into	org.teiid.connector:translator-ws
	org.teiid.translator.ws.WSConnection	

The	arche-type	version	compatible	with	Teiid	12.0.0	has	been	bumped	to	12.0.0.

Teiid	Embedded	usage	will	need	to	include	the	org.teiid:cache-infinispan	dependency,	otherwise	it	will	default	to	non-
concurrent	cache.	If	you	are	already	setting	the	CacheFactory	on	the	EmbeddedConfiguration,	no	action	is	needed.	The
EmbeddedConfiguration	InfinispanConfigFile	methods	have	been	deprecated	-	in	the	future	the	user/platform	will	be	fully
responsible	for	wiring	in	the	CacheFactory.

Migration	Guide	From	Teiid	11.x

105

Migration	Guide	From	Teiid	10.x	to	11.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	10.x.

If	possible	you	should	make	your	migration	to	Teiid	11	by	first	using	Teiid	10.3.	Teiid	10.0	though	10.3	have	the	same	JRE	and
WildFly	requirements.	Teiid	11	requires	Java	8	and	WildFly	11.	See	also	9	to	10	Migration	Guide

Configuration	Changes
The	default	max	buffer	space	on	disk	for	embedded,	Spring,	and	Thorntail	environments	is	5	GB.	The	WildFly	server
environment	default	remains	50	GB,	but	needs	to	be	specified	in	the	configuration.	If	you	are	reusing	the	same	configuration	from
Teiid	10	that	has	the	default	omitted,	use	the	jboss	cli	to	run:

/subsystem=teiid/:write-attribute(name=buffer-service-max-buffer-space,	value=51200)

The	authentication-allow-security-domain-qualifier	property	has	been	removed.

Compatibility	Changes
Function	model	support	has	been	completely	removed	as	it	had	been	deprecated	in	Teiid	Designer	for	some	time.	Those	models
should	be	removed	and	the	functions	moved	to	other	physical	or	virtual	models.

The	salesforce	translator	and	resource	adapter	now	provide	access	to	the	34.0	version	of	the	Salesforce	API.	You	may	need	to	re-
import	your	salesforce	source	metadata	to	ensure	compatibility.

Starting	with	11.1	the	Teiid	client	no	longer	supports	the	pluggable	ServerDiscovery	mechanism.	The	client	will	no	longer	support
post-connection	load-balancing	nor	a	client	side	ping.	If	connecting	to	Teiid	servers	earlier	than	10.2,	then	ping	must	be	disabled
on	the	server.

Session/user	scoped	materialized	views	are	no	longer	supported.	Please	use	a	global	temporary	table	instead.

Migration	Guide	From	Teiid	10.x

106

Migration	Guide	From	Teiid	9.x	to	10.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	9.x.

If	possible	you	should	make	your	migration	to	Teiid	10	by	first	using	Teiid	9.3.	Teiid	9.1	though	9.3	have	the	same	JRE	and
WildFly	requirements.	Teiid	10	requires	Java	8	and	WildFly	11.	See	also	8	to	9	Migration	Guide

Configuration	Changes
Teiid	Embedded	by	default	will	not	allow	the	usage	of	the	ENV	function.	Use	the	EmbeddedConfiguration.setAllowEnvFunction
to	toggle	this	behavior.

Compatibility	Changes
The	FROM_UNIXTIME	function	now	matches	the	behavior	of	HIVE/IMPALA.	It	accepts	a	long	and	returns	a	string,	rather	than
a	timestamp.

XML	Document	Model

The	XML	Document	Model	has	been	removed	along	with	related	client	properties.	Please	consider	migrating	to	OData	or	utilizing
SQL/XML	functions	for	constructing	documents.

Kitting/Build	Changes
The	maven	coordinates	for	Teiid	artifacts	has	change	from	the	org.jboss.teiid	group	to	the	org.teiid	group.	The	artifacts	are	also
published	directly	to	maven	central,	rather	than	the	JBoss	nexus	repository.	This	change	was	largely	motivated	by	making	the
Teiid	Spring	integration	less	cumbersome.	Note	that	this	does	not	effect	EAP/WildFly	module	names	as	those	remain
org.jboss.teiid.

Migration	Guide	From	Teiid	9.x

107

Migration	Guide	From	Teiid	8.x	to	9.x
Teiid	strives	to	maintain	consistency	between	all	versions,	but	when	necessary	breaking	configuration	and	VDB/sql	changes	are
made	-	and	then	typically	only	for	major	releases.

You	should	consult	the	release	notes	for	compatibility	and	configuration	changes	from	each	minor	version	that	you	are	upgrading
over.	This	guide	expands	upon	the	release	notes	included	in	the	kit	to	cover	changes	since	8.x.

If	possible	you	should	make	your	migration	to	Teiid	9	by	first	using	Teiid	8.13.	8.13	is	a	non-feature	transitional	release	that	is
effectively	Teiid	8.12	running	on	WildFly	9.0.2.

JRE	Support
Teiid	9.1	uses	WildFly	10.0.0.	Both	the	server	kit	and	usage	of	Teiid	Embedded	will	require	Java	1.8+.	The	client	driver	may	still
use	a	1.6	runtime.

Teiid	9.0	uses	WildFly	9.0.2.	Both	the	server	kit	and	usage	of	Teiid	Embedded	will	require	Java	1.7+.	The	client	driver	may	still
use	a	1.6	runtime.

Configuration	Changes

You	will	need	to	apply	your	Teiid	and	other	configuration	changes	starting	with	a	new	base	configuration	for	WildFly,	such	as	the
standalone-teiid.xml	included	in	the	kit.	Note	that	9999	port	has	been	removed	by	default.	Admin	connections	are	expected	to	use
either	9990	(http)	or	9993	(https).

Security	Related

There	is	now	a	single	session	service.	Session	service	related	properties,	prefixed	by	authentication,	are	no	longer	specified	per
transport.	Instead	they	now	appear	as	a	single	sibling	to	the	transports.

Old	standalone.xml	Configuration

		<transport	name="local"/>

		<transport	name="odata">

				<authentication	security-domain="teiid-security"/>

		</transport>

		<transport	name="jdbc"	protocol="teiid"	socket-binding="teiid-jdbc">

				<authentication	security-domain="teiid-security"/>

		</transport>

		<transport	name="odbc"	protocol="pg"	socket-binding="teiid-odbc">

				<authentication	security-domain="teiid-security"/>

				<ssl	mode="disabled"/>

		</transport>

New	standalone.xml	Configuration

		<authentication	security-domain="teiid-security"/>

		<transport	name="local"/>

		<transport	name="odata"/>

		<transport	name="jdbc"	protocol="teiid"	socket-binding="teiid-jdbc"/>

		<transport	name="odbc"	protocol="pg"	socket-binding="teiid-odbc">

				<ssl	mode="disabled"/>

		</transport>

Migration	Guide	From	Teiid	8.x

108

The	default	maximum	number	of	sessions	was	increased	to	10000	to	accommodate	for	this	change.

In	addition	there	is	a	new	property	trust-all-local	that	defaults	to	true	and	allows	unauthenticated	access	by	local	pass-through
connections	over	the	embedded	transport	-	this	was	effectively	the	default	behavior	of	8.x	and	before	when	no	security-domain
was	set	on	the	embedded	transport.	You	may	choose	to	disallow	that	type	of	access	by	setting	the	property	to	false	instead.

The	authentication-security-domain	property	will	only	accept	a	single	security	domain,	and	will	not	interpret	the	value	as	a
comma	separated	list.	The	default	behavior	has	also	changed	for	user	names	-	they	are	longer	allowed	to	be	qualified	by	the
security	domain.	Use	the	authentication-allow-security-domain-qualifier	property	to	allow	the	old	behavior	of	accepting	user
names	that	are	security	domain	qualified.

RoleBasedCredentialMapIdentityLoginModule

The	RoleBasedCredentialMapIdentityLoginModule	class	has	been	removed.	Consider	alternative	login	modules	with	roles
assignments	to	restrict	access	to	the	VDB.

Local	Transport

The	embedded	transport	was	renamed	to	local	to	avoid	confusion	with	Teiid	embedded.

Behavioral

widenComparisonToString

The	resolver’s	default	behavior	was	to	widen	comparisons	to	string,	but	9.0	now	defaults	org.teiid.widenComparisonToString	to
false.	For	example	with	this	setting	as	false	a	comparison	such	as	"timestamp_col	<	'a'"	will	produce	an	exception	whereas	when
set	to	true	it	would	effectively	evaluate	"cast(timestamp_col	as	string)	<	'a'".	If	you	experience	resolving	errors	when	a	vdb	is
deployed	you	should	update	the	vdb	if	possible	before	reverting	to	the	old	resolving	behavior.

reportAsViews

The	JDBC	client	will	report	Teiid	views	in	the	metadata	as	table	type	VIEW	rather	than	TABLE	by	default.	Use	the	connection
property	reportAsViews=false	to	use	pre-9.0	behavior.

Default	Precision/Scale

If	a	column	is	specified	with	a	precision	of	0	or	left	as	the	default	in	DDL	metadata	it	will	be	treated	as	having	the	nominal
internal	maximum	value	of	32767.	This	may	cause	the	precision	and	scale	to	be	reported	differently,	which	may	have	been
2147483647	in	some	places	or	20	in	JDBC	DatabaseMetaData.

Compatibility	Changes

DDL	Delimiters

Not	using	a	semicolon	delimiter	between	statements	is	deprecated	and	should	only	be	relied	on	for	backwards	compatibility.

System	Metadata

With	data	roles	enabled	system	tables	(SYS,	SYSADMIN,	and	pg_catalog)	will	only	expose	tables,	columns,	procedures,	etc.	for
which	the	user	is	entitled	to	access.	A	READ	permission	is	expected	for	tables/columns,	while	an	EXECUTE	permission	is
expected	for	functions/procedures.	All	non-hidden	schemas	will	still	be	visible	though.

Migration	Guide	From	Teiid	8.x

109

The	OID	columns	has	been	removed.	The	UID	column	should	be	used	instead	or	the	corresponding	pg_catalog	table	will	contain
an	OID	values.

Parent	uid	columns	have	been	added	to	the	SYS	Tables,	Procedures,	KeyColumns,	and	Columns	tables.

XML	Document	Model

The	XML	Document	Model	has	been	deprecated.	Please	consider	migrating	to	OData	or	utilizing	SQL/XML	functions	for
constructing	documents.

Kitting/Build	Changes

Admin	JAR

For	8.13	the	entry	point	for	creating	remote	admin	connection,	AdminFactory,	was	moved	into	the	teiid-jboss-admin	jar	rather
than	being	located	in	teiid-admin.

API	Changes

The	AuthorizationValidator	and	PolicyDecider	interfaces	had	minor	changes.	AuthorizationValidator	has	an	additional	method	to
determine	metadata	filtering,	and	PolicyDecider	had	isTempAccessable	corrected	to	isTempAccessible.

Semantic	versioning	required	the	change	of	the	VDB	version	field	from	an	integer	to	a	string.	This	affected	the	following	public
classes:

VDB	Session	EventListener	VDBImport	ExecutionContext	MetadataRepository

There	are	also	duplicate/deprecated	methods	on:

EventDistributor	Admin

Using	the	TranslatorProperty	annotation	without	a	setter	now	requires	that	readOnly=true	be	set	on	the	annotation.

The	JDBC	DatabaseMetaData	and	CommandContext	getUserName	methods	will	now	return	just	the	base	user	name	without	the
security	domain.

Embedded	Kit

The	Embedded	Kit	has	been	removed.	You	should	follow	the	Embedded	Examples	to	use	maven	to	pull	the	dependencies	you
need	for	your	project.

There	were	extensive	changes	in	dependency	management	for	how	the	project	is	built.	These	changes	allowed	us	to	remove	the
need	for	resource	adapter	jars	built	with	the	lib	classifier.	If	you	need	to	reference	these	artifacts	from	maven,	just	omit	the
classifier.

Legacy	Drivers

The	drivers	for	JRE	1.4/1.5	systems	have	been	discontinued.	If	you	still	need	a	client	for	those	platforms,	you	should	use	the
appropriate	8.x	driver.

OData

The	OData	v2	war	based	upon	odata4j	has	been	removed.	You	should	utilize	the	OData	v4	war	service	instead.

Migration	Guide	From	Teiid	8.x

110

https://github.com/teiid/teiid-embedded-examples

The	names	of	the	wars	have	been	changed	to	strip	version	information	-	this	makes	it	easier	to	capture	a	deployment-overlay	in
the	configuration	such	that	it	won’t	be	changed	from	one	Teiid	version	to	the	next.

teiid-odata-odata2.war	has	become	teiid-odata.war	teiid-olingo-odata4.war	has	become	teiid-olingo-odata4.war

To	change	properties	in	an	web.xml	file	or	add	other	files	to	the	default	odata	war,	you	should	use	a	deployment	overlay	instead.

Materialization

The	semantic	versioning	change	requires	the	materialization	status	tables	to	change	their	version	column	from	an	integer	to	string.
Both	the	source	and	the	source	model	will	need	to	be	updated	with	the	column	type	change.

Migration	Guide	From	Teiid	8.x

111

https://docs.wildfly.org/19/Admin_Guide.html#Deployment_Overlays

Caching	Guide
Teiid	provides	several	capabilities	for	caching	data	including:

1.	 Materialized	views

2.	 ResultSet	caching

3.	 Code	table	caching

These	techniques	can	be	used	to	significantly	improve	performance	in	many	situations.

With	the	exception	of	external	materialized	views,	the	cached	data	is	accessed	through	the	BufferManager.	In	some	cases	the
BufferManager	setting	can	be	adjusted	to	the	particular	memory	constraints	of	your	installation.

See	the	Cache	Tuning	for	more	on	parameter	tuning.

Caching	Guide

112

Results	Caching
Teiid	provides	the	capability	to	cache	the	results	of	specific	user	queries	and	virtual	procedure	calls.		This	caching	technique	can
yield	significant	performance	gains	if	users	of	the	system	submit	the	same	queries	or	execute	the	same	procedures	often.

Support	Summary

Caching	of	user	query	results.

Caching	of	virtual	procedure	results.

Scoping	of	results	is	automatically	determined	to	be	VDB/user	(replicated)	or	session	level.	The	default	logic	will	be
influenced	by	every	function	evaluated,	consider	the	DETERMINISM	property	on	all	source	models/tables/procedures,	and
the	Scope	from	the	ExecutionContext	or	CacheDirective.

Configurable	number	of	cache	entries	and	time	to	live.

Administrative	clearing.

User	Interaction

User	Query	Cache

User	query	result	set	caching	will	cache	result	sets	based	on	an	exact	match	of	the	incoming	SQL	string	and	PreparedStatement
parameter	values	if	present.	Caching	only	applies	to	SELECT,	set	query,	and	stored	procedure	execution	statements;	it	does	not
apply	to	SELECT	INTO	statements,	or	INSERT,	UPDATE,	or	DELETE	statements.

End	users	or	client	applications	explicitly	state	whether	to	use	result	set	caching.	This	can	be	done	by	setting	the	JDBC
ResultSetCacheMode	execution	property	to	true	(default	false)

Properties	info	=	new	Properties();

…

info.setProperty("ResultSetCacheMode",	"true");

Connection	conn	=	DriverManager.getConnection(url,	info);

or	by	adding	a	Cache	Hint	to	the	query.	Note	that	if	either	of	these	mechanisms	are	used,	Teiid	must	also	have	result	set	caching
enabled	(the	default	is	enabled).

The	most	basic	form	of	the	cache	hint,		/*+	cache	*/	,	is	sufficient	to	inform	the	engine	that	the	results	of	the	non-update
command	should	be	cached.

PreparedStatement	ResultSet	Caching

PreparedStatement	ps	=	connection.prepareStatement("/*+	cache	*/	select	col	from	t	where	col2	=	?");

ps.setInt(1,	5);

ps.execute();

The	results	will	be	cached	with	the	default	ttl	and	use	the	SQL	string	and	the	parameter	value	as	part	of	the	cache	key.

The	pref_mem	and	ttl	options	of	the	cache	hint	may	also	be	used	for	result	set	cache	queries.	If	a	cache	hint	is	not	specified,	then
the	default	time	to	live	of	the	result	set	caching	configuration	will	be	used.

Advanced	ResultSet	Caching

Results	Caching

113

/*+	cache(pref_mem	ttl:60000)	*/	select	col	from	t

In	this	example	the	memory	preference	has	been	enabled	and	the	time	to	live	is	set	to	60000	milliseconds	or	1	minute.	The	ttl	for
an	entry	is	actually	treated	as	it’s	maximum	age	and	the	entry	may	be	purged	sooner	if	the	maximum	number	of	cache	entries	has
been	reached.

Note Each	query	is	re-checked	for	authorization	using	the	current	user’s	permissions,	regardless	of	whether	or	not	the
results	have	been	cached.

Procedure	Result	Cache

Similar	to	materialized	views,	cached	virtual	procedure	results	are	used	automatically	when	a	matching	set	of	parameter	values	is
detected	for	the	same	procedure	execution.	Usage	of	the	cached	results	may	be	bypassed	when	used	with	the	OPTION
NOCACHE	clause.	Usage	is	covered	in	Hints	and	Options.

Cached	Virtual	Procedure	Definition
To	indicate	that	a	virtual	procedure	should	be	cached,	it’s	definition	should	include	a	Cache	Hint.

Procedure	Caching

/*+	cache	*/

BEGIN

				...

END

Results	will	be	cached	with	the	default	ttl.

The		pref_mem		and		ttl		options	of	the	cache	hint	may	also	be	used	for	procedure	caching.

Procedure	results	cache	keys	include	the	input	parameter	values.	To	prevent	one	procedure	from	filling	the	cache,	at	most	256
cache	keys	may	be	created	per	procedure	per	VDB.

A	cached	procedure	will	always	produce	all	of	its	results	prior	to	allowing	those	results	to	be	consumed	and	placed	in	the	cache.
This	differs	from	normal	procedure	execution	which	in	some	situations	allows	the	returned	results	to	be	consumed	in	a	streaming
manner.

Cache	Configuration
By	default	result	set	caching	is	enabled	with	1024	maximum	entries	with	a	maximum	entry	age	of	2	hours.	There	are	actually	2
caches	configured	with	these	settings.	One	cache	holds	results	that	are	specific	to	sessions	and	is	local	to	each	Teiid	instance.	The
other	cache	holds	VDB	scoped	results	and	can	be	replicated.	See	the	teiid	subsystem	configuration	for	tuning.	The	user	may	also
override	the	default	maximum	entry	age	via	the	Cache	Hint.

Result	set	caching	is	not	limited	to	memory.	There	is	no	explicit	limit	on	the	size	of	the	results	that	can	be	cached.	Cached	results
are	primarily	stored	in	the	BufferManager	and	are	subject	to	it’s	configuration	-	including	the	restriction	of	maximum	buffer
space.

While	the	result	data	is	not	held	in	memory,	cache	keys	-	including	parameter	values	-	may	be	held	in	memory.	Thus	the	cache
should	not	be	given	an	unlimited	maximum	size.

Result	set	cache	entries	can	be	invalidated	by	data	change	events.	The	max-staleness	setting	determines	how	long	an	entry	will
remain	in	the	case	after	one	of	the	tables	that	contributed	to	the	results	has	been	changed.

Results	Caching

114

See	the	Developer’s	Guide	for	further	customization.

Extension	Metadata

You	can	use	the	extension	metadata	property

{http://www.teiid.org/ext/relational/2012}data-ttl

as	a	schema/model	property	or	on	a	source	table	to	indicate	a	default	TTL.	A	negative	value	means	no	TTL,	0	means	do	not	cache,
and	a	positive	number	indicates	the	time	to	live	in	milliseconds.	If	no	TTL	is	specified	on	the	table,	then	the	schema	will	be
checked.	The	TTL	for	the	cache	entry	will	be	taken	as	the	least	positive	value	among	all	TTLs.	Thus	setting	this	value	as	a	model
property	can	quickly	disable	any	caching	against	a	particular	source.

For	example,	setting	the	property	in	the	vdb:

CREATE	DATABASE	vdbname;

USE	DATABASE	vdbname;

...

CREATE	SCHEMA	PM1	SERVER	connector	OPTIONS	("teiid_rel:data-ttl"	0);

...

As	an	XML	VDB:

<vdb	name="vdbname"	version="1">

				<model	name="Customers">

								<property	name="teiid_rel:data-ttl"	value="0"/>

								...

Cache	Administration
The	result	set	cache	can	be	cleared	through	the	AdminAPI	using	the		clearCache		method.	The	expected	cache	key	is
"QUERY_SERVICE_RESULT_SET_CACHE".

Clearing	the	ResultSet	Cache	in	AdminAPI

admin.clearCache("QUERY_SERVICE_RESULT_SET_CACHE")

See	the	AdminAPI	for	more	on	using	the	AdminAPI.

Limitations

XML,	BLOB,	CLOB,	JSON,	Geometry,	and	OBJECT	type	cannot	be	used	as	part	of	the	cache	key	for	prepared	statement	of
procedure	cache	keys.

The	exact	SQL	string,	including	the	cache	hint	if	present,	must	match	the	cached	entry	for	the	results	to	be	reused.	This
allows	cache	usage	to	skip	parsing	and	resolving	for	faster	responses.

Result	set	caching	is	transactional	by	default	using	the	NON_XA	transaction	mode.	If	you	want	full	XA	support,	then	change
the	configuration	to	use	NON_DURABLE_XA.

Clearing	the	results	cache	clears	all	cache	entries	for	all	VDBs.

Results	Caching

115

Results	Caching

116

Materialized	Views
Teiid	supports	materialized	views.		Materialized	views	are	just	like	other	views,	but	their	transformations	are	pre-computed	and
stored	just	like	a	regular	table.	When	queries	are	issued	against	the	views	through	the	Teiid	Server,	the	cached	results	are	used.
	This	saves	the	cost	of	accessing	all	the	underlying	data	sources	and	re-computing	the	view	transformations	each	time	a	query	is
executed.

Materialized	views	are	appropriate	when	the	underlying	data	does	not	change	rapidly,	or	when	it	is	acceptable	to	retrieve	data	that
is	"stale"	within	some	period	of	time,	or	when	it	is	preferred	for	end-user	queries	to	access	staged	data	rather	than	placing
additional	query	load	on	operational	sources.

Support	Summary

Caching	of	relational	table	or	view	records	(pre-computing	all	transformations)

Model-based	definition	of	virtual	groups	to	cache

User	ability	to	override	use	of	materialized	view	cache	for	specific	queries	through	Hints	and	Options

Approach

The	overall	strategy	toward	materialization	should	be	to	work	on	the	integration	model	first,	then	optimize	as	needed	from	the	top
down.

Result	set	caching,	ideally	hint	driven,	should	be	used	if	there	lots	of	repeated	user	queries.	If	result	set	caching	is	insufficient,
then	move	onto	internal	materialization	for	views	that	are	closest	to	consumers	(minimally	or	not	layered)	that	are	introducing
performance	issues.	Keep	in	mind	that	the	use	of	materialization	inlines	access	to	the	materialization	table	rather	than	the	view	so
scenarios	that	integrate	on	top	of	the	materialization	may	suffer	if	they	were	relying	on	pushing/optimizing	the	work	of	the	view
with	surrounding	constructs.

Based	upon	the	limitations	of	internal	materialization,	then	switch	to	external	materialization	as	needed.

Materialized	View	Definition

Materialized	views	are	defined	in	by	setting	the	materialized	property	on	a	table	or	view	in	a	virtual	(view)	relational	model.
Setting	this	property’s	value	to	true	(the	default	is	false)	allows	the	data	generated	for	this	virtual	table	to	be	treated	as	a
materialized	view.

Important It	is	important	to	ensure	that	all	key/index	information	is	present	as	these	will	be	used	by	the	materialization
process	to	enhance	the	performance	of	the	materialized	table.

The	target	materialized	table	may	also	be	set	in	the	properties.	If	the	value	is	left	blank,	the	default,	then	internal	materialization
will	be	used.	Otherwise	for	external	materialization,	the	value	should	reference	the	fully	qualified	name	of	a	table	(or	possibly
view)	with	the	same	columns	as	the	materialized	view.	For	most	basic	scenarios	the	simplicity	of	internal	materialization	makes	it
the	more	appealing	option.

Reasons	to	use	external	materialization

The	cached	data	needs	to	be	fully	durable.	Internal	materialization	does	not	survive	a	cluster	restart.

Materialized	Views

117

Full	control	is	needed	of	loading	and	refresh.	Internal	materialization	does	offer	several	system	supported	methods	for
refreshing,	but	does	not	give	full	access	to	the	materialized	table.

Control	is	needed	over	the	materialized	table	definition.	Internal	materialization	does	support	Indexes,	but	they	cannot	be
directly	controlled.	Constraints	or	other	database	features	cannot	be	added	to	internal	materialization	tables.

The	data	volume	is	large.	Internal	materialization	(and	temp	tables	in	general)	have	memory	overhead	for	each	page.	A	rough
guideline	is	that	there	can	be	100	million	rows	in	all	materialized	tables	across	all	VDBs	for	every	gigabyte	of	heap.

Important

Materialized	view	tables	default	to	the	VDB	scope.	By	default	if	a	materialized	view	definition	directly	or
transitively	contains	a	non-deterministic	function	call,	such	as	random	or	hasRole,	the	resulting	table	will
contain	only	the	initially	evaluated	values.	In	most	instances	you	should	consider	nesting	a	materialized	view
without	the	deterministic	results	that	is	joined	with	relevant	non-deterministic	values	in	a	parent	view.

Important Nearly	all	of	the	materialization	related	properties	must	be	set	at	the	time	the	vdb	is	loaded	and	are	not
monitored	for	changes.	Removal	of	properties	at	runtime,	such	as	the	status	table,	will	result	in	exceptions.

Materialized	Views

118

External	Materialization
This	document	will	explain	what	Teiid	External	Materialization	is	and	how	to	use	it.

Table	of	Contents
What	is	it	?
External	Materialized	Data	Source	Systems

RDBMS	Systems
Infinispan

View	Options
Materialization	Management

1.	Creation	of	Status	Table
2.	Creation	of	View	and	Materialized	Table
Materialization	Table	Loading
Refresh	Type:	EAGER

Appendix-1:	DDL	for	creating	MatView	Status	Table
Appendix-2:	Example	VDB	with	External	Materialized	View	Options

What	is	it	?

In	Teiid,	a	view	is	a	virtual	table	based	on	the	computing(loading/transforming/federating)	of	a	complex	SQL	statement	across
heterogeneous	data	sources.	Teiid	external	materialization	process	can	cache	the	View	data	to	an	external	data	source	systems	on	a
periodic	basis.	When	a	user	issues	queries	against	this	View,	the	request	will	be	redirected	to	this	external	data	source	system
where	cached	results	will	be	returned,	rather	than	re-computing	results	from	source	systems.	Materialization	can	prove	to	be	time
and	resource	saving	if	your	View	transformation	is	complex	and/or	access	to	the	source	systems	is	constrained.

Materialized	View	-	Materialized	view	is	just	like	other	views,	with	additional	options	in	View	Options,	to	enable	pre-computing
and	caching	data	to	an	external	data	source	system.

External	Materialization

119

Materialized	Table	-	Materialized	table	represents	the	target	table	for	the	materialized	View,	has	the	same	structure	as	the
materialized	view,	but	exists	on	the	external	data	source	system.

MatView	Status	Table	-	Each	materialized	view	has	a	reference	to	'Status'	table,	this	used	to	save	the	Materialized	views'	refresh
status.	This	table	typically	exists	on	the	same	physical	source	with	the		Materialized	Table	.

An	external	materialized	view	gives	the	administrator	full	control	over	the	loading	and	refresh	strategies.	Refer	to	Materialization
Management	for	details.

External	Materialized	Data	Source	Systems
The	following	are	the	types	of	data	sources	that	have	been	tested	to	work	in	the	external	materialization	process:

RDBMS	Systems

RDBMS	-	a	relational	database	should	work.	Example	databases;	Oracle,	Postgresql,	MySQL,	MS	SqlServer,	SAP	Hana,	etc.

If	the	database	supports	a	transactional	rename	operation,	you	can	use	the	default	load	strategy	that	uses	a	staging	table	and	rely
on	renaming	the	staging	table	to	the	live	table	in	the	after	load	script.

Note
TEIID-4294	raises	that	not	every	database	supports	a	transactional	rename,	either	as	separate	or	a	block	of
statements.	If	this	is	the	case	you	should	consider	using	a	LOADNUMBER	column,	or	a	custom	load	strategy	that
maintains	only	a	single	table.

Infinispan

Infinispan	-	for	in-memory	caching	of	results.	see	the	Infinispan	Translator.

View	Options
The	following	View	properties	are	extension	properties	that	used	in	the	management	of	the	Materialized	View.

Property	Name Description Optional

MATERIALIZED Set	the	value	to	'TRUE'	for	the	View	to	be
materialized. false n/a

MATERIALIZED_TABLE

Defines	the	name	of	target	table,	this	also
hints	the	materialization	is	using	external
materialization.	Omitting	this	property	and
setting	the	MATERIALIZED	property	true,
invokes	internal	materialization.

false n/a

UPDATABLE Allow	updating	Materialized	View	via	DML
updates true false

teiid_rel:ALLOW_MATVIEW_MANAGEMENT Allow	Teiid	based	automatic	management
of	load/refresh	strategies	of	View. true false

teiid_rel:MATVIEW_STATUS_TABLE

Fully	qualified	Status	Table	Name	to
manage	the	load/refresh	of	the	materialized
view.	See	below	for	table	structure	and	DDL
for	it.

false n/a

External	Materialization

120

https://issues.redhat.com/browse/TEIID-4294

teiid_rel:MATVIEW_LOAD_SCRIPT	-
DEPRECATED

command	to	run	for	loading	of	the	cache.
Use	of	this	property	is	deprecated	in	favor	of
using	the
"MATVIEW_LOADNUMBER_COLUMN"
property.

true
will	be	determined	based	on	view
transformation

teiid_rel:MATERIALIZED_STAGE_TABLE	-
DEPRECATED

When	MATVIEW_LOAD_SCRIPT
property	not	defined,	Teiid	loads	the	cache
contents	into	this	table.	Required	when
MATVIEW_LOAD_SCRIPT	not	defined.
Use	of	this	property	is	deprecated	in	favor
using	the
"MATVIEW_LOADNUMBER_COLUMN"
property.

true n/a

teiid_rel:MATVIEW_LOADNUMBER_COLUMN

Name	of	column	in	the
	MATERIALIZED_TABLE		that	can	hold	status
information	about	load/refresh	load	process.
The	column	type	MUST	be	long,	and
typically	named	as	"LoadNumber".

false NONE

teiid_rel:MATVIEW_BEFORE_LOAD_SCRIPT DDL/DML	command	to	run	before	the
actual	load	of	the	cache true When	not	defined,	no	script	will	be	run

teiid_rel:MATVIEW_AFTER_LOAD_SCRIPT

DDL/DML	command	to	run	after	the	actual
load	of	the	cache.
teiid_rel:MATVIEW_STAGE_TABLE	to
MATVIEW	table

true When	not	defined,	no	script	will	be	run

teiid_rel:MATVIEW_SHARE_SCOPE

Allowed	values	are	{IMPORTED,	FULL},
which	define	if	the	cached	contents	are
shared	among	different	VDB	versions	and
different	imported	VDBs	and	parent	VDB.

true IMPORTED

teiid_rel:ON_VDB_START_SCRIPT DDL/DML	command	to	run	start	of	vdb true n/a

teiid_rel:ON_VDB_DROP_SCRIPT

DDL/DML	command	to	run	at	VDB	un-
deploy;	typically	used	for	cleaning	the
cache/status	tables.	DO	NOT	use	this	script
to	delete	the	contents	of	Status	table,	when
cache	scope	settings	are	configured	for
{FULL}	scope,	if	another	version	of	the
VDB	is	still	active.	Deletion	of	this
information	will	reload	the	materialization
table.

true n/a

teiid_rel:MATVIEW_ONERROR_ACTION

Action	to	be	taken	when	mat	view	contents
are	requested	but	cache	is	invalid.	Allowed
values	are	(THROW_EXCEPTION	=
throws	an	exception,	IGNORE	=	ignores	the
warning	and	supplied	invalidated	data,
WAIT	=	waits	until	the	data	is	refreshed	and
valid	then	provides	the	updated	data)

true WAIT

teiid_rel:MATVIEW_TTL
time	to	live	in	milliseconds.	Provide
property	or	cache	hint	on	view
transformation	-	property	takes	precedence.

true
2^63	milliseconds	-	effectively	the
table	will	not	refresh,	but	will	be
loaded	a	single	time	initially

teiid_rel:MATVIEW_WRITE_THROUGH

When	true	Teiid	will	perform	both	the
underlying	update	and	the	corresponding
update	against	the	materialization	target	for

true false

External	Materialization

121

an	insert/update/delete	issued	against	the
view.

teiid_rel:MATVIEW_MAX_STALENESS_PCT

This	property	defines	the	percentage	max	of
staleness	allowed	before	a	refresh	to	the
View	is	invoked.	Any	double	value	0	to	100
is	valid	value.	The	StateCount	column	on
Status	table	is	used	to	keep	track	of	the
number	of	updates,	and	this	value	is
checked	against	Cardinality	column	to
calculate	the	amount	of	variance.	The
availability	of	this	property,	supercedes	the
MATVIEW_TTL	property	interms	of	when
a	refresh	job	triggred	to	update	the	contents
of	the	view.

true n/a

teiid_rel:MATVIEW_POLLING_QUERY

This	property	defines	a	query	that	must
return	a	single	timestamp	value.	If	the	value
is	greater	than	the	last	update	time	of	the
materialization	table,	it	will	be	reloaded.

true n/a

teiid_rel:MATVIEW_POLLING_INTERVAL
This	property	defines	the	polling	interval,	in
milliseconds,	used	with	the	polling	query
and	STALENESS_PCT	based	refreshes.

true 60000

teiid_rel:MATVIEW_PART_LOAD_COLUMN

This	property	defines	the	partitioned	load
column.	If	specified	the	default	load	strategy
will	be	updated	to	refresh	the	materialization
one	partition	at	a	time.	This	must	specify	a
column	that	exists	on	the	view	and	it	must
be	of	a	comparable	type.	Currently	only
works	with
MATVIEW_LOADNUMBER_COLUMN
specified.

true n/a

teiid_rel:MATVIEW_PART_LOAD_VALUES

If	MATVIEW_PART_LOAD_COLUMN	is
specified,	this	may	be	a	query	expression
that	returns	a	single	column	providing	the
partition	values.	e.g.	for	multi-source	you
can	get	the	source	names	via	the	query
"select	s.name	from	(exec
sysadmin.schemaSources('schema	name'))
s"

true
the	distinct	values	for	the
MATVIEW_PART_LOAD_COLUMN
selected	with	option	no	cache.

Tip for	scripts	that	need	more	than	one	statement	executed,	use	a	procedure	block	BEGIN	statement;	statement;	…
END

Important

When	a	vdb	is	imported	into	another	vdb,	materializied	views	are	automatically	shared	across	these	vdbs.
The	teiid_rel:MATVIEW_SHARE_SCOPE	property	must	be	set	to	'IMPORTED'	or	'FULL'	on	importing
VDB’s	materialized	views	to	enable	sharing	across	the	both	vdbs.	The	below	table	shows	an	example	of	how
this	property	works

For	example:	Table	A	is	in	VDB	X.1	and	Table	C	in	VDB	Y.1	Table	A	&	B	in	VDB	X.2	and	imports	Y.1	then	depending	on	scope
setting	the	system	will	cache	sharing	will	work	as

Scope X.1 Y.1 X.2

IMPORTED A-own	copy C-Shared	w/X.2 A-own	copy,B-own
copy,C-Shared	from	Y.1

External	Materialization

122

FULL A-Shared	with/X.* C-Shared	w/X.2 A-Shared	with/	X,B-
Shared	w/X,C-Shared
from/Y.1

An	example	View	definition	with	View	Options

		CREATE	VIEW	Person	(

				id	varchar,

				name	varchar,

				dob	date,

				PRIMARY	KEY	(id)

)	OPTIONS	(

				MATERIALIZED	'TRUE',

				UPDATABLE	'TRUE',

				MATERIALIZED_TABLE	'materialized.PersonCached',

				"teiid_rel:MATVIEW_TTL"	20000,

				"teiid_rel:ALLOW_MATVIEW_MANAGEMENT"	'true',

				"teiid_rel:MATVIEW_LOADNUMBER_COLUMN"	'LoadNumber',

				"teiid_rel:MATVIEW_STATUS_TABLE"	'materialized.status'

)

		AS

				SELECT	p.id,	p.name,	p.dob	FROM	Source.Person	AS	p;

Materialization	Management

When	designing	Views,	you	can	define	additional	metadata	and	extension	properties(refer	to	above	section)	on	the	views	to
control	the	loading	and	refreshing	of	external	materialization	cache.	This	option	provides	a	limited,	but	a	powerful	way	to	manage
the	materialization	views.	Below	we	will	list	steps	need	to	take	to	configure	a	View	to	be	materialized.

1.	Creation	of	Status	Table

To	manage	and	report	the	loading	and	refreshing	activity	of	materialization	of	the	view,	a	Materialized	Table	and	Status	Table
need	be	be	defined	in	one	of	the	source	models	in	the	VDB.	Create	these	tables	on	the	physical	database,	before	you	deploy	the
VDB.

The	below	defines	the	DDL	for	creating	the	Status	table.

CREATE	TABLE	status

(

		VDBName	varchar(50)	not	null,

		VDBVersion	varchar(50)	not	null,

		SchemaName	varchar(50)	not	null,

		Name	varchar(256)	not	null,

		TargetSchemaName	varchar(50),

		TargetName	varchar(256)	not	null,

		Valid	boolean	not	null,

		LoadState	varchar(25)	not	null,

		Cardinality	long,

		Updated	timestamp	not	null,

		LoadNumber	long	not	null,

		NodeName	varchar(25)	not	null,

		StaleCount	long,

		PRIMARY	KEY	(VDBName,	VDBVersion,	SchemaName,	Name)

);

External	Materialization

123

Appendix-1:	DDL	for	creating	MatView	Status	Table	contains	a	series	of	verified	schemas	against	different	RDBMS	sources.
These	can	be	modified	to	suit	your	database,	please	make	sure	the	names	and	data	types	match	exactly.

Warning

Some	databases,	such	as	MySQL	with	the	InnoDB	backend,	may	not	allow	a	large	primary	key	such	as	the
one	for	the	status	table.	If	you	experience	this,	you	should	consider	making	the	field	sizes	shorter	(such	as	the
table	name),	using	a	different	database	to	hold	the	status,	or	using	a	smaller	index	(for	example	just	over
vdbname	and	vdbversion).

Description	Status	table:

Column	Name Description

VDBName Name	of	VDB

VDBVersion Version	of	VDB

SchemaName View’s	Schema

TargetSchemaName Schema	name	of	materialization	Table

TargetName Name	of	materialization	Table

Valid true	when	view	materialization	contents	are	valid;	false
otherwise

LoadState

Status	of	the	View;	LOADING,	LOADED,
FAILED_LOAD.	During	the	materialization	load,	this
status	is	set	to	LOADING,	depending	upon	the	success	or
failure	either	LOADED	or	FAILED_LOAD	is	set.

Cardinality Number	of	rows	loaded

Updated Time	stamp	when	the	last	update	occurred	on	the
materialization	contents

LoadNumber Counter	to	keep	track	of	number	of	updates	to	the
materialization	contents

NodeName Node	name,	which	updated	the	materialization	contents
last

StaleCount Number	updates	counted	against	View,	based	on	source
table	changes	when	using	LAZY-SNAPSHOT	strategy.

2.	Creation	of	View	and	Materialized	Table

Define	the	View	and	its	transformation	a	VDB’s	model/schema.	Then	provide	the	extension	properties	on	the	View	as	defined	in
View	Options

Set	the		MATERIALIZED		to	'TRUE'	and	the		MATERIALIZED_TABLE		point	to	a	target	table	is	necessary	for	external	materialization,
	UPDATABLE		is	optional,	set	it	to	'TRUE'	if	want	the	external	materialized	view	be	updatable,	this	must	be	set	to	true,	if	you	want
to	issue	incremental	eager	updates	to	the	view.	Define	the	TTL	to	define	the	load/refresh	semantics.

In	an	another	PHYSICAL	model	in	the	VDB	(where	the	Status	table	defined),	define	the	Materialized	table,	where	the
Materialized	Table	should	have	the	same	structure	as	View	it	is	representing,	with	additional	"LoadNumber"	column	with	"long"
data	type.

External	Materialization

124

Once	a	View,	which	is	defined	with	the	above	properties,	is	deployed,	the	following	sequence	of	events	will	take	place:

Tip Example	VDB	based	on	DDL	is	defined	below	for	reference.

Materialization	Table	Loading

Upon	deployment	of	the	VDB	to	the	Teiid	server,	SYSADMIN.loadMatView	used	to	perform	a	complete	refresh	of	materialized
table,	this	procedure	reads	the	extension	properties	defined	from	View	Options	to	customize	the	load.	The	following	describes	the
sequence	of	events	that	occur	inside	this	procedure

1.	 Inserts/updates	an	entry	in		teiid_rel:MATVIEW_STATUS_TABLE	,	which	indicates	that	the	cache	is	being	loaded.

2.	 Executes		teiid_rel:MATVIEW_BEFORE_LOAD_SCRIPT		if	defined.

3.	 Runs	a	query	to	load	the	cache	contents.	This	makes	use	of	View’s	transformation	to	load	the	contents.

4.	 Executes		teiid_rel:MATVIEW_AFTER_LOAD_SCRIPT		if	defined.

5.	 Updates		teiid_rel:MATVIEW_STATUS_TABLE		entry	to	set	materialized	view	status	status	to	"LOADED"	and	valid.	If	failure
happens	it	will	be	marked	as	such.

Tip The	start/stop	scripts	are	not	cluster	aware	-	that	is	they	will	run	on	each	cluster	member	as	the	VDB	is	deployed.
When	deploying	into	a	clustered	environment,	the	scripts	should	be	written	in	such	a	way	as	to	be	cluster	safe.

Once	the	first	load	of	the	materialized	view,	the	update/refresh	of	the	this	View	is	controlled	by	the	extension	property
"MATVIEW_TTL"	or	"MATVIEW_MAX_STALENESS_PCT".	Currently	there	are	three	different	refresh	types	allowed

Refresh	Type:	TTL	Based	SNAPSHOT

Based	on	the	MATVIEW_TTL	extension	property	defined	on	View,	when	the	time	configured	is	elapsed	from	the	time	of	finish	of
loading	the	View,	the	whole	view	is	reloaded	automatically	if	the	"ALLOW_MATVIEW_MANAGEMENT"	property	is	set	to
true.	If	the	contents	are	externally	managed	additional	properties	are	required.	Note,	that	"MATVIEW_MAX_STALENESS_PCT"
is	not	provided	in	this	case.

Refresh	Type:	LAZY	SNAPSHOT

This	is	similar	to	TTL	Based	SNAPSHOT,	but	differs	as	to	what	triggers	the	reload	of	the	view.	Every	source	table	update(s)	is
captured	in	the	Status	table’s	StaleCount	column	as	single	updated	event,	and	when	this	updated	count	reaches	or	exceeds	the
defined	"MATVIEW_MAX_STALENESS_PCT"	value,	then	a	full	refresh	is	triggered.	The	values	of	StaleCount/Cardinality	are
used	to	calculate	the	percent	of	variance	to	invoke	the	trigger	for	refresh.	Also	note	this	refresh	type	only	applies	when	view	is
materialized	to	external	sources.		SYSADMIN.updateStaleCount		procedure	is	used	to	increment	the	StaleCount	counter.	When
integrated	with	CDC	technologies	like	Debezium	(new	feature	coming..)	this	procedure	is	called	automatically.

Refresh	Type:	EAGER

When	a	view	refresh	type	is	defined	as	"EAGER",	the	very	first	time	the	contents	if	the	materialized	view	are	loaded	similar	to
that	of	other	types	using	the		SYSADMIN.loadMatView		procedure	upon	the	deployment	of	the	VDB.	However,	once	the	contents	are
loaded,	SYSADMIN.updateMatView	can	be	used	to	perform	a	eager	incremental	update	based	on	any	criteria	provided.	If	you
know	that	certain	data	points	in	the	source	system	were	changed	after	last	full	refresh	of	the	materialized	view,	you	can	call	this
procedure	with	a	criteria	based	on	the	view	that	cover	those	changed	values,	and	this	procedure	will	update	only	those	affected
rows	in	the	materialized	table	instead	of	doing	full	snapshot	update.	This	can	save	lot	of	time	and	resources	and	also	keeps	your
view	materialization	cache	upto	date	with	source	system	changes.

External	Materialization

125

Note:	This	script	is	not	invoked	automatically	by	Teiid,	as	the	source	update	events	may	be	occurring	outside	of	Teiid.	This
procedure	needs	to	be	invoked	by	user,	when	he/she	knows	that	there	is	change	in	the	source	systems.	When	CDC	technologies
like	Debezium	is	used	(new	feature	coming..),	this	procedure	can	be	automatically	invoked	to	keep	the	the	View	contents	fresh.

Appendix-1:	DDL	for	creating	MatView	Status	Table

h2

CREATE	TABLE	status

(

		VDBName	varchar(50)	not	null,

		VDBVersion	varchar(50)	not	null,

		SchemaName	varchar(50)	not	null,

		Name	varchar(256)	not	null,

		TargetSchemaName	varchar(50),

		TargetName	varchar(256)	not	null,

		Valid	boolean	not	null,

		LoadState	varchar(25)	not	null,

		Cardinality	long,

		Updated	timestamp	not	null,

		LoadNumber	long	not	null,

		NodeName	varchar(25)	not	null,

		StaleCount	long,

		PRIMARY	KEY	(VDBName,	VDBVersion,	SchemaName,	Name)

);

MariaDB

CREATE	TABLE	status

(

		VDBName	varchar(50)	not	null,

		VDBVersion	varchar(50)	not	null,

		SchemaName	varchar(50)	not	null,

		Name	varchar(256)	not	null,

		TargetSchemaName	varchar(50),

		TargetName	varchar(256)	not	null,

		Valid	boolean	not	null,

		LoadState	varchar(25)	not	null,

		Cardinality	bigint,

		Updated	timestamp	not	null,

		LoadNumber	bigint	not	null,

		NodeName	varchar(25)	not	null,

		StaleCount	bigint,

		PRIMARY	KEY	(VDBName,	VDBVersion,	SchemaName,	Name)

);

Appendix-2:	Example	VDB	with	External	Materialized	View
Options
The	below	VDB	defines	three	models,	one	"Source"	model	that	defines	your	source	database	where	your	business	data	is	in,
"ViewModel"	defines	a	"Person"	view	which	is	derived	from	subset	of	the	data	from	your	table	in	the	"Source"	model’s	table(s).
Note	that	view	table	also	marked	with	few	extension	properties	to	allow	external	materialization.	The	"materialized"	model
defines	a	source	database	model,	where	it	has	a	table	with	exact	table	structure	as	the	ViewModel’s	materialized	view	with
additional	column	called	"LoadNumber".	Note	the	"materialized	table	also	contains	the	"status"	table.	Both	these	tables	must	be
created	manually	on	the	source	database	before	VDB	is	deployed	to	the	server.	The	example	below	uses	TTL_SNAPSHOT	based
refresh.

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

External	Materialization

126

<vdb	name="example"	version="1">

				<model	name="Source">

								<source	name="source"	translator-name="h2"	connection-jndi-name="java:/my-ds"	/>

				</model>

				<model	name="ViewModel"	type="VIRTUAL">

								<metadata	type="DDL"><![CDATA[

										CREATE	VIEW	Person	(

												id	varchar,

												name	varchar,

												dob	date,

												PRIMARY	KEY	(id)

)	OPTIONS	(

												MATERIALIZED	'TRUE',	UPDATABLE	'TRUE',

												MATERIALIZED_TABLE	'materialized.PersonCached',

												"teiid_rel:MATVIEW_TTL"	20000,

												"teiid_rel:ALLOW_MATVIEW_MANAGEMENT"	'true',

												"teiid_rel:MATVIEW_LOADNUMBER_COLUMN"	'LoadNumber',

												"teiid_rel:MATVIEW_STATUS_TABLE"	'materialized.status'

)

										AS

												SELECT	p.id,	p.name,	p.dob	FROM	Source.Person	AS	p;

]]>

								</metadata>

				</model>

				<model	name="materialized"	type="PHYSICAL">

								<source	name="matview"	translator-name="h2"	connection-jndi-name="java:/matview-ds"	/>

								<metadata	type="DDL"><![CDATA[

										CREATE	VIEW	PersonCached	(

												id	varchar,

												name	varchar,

												dob	date,

												LoadNumber	long,

												PRIMARY	KEY	(id)

);

										CREATE	TABLE	status	(

												VDBName	varchar(50)	not	null,

												VDBVersion	varchar(50)	not	null,

												SchemaName	varchar(50)	not	null,

												Name	varchar(256)	not	null,

												TargetSchemaName	varchar(50),

												TargetName	varchar(256)	not	null,

												Valid	boolean	not	null,

												LoadState	varchar(25)	not	null,

												Cardinality	long,

												Updated	timestamp	not	null,

												LoadNumber	long	not	null,

												NodeName	varchar(25)	not	null,

												StaleCount	long,

												PRIMARY	KEY	(VDBName,	VDBVersion,	SchemaName,	Name)

)	OPTIONS	(UPDATABLE	true);

]]>

								</metadata>

				</model>

</vdb>

External	Materialization

127

Internal	Materialization
Internal	materialization	creates	Teiid	temporary	tables	to	hold	the	materialized	table.	While	these	tables	are	not	fully	durable,	they
perform	well	in	most	circumstances	and	the	data	is	present	at	each	Teiid	instance	which	removes	the	single	point	of	failure	and
network	overhead	of	an	external	database.	Internal	materialization	also	provides	built-in	facilities	for	refreshing	and	monitoring.

See	Memory	Limitations	regarding	size	limitations.

Table	of	Contents
View	Options
Loading	And	Refreshing

Using	System	Procedure
Using	TTL	Snapshot	Refresh

Updatable
Indexes
Clustering	Considerations

View	Options
The	materialized	option	must	be	set	for	the	view	to	be	materialized.	The	Cache	Hint,	when	used	in	the	context	of	an	internal
materialized	view	transformation	query,	provides	the	ability	to	fine	tune	the	materialized	table.	The	caching	options	are	also
settable	via	extension	metadata:

Property	Name Description Optional

materialized Set	for	the	view	to	be	materialized false true

UPDATABLE Allow	updating	Materialized	View	via
DML		UPDATE	 true false

teiid_rel:ALLOW_MATVIEW_MANAGEMENT
Allow	Teiid	based	management	of	the
ttl	and	initial	load	rather	than	the
implicit	behavior.

true false

teiid_rel:MATVIEW_PREFER_MEMEORY Same	as	the	pref_mem	cache	hint
option. true false

teiid_rel:MATVIEW_TTL
Trigger	a	Scheduled	ExecutorService
which	execute	refreshMatView
repeatedly	with	a	specified	time	to	live

true null

teiid_rel:MATVIEW_UPDATABLE
Allow	updating	Materialized	View	via
refreshMatView,	refreshMatViewRow,
refreshMatViewRows

true false.

teiid_rel:MATVIEW_SCOPE Same	as	the	scope	cache	hint	option. true VDB

teiid_rel:MATVIEW_WRITE_THROUGH

When	true	Teiid	will	perform	both	the
underlying	update	and	the
corresponding	update	against	the
materialization	target	for	an
insert/update/delete	issued	against	the
view.

true false

Internal	Materialization

128

teiid_rel:MATVIEW_POLLING_QUERY

This	property	defines	a	query	that	must
return	a	single	timestamp	value.	If	the
value	is	greater	than	the	last	update
time	of	the	materialization	table,	it	will
be	reloaded.

true n/a

teiid_rel:MATVIEW_POLLING_INTERVAL
This	property	defines	the	polling
interval,	in	milliseconds,	used	with	the
polling	query.

true 60000

teiid_rel:MATVIEW_PART_LOAD_COLUMN

This	property	defines	the	partitioned
load	column.	If	specified	the	default
load	strategy	will	be	updated	to	refresh
the	materialization	one	partition	at	a
time.	NOTE:	this	does	not	yet	work	for
the	initial	load.	This	must	specify	a
column	that	exists	on	the	view	and	it
must	be	of	a	comparable	type	that	is
convertable	to	string	values.

true n/a

teiid_rel:MATVIEW_PART_LOAD_VALUES

If
MATVIEW_PART_LOAD_COLUMN
is	specified,	this	may	be	a	query
expression	that	returns	a	single	column
providing	the	partition	values.	e.g.	for
multi-source	you	can	get	the	source
names	via	the	query	"select	s.name
from	(exec
sysadmin.schemaSources('schema
name'))	s"

true
the	distinct	values	for	the
MATVIEW_PART_LOAD_COLUMN
selected	with	option	no	cache.

The	pref_mem	option	also	applies	to	internal	materialized	views.	Internal	table	index	pages	already	have	a	memory	preference,	so
the	perf_mem	option	indicates	that	the	data	pages	should	prefer	memory	as	well.

All	internal	materialized	view	refresh	and	updates	happen	atomically.	Internal	materialized	views	support	READ_COMMITTED
(used	also	for	READ_UNCOMMITED)	and	SERIALIZABLE	(used	also	for	REPEATABLE_READ)	transaction	isolation	levels.

A	sample	VDB	defining	an	internal	materialization

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="sakila"	version="1">

				<model	name="pg">

								<source	name="pg"	translator-name="postgresql"	connection-jndi-name="java:/sakila-ds"/>

				</model>

				<model	name="sakila"	type="VIRTUAL">

				<metadata	type="DDL"><![CDATA[

								CREATE	VIEW	actor	(

											actor_id	integer,

											first_name	varchar(45)	NOT	NULL,

											last_name	varchar(45)	NOT	NULL,

											last_update	timestamp	NOT	NULL

)	OPTIONS	(materialized	true,

															UPDATABLE	'TRUE',

															"teiid_rel:MATVIEW_TTL"	120000,

															"teiid_rel:MATVIEW_PREFER_MEMORY"	'true',

															"teiid_rel:ALLOW_MATVIEW_MANAGEMENT"	'true',

															"teiid_rel:MATVIEW_UPDATABLE"	'true',

															"teiid_rel:MATVIEW_SCOPE"	'vdb')

												AS	SELECT	actor_id,	first_name,	last_name,	last_update	from	pg."public".actor;

]]>

				</metadata>

				</model>

</vdb>

Internal	Materialization

129

Loading	And	Refreshing

An	internal	materialized	view	table	is	initially	in	an	invalid	state	(there	is	no	data).

If		teiid_rel:ALLOW_MATVIEW_MANAGEMENT		is	specified	as	true,	then	the	initial	load	will	occur	on	vdb	startup.

If		teiid_rel:ALLOW_MATVIEW_MANAGEMENT		is	not	specified	or	false,	then	the	load	of	the	materialization	table	will	occur	on
implicit	on	the	first	query	that	accesses	the	table.

When	a	refresh	happens	while	the	materialization	table	is	invalid	all	other	queries	against	the	materialized	view	will	block	until
the	load	completes.

Using	System	Procedure

In	some	situations	administrators	may	wish	to	better	control	when	the	cache	is	loaded	with	a	call	to		SYSADMIN.refreshMatView	.
The	initial	load	may	itself	trigger	the	initial	load	of	dependent	materialized	views.	After	the	initial	load	user	queries	against	the
materialized	view	table	will	only	block	if	it	is	in	an	invalid	state.	The	valid	state	may	also	be	controlled	through	the
	SYSADMIN.refreshMatView		procedure.

Invalidating	Refresh

CALL	SYSADMIN.refreshMatView(viewname=>'schema.matview',	invalidate=>true)

matview	will	be	refreshed	and	user	queries	will	block	until	the	refresh	is	complete	(or	fails).

While	the	initial	load	may	trigger	a	transitive	loading	of	dependent	materialized	views,	subsequent	refreshes	performed	with
	refreshMatView		will	use	dependent	materialized	view	tables	if	they	exist.	Only	one	load	may	occur	at	a	time.	If	a	load	is	already
in	progress	when	the		SYSADMIN.refreshMatView		procedure	is	called,	it	will	return	-1	immediately	rather	than	preempting	the
current	load.

Using	TTL	Snapshot	Refresh

The	Cache	Hint	or	extension	properties	may	be	used	to	automatically	trigger	a	full	snapshot	refresh	after	a	specified	time	to	live
(ttl).	The	behavior	is	different	depending	on	whether	the	materialization	is	managed	or	non-managed.

For	non-managed	views	the	ttl	starts	from	the	time	the	table	is	finished	loading	and	the	refresh	will	be	initiated	after	the	ttl	has
expired	on	a	view	access.

For	managed	views	the	ttl	is	a	fixed	interval	and	refreshes	will	be	triggered	regardless	of	view	usage.

In	either	case	the	refresh	is	equivalent	to		CALL	SYSADMIN.refreshMatView('view	name',	*)	,	where	the	invalidation	behavior	*	is
determined	by	the	vdb	property	lazy-invalidate.	By	default	ttl	refreshes	are	invalidating,	which	will	cause	other	user	queries	to
block	while	loading.	That	is	once	the	ttl	has	expired,	the	next	access	will	be	required	to	refresh	the	materialized	table	in	a	blocking
manner.	If	you	would	rather	that	the	ttl	is	enforced	lazily,	such	that	the	current	contents	are	not	replaced	until	the	refresh
completes,	set	the	vdb	property	lazy-invalidate=true.

Auto-refresh	Transformation	Query*

/*+	cache(ttl:3600000)	*/	select	t.col,	t1.col	from	t,	t1	where	t.id	=	t1.id

The	resulting	materialized	view	will	be	reloaded	every	hour	(3600000	milliseconds).

TTL	Snapshot	Refresh	Limitations

Internal	Materialization

130

The	automatic	ttl	refresh	may	not	be	suitable	for	complex	loading	scenarios	as	nested	materialized	views	will	be	used	by	the
refresh	query.

The	non-managed	ttl	refresh	is	performed	lazily,	that	is	it	is	only	trigger	by	using	the	table	after	the	ttl	has	expired.	For
infrequently	used	tables	with	long	load	times,	this	means	that	data	may	be	used	well	past	the	intended	ttl.

Updatable

In	advanced	use-cases	the	cache	hint	may	also	be	used	to	mark	an	internal	materialized	view	as	updatable.	An	updatable	internal
materialized	view	may	use	the		SYSADMIN.refreshMatViewRow		procedure	to	update	a	single	row	in	the	materialized	table.	If	the
source	row	exists,	the	materialized	view	table	row	will	be	updated.	If	the	source	row	does	not	exist,	the	correpsonding
materialized	row	will	be	deleted.	To	be	updatable	the	materialized	view	must	have	a	single	column	primary	key.	Composite	keys
are	not	yet	supported	by		SYSADMIN.refreshMatViewRow	.	Transformation	Query:

/*+	cache(updatable)	*/	select	t.col,	t1.col	from	t,	t1	where	t.id	=	t1.id

Update	SQL:

CALL	SYSADMIN.refreshMatViewRow(viewname=>'schema.matview',	key=>5)

Given	that	the	schema.matview	defines	an	integer	column	col	as	its	primary	key,	the	update	will	check	the	live	source(s)	for	the
row	values.

The	update	query	will	not	use	dependent	materialized	view	tables,	so	care	should	be	taken	to	ensure	that	getting	a	single	row	from
this	transformation	query	performs	well.	See	the	Reference	Guide	for	information	on	controlling	dependent	joins,	which	may	be
applicable	to	increasing	the	performance	of	retrieving	a	single	row.	The	refresh	query	does	use	nested	caches,	so	this	refresh
method	should	be	used	with	caution.

When	the	updatable	option	is	not	specified,	accessing	the	materialized	view	table	is	more	efficient	because	modifications	do	not
need	to	be	considered.	Therefore,	only	specify	the	updatable	option	if	row	based	incremental	updates	are	needed.	Even	when
performing	row	updates,	full	snapshot	refreshes	may	be	needed	to	ensure	consistency.

The		EventDistributor		also	exposes	the	updateMatViewRow	as	a	lower	level	API	for	Programmatic	Control	-	care	should	be
taken	when	using	this	update	method.

Indexes

Internal	materialized	view	tables	will	automatically	create	a	unique	index	for	each	unique	constraint	and	a	non-unique	index	for
each	index	defined	on	the	materialized	view.	The	primary	key	(if	it	exists)	of	the	view	will	automatically	be	part	of	a	clustered
index.

The	secondary	indexes	are	always	created	as	ordered	trees	-	bitmap	or	hash	indexes	are	not	supported.	Teiid’s	metadata	for
indexes	is	currently	limited.	We	are	not	currently	able	to	capture	additional	information,	sort	direction,	additional	columns	to
cover,	etc.	You	may	workaround	some	of	these	limitations	though.

Function	based	index	are	supported,	but	can	only	be	specified	through	DDL	metadata.		If	you	are	not	using	DDL	metadata,
consider	adding	another	column	to	the	view	that	projects	the	function	expression,	then	place	an	index	on	that	new	column.
Queries	to	the	view	will	need	to	be	modified	as	appropriate	though	to	make	use	of	the	new	column/index.

If	additional	covered	columns	are	needed,	they	may	simply	be	added	to	the	index	columns.	This	however	is	only	applicable
to	comparable	types.	Adding	additional	columns	will	increase	the	amount	of	space	used	by	the	index,	but	may	allow	its	usage
to	result	in	higher	performance	when	only	the	covered	columns	are	used	and	the	main	table	is	not	consulted.

Internal	Materialization

131

Clustering	Considerations

Each	member	in	a	cluster	maintains	its	own	copy	of	each	materialized	table	and	associated	indexes.	An	attempt	is	made	to	ensure
each	member	receives	the	same	full	refresh	events	as	the	others.	Full	consistency	for	updatable	materialized	views	however	is	not
guaranteed.	Periodic	full	refreshes	of	updatable	materialized	view	tables	helps	ensure	consistency	among	members.

Internal	Materialization

132

Code	Table	Caching
Teiid	provides	a	short	cut	to	creating	an	internal	materialized	view	table	via	the	lookup	function.

The	lookup	function	provides	a	way	to	accelerate	getting	a	value	out	of	a	table	when	a	key	value	is	provided.		The	function
automatically	caches	all	of	the	key/return	pairs	for	the	referenced	table.		This	caching	is	performed	on	demand,	but	will
proactively	load	the	results	to	other	members	in	a	cluster.	Subsequent	lookups	against	the	same	table	using	the	same	key	and
return	columns	will	use	the	cached	information.

This	caching	solution	is	appropriate	for	integration	of	"reference	data"	with	transactional	or	operational	data.		Reference	data	is
usually	static	and	small	data	sets	that	are	used	frequently.		Examples	are	ISO	country	codes,	state	codes,	and	different	types	of
financial	instrument	identifiers.

Usage
This	caching	mechanism	is	automatically	invoked	when	the	lookup	scalar	function	is	used.	The	lookup	function	returns	a	scalar
value,	so	it	may	be	used	anywhere	an	expression	is	expected.	Each	time	this	function	is	called	with	a	unique	combination	of
referenced	table,	return	column,	and	key	column	(the	first	3	arguments	to	the	function).

See	the	Lookup	Function	in	the	Reference	Guide	for	more	information	on	use	of	the	lookup	function.

Country	Code	Lookup

lookup('ISOCountryCodes',	'CountryCode',	'CountryName',	'United	States')

Limitations

The	use	of	the	lookup	function	automatically	performs	caching;	there	is	no	option	to	use	the	lookup	function	and	not	perform
caching.

No	mechanism	is	provided	to	refresh	code	tables

Only	a	single	key/return	column	is	cached	-	values	will	not	be	session/user	specific.

Materialized	View	Alternative

The	lookup	function	is	a	shortcut	to	create	an	internal	materialized	view	with	an	appropriate	primary	key.	In	many	situations,	it
may	be	better	to	directly	create	the	analogous	materialized	view	rather	than	to	use	a	code	table.

Country	Code	Lookup	Against	A	Mat	View

SELECT	(SELECT	CountryCode	From	MatISOCountryCodes	WHERE	CountryName	=	tbl.CountryName)	as	cc	FROM	tbl

Here	MatISOCountryCodes	is	a	view	selecting	from	ISOCountryCodes	that	has	been	marked	as	materialized	and	has	a	primary
key	and	index	on	CountryName.	The	scalar	subquery	will	use	the	index	to	lookup	the	country	code	for	each	country	name	in	tbl.

Reasons	to	use	a	materialized	view:

More	control	of	the	possible	return	columns.	Code	tables	will	create	a	materialized	view	for	each	key/value	pair.	If	there	are
multiple	return	columns	it	would	be	better	to	have	a	single	materialized	view.

Proper	materialized	views	have	built-in	system	procedure/table	support.

Code	Table	Caching

133

More	control	via	the	cache	hint.

The	ability	to	use	OPTION	NOCACHE.

There	is	almost	no	performance	difference.

Steps	to	create	a	materialized	view:

1.	 Create	a	view	selecting	the	appropriate	columns	from	the	desired	table.	In	general,	this	view	may	have	an	arbitrarily
complicated	transformation	query.

2.	 Designate	the	appropriate	column(s)	as	the	primary	key.	Additional	indexes	can	be	added	if	needed.

3.	 Set	the	materialized	property	to	true.

4.	 Add	a	cache	hint	to	the	transformation	query.	To	mimic	the	behavior	of	the	implicit	internal	materialized	view	created	by	the
lookup	function,	use	the	Hints	and	Options		/*+	cache(pref_mem)	*/		to	indicate	that	the	table	data	pages	should	prefer	to
remain	in	memory.

Just	as	with	the	lookup	function,	the	materialized	view	table	will	be	created	on	first	use	and	reused	subsequently.	See	the
Materialized	Views	for	more.

Code	Table	Caching

134

Translator	Results	Caching
Translators	can	contribute	cache	entries	into	the	result	set	cache	via	the	use	of	the		CacheDirective		object.		The	resulting	cache
entries	behave	just	as	if	they	were	created	by	a	user	query.		See	the	Translator	Caching	API	for	more	on	this	feature.

Translator	Results	Caching

135

Cache	Hint

A	query	cache	hint	can	be	used	to:

Indicate	that	a	user	query	is	eligible	for	result	set	caching	and	set	the	cache	entry	memory	preference,	time	to	live,	etc.

Set	the	materialized	view	memory	preference,	time	to	live,	or	updatablity.

Indicate	that	a	virtual	procedure	should	be	cachable	and	set	the	cache	entry	memory	preference,	time	to	live,	etc.

/*+	cache[([pref_mem]	[ttl:n]	[updatable]	[scope:session|user|vdb])]*/	sql	...

The	cache	hint	should	appear	at	the	beginning	of	the	SQL.	It	can	be	appear	as	any	one	of	the	leading	comments.	It	will	not
have	any	affect	on	INSERT/UPDATE/DELETE	statements	or	INSTEAD	OF	TRIGGERS.

pref_mem-	if	present	indicates	that	the	cached	results	should	prefer	to	remain	in	memory.	The	results	may	still	be	paged	out
based	upon	memory	pressure.

Note

Care	should	be	taken	to	not	over	use	the	pref_mem	option.	The	memory	preference	is	implemented	with	Java	soft
references.	While	soft	references	are	effective	at	preventing	out	of	memory	conditions.	Too	much	memory	held
by	soft	references	can	limit	the	effective	working	memory.	Consult	your	JVM	options	for	clearing	soft	references
if	you	need	to	tune	their	behavior.

ttl:n-	if	present	n	indicates	the	time	to	live	value	in	milliseconds.	The	default	value	for	result	set	caching	is	the	default
expiration	for	the	corresponding	Infinispan	cache.	There	is	no	default	time	to	live	for	materialized	views.

updatable-	if	present	indicates	that	the	cached	results	can	be	updated.	This	defaults	to	false	for	materialized	views	and	to	true
for	result	set	cache	entries.

scope-	There	are	three	different	cache	scopes:	session	-	cached	only	for	current	session,	user	-	cached	for	any	session	by	the
current	user,	vdb	-	cached	for	any	user	connected	to	the	same	vdb.	For	cached	queries	the	presence	of	the	scope	overrides	the
computed	scope.	Materialized	views	can	only	be	the	vdb	scope.

The	pref_mem,	ttl,	updatable,	and	scope	values	for	a	materialized	view	may	also	be	set	via	extension	properties	on	the	view	-
using	the	teiid_rel	namespace	with	MATVIEW_PREFER_MEMORY,	MATVIEW_TTL,	MATVIEW_UPDATABLE,	and
MATVIEW_SCOPE	respectively.	If	both	are	present,	the	use	of	an	extension	property	supersedes	the	usage	of	the	cache	hint.

Limitations

The	form	of	the	query	hint	must	be	matched	exactly	for	the	hint	to	have	affect.	For	a	user	query	if	the	hint	is	not	specified
correctly,	e.g.		/*+	cach(pref_mem)	*/	,	it	will	not	be	used	by	the	engine	nor	will	there	be	an	informational	log.	It	is	currently
recommended	that	you	verify	(see	Client	Developers	Guide)	in	your	testing	that	the	user	command	in	the	query	plan	has	retained
the	proper	hint.

OPTION	NOCACHE

Individual	queries	may	override	the	use	of	cached	results	by	specifying		OPTION	NOCACHE		on	the	query.	0	or	more	fully	qualified
view	or	procedure	names	may	be	specified	to	exclude	using	their	cached	results.	If	no	names	are	specified,	cached	results	will	not
be	used	transitively.

Full	NOCACHE

SELECT	*	from	vg1,	vg2,	vg3	WHERE	…	OPTION	NOCACHE

Hints	and	Options

136

No	cached	results	will	be	used	at	all.

Specific	NOCACHE

SELECT	*	from	vg1,	vg2,	vg3	WHERE	…	OPTION	NOCACHE	vg1,	vg3

Only	the	vg1	and	vg3	caches	will	be	skipped,	vg2	or	any	cached	results	nested	under	vg1	and	vg3	will	be	used.

	OPTION	NOCACHE		may	be	specified	in	procedure	or	view	definitions.	In	that	way,	transformations	can	specify	to	always	use	real-
time	data	obtained	directly	from	sources.

Hints	and	Options

137

Programmatic	Control
Teiid	exposes	a	bean	that	implements	the	org.teiid.events.EventDistributor	interface.	It	can	be	looked	up	in	JNDI	under	the	name
teiid/event-distributor-factory.	The		EventDistributor		exposes	methods	like	dataModification	(which	affects	result	set	caching)
or	updateMatViewRow	(which	affects	internal	materialization)	to	alert	the	Teiid	engine	that	the	underlying	source	data	has	been
modified.	These	operations,	which	work	cluster	wide	will	invalidate	the	cache	entries	appropriately	and	reload	the	new	cache
contents.

Note
Change	Data	Capture	-	If	your	source	system	has	any	built-in	change	data	capture	facilities	that	can	scrape	logs,
install	triggers,	etc.	to	capture	data	change	events,	they	can	captured	and	can	be	propagated	to	Teiid	engine
through	a	pojo	bean/MDB/Session	Bean	deployed	in	WildFly	engine.

The	below	shows	a	code	example	as	how	user	can	use		EventDistributor		interface	in	their	own	code	that	is	deployed	in	the
same	WildFly	VM	using	a	Pojo/MDB/Session	Bean.	Consult	WildFly	documents	deploying	as	bean	as	they	out	of	scope	for	this
document.

EventDistributor	Code	Example

public	class	ChangeDataCapture	{

				public	void	invalidate()	{

								InitialContext	ic	=	new	InitialContext();

								EventDistributor	ed	=	((EventDistributorFactory)ic.lookup("teiid/event-distributor-factory")).getEventD

istributor();

								//	this	below	line	indicates	that	Customer	table	in	the	"model-name"	schema	has	been	changed.

								//	this	result	in	cache	reload.

								ed.dataModification("vdb-name",	"version",	"model-name",	"Customer");

				}

}

Note
Updating	Costing	information	-	The	EventDistributor	interface	also	exposes	many	methods	that	can	be	used	to
update	the	costing	information	on	your	source	models	for	optimized	query	planning.	Note	that	these	values
volatile	and	will	be	lost	during	a	cluster	re-start,	as	there	is	no	repository	to	persist.

Programmatic	Control

138

Developing	clients	for	Teiid
This	guide	intended	for	developers	that	are	trying	to	write	3rd	party	applications	that	interact	with	Teiid.	You	can	find	information
about	connection	mechanisms,	extensions	to	the	JDBC	API,	ODBC,	SSL	and	so	forth.

Before	one	can	delve	into	Teiid	it	is	very	important	to	learn	few	basic	constructs	of	Teiid,	like	what	is	VDB?	what	is	Model?	etc.
For	that	please	read	the	short	introduction.

Client	Developer’s	Guide

139

http://teiid.io/about/basics/

JDBC	compatibility
Teiid	provides	a	robust	JDBC	driver	that	implements	most	of	the	JDBC	API	according	to	the	latest	specification	and	compatible
Java	version.	Most	tooling	designed	to	work	with	JDBC	should	work	seamlessly	with	the	Teiid	driver.	When	in	doubt,	see
Incompatible	JDBC	Methods	for	functionality	that	has	yet	to	be	implemented.

If	your	needs	go	beyond	JDBC,	Teiid	has	also	provided	JDBC	Extensions	for	asynch	handling,	federation,	and	other	features.

Generated	Keys

Teiid	can	return	generated	keys	for	JDBC	sources	and	from	Teiid	temp	tables	with	SERIAL	primary	key	columns.	However	the
current	implementation	will	return	only	the	last	set	of	keys	generated	and	will	return	the	key	results	directly	from	the	source	-	no
view	projection	of	other	intermediate	handling	is	performed.	For	most	scenarios	(single	source	inserts)	this	handling	is	sufficient.
A	custom	solution	may	need	to	be	developed	if	you	are	using	a	FOR	EACH	ROW	instead	of	trigger	to	process	your	inserts	and
target	multiple	tables	that	each	return	generated	keys.	It	is	possible	to	develop	a	UDF	that	also	manipulates	the	returned	generated
keys	-	see	the		org.teiid.CommandContext		methods	dealing	with	generated	keys	for	more.

Note You	cannot	use	Generated	Keys	when	the	JDBC	Batched	updates	is	used	to	insert	the	values	into	the	source	table.

JDBC	Support

140

Connecting	to	a	Teiid	Server
The	Teiid	JDBC	API	provides	Java	Database	Connectivity	(JDBC)	access	to	a	Virtual	Database	(VDB)	deployed	on	Teiid.	The
Teiid	JDBC	API	is	compatible	with	the	JDBC	4.0	specification;	however,	it	is	not	compatible	with	some	methods.	You	cannot	use
some	advanced	features,	such	as	updatable	result	sets	or	SQL3	data	types.

Java	client	applications	connecting	to	a	Teiid	Server	will	need	to	use	at	least	the	Java	1.8	JDK.	Earlier	versions	of	Java	are	not
compatible.	You	may	attempt	to	use	a	client	driver	from	earlier	Teiid	versions	that	were	compatible	with	the	target	JRE.

Support	for	Teiid	clients	and	servers	older	than	version	8	has	been	dropped	from	Teiid	10.2	and	later.

Before	you	can	connect	to	the	Teiid	Server	using	the	Teiid	JDBC	API,	please	do	following	tasks.

1.	 Install	the	Teiid	Server.	See	the	"Admin	Guide"	for	instructions.

2.	 Build	a	Virtual	Database	(VDB).	Check	the	"Reference	Guide"	for	instructions	on	how	to	build	a	VDB.	If	you	do	not	know
what	VDB	is,	then	start	with	this	document.

3.	 Deploy	the	VDB	into	Teiid	Server.	Check	Administrator’s	Guide	for	instructions.

4.	 Start	the	Teiid	Server	(WildFly),	if	it	is	not	already	running.

After	you	deploy	the	virtual	database,	client	applications	can	connect	to	it	and	issue	SQL	queries	against	it	using	the	JDBC	API.	If
you	are	new	to	JDBC,	refer	to	the	Java	documentation	about	JDBC.	Teiid	ships	with		teiid-VERSION_NUMBER-jdbc.jar		that	is
available	from	the	Teiid.io	downloads.

You	can	also	obtain	the	Teiid	JDBC	from	the	Maven	repository	at	https://oss.sonatype.org/content/repositories/releases/	using	the
coordinates:

<dependency>

		<groupId>org.teiid</groupId>

		<artifactId>teiid</artifactId>

		<classifier>jdbc</classifier>

		<version>$versionNumber</version>

</dependency>

where		versionNumber		is	the	version	of	the	most	recent	Teiid	release.

Important	classes	in	the	client	JAR:

	org.teiid.jdbc.TeiidDriver	-	allows	JDBC	connections	using	the	DriverManager	class.

	org.teiid.jdbc.TeiidDatasource	-	allows	JDBC	connections	using	the	DataSource	XADataSource	class.	You	should	use
this	class	to	create	managed	or	XA	connections.

Once	you	have	established	a	connection	with	the	Teiid	Server,	you	can	use	standard	JDBC	API	classes	to	interrogate	metadata	and
execute	queries.

OpenTracing	compatibility

OpenTracing	is	optional	for	the	client	driver.	For	remote	connections	to	propagate	the	span	the	driver	must	have	the	appropriate
OpenTracing	jars	in	its	classpath.	This	can	be	done	via	a	maven	dependency:

<dependency>

				<groupId>io.opentracing</groupId>

				<artifactId>opentracing-util</artifactId>

				<version>${version.opentracing}</version>

Connecting	to	a	Teiid	Server

141

http://www.jboss.org/teiid/basics/virtualdatabases.html
http://docs.oracle.com/javase/tutorial/jdbc/index.html
http://teiid.io/teiid_wildfly/downloads/
https://oss.sonatype.org/content/repositories/releases/
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DriverManager.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/DataSource.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/XADataSource.html
http://opentracing.io/

</dependency>

where		version.opentracing		is	defined	in	the	project	integration	bom.

Alternately,	you	can	manually	include	the		opentracing-util	,		opentracing-api	,	and		opentracing-noop		jar	files	as	needed	by
the	tooling	or	other	environment	where	the	Teiid	client	jar	is	utilized.

OpenTracing	support	in	the	client	and	server	requires	that	the	respective	runtimes	have	an	appropriate	tracing	client	installed	and
available	via	the	GlobalTracer.

Connecting	to	a	Teiid	Server

142

Driver	Connection
Use	org.teiid.jdbc.TeiidDriver	as	the	driver	class.

Use	the	following	URL	format	for	JDBC	connections:

jdbc:teiid:<vdb-name>[@mm[s]://<host>:<port>][;prop-name=prop-value]*

Note
The	JDBC	client	will	have	both	JRE	and	server	compatibility	considerations.	Unless	otherwise	stated	a	client	jar
will	typically	be	forward	and	backwards	compatible	with	one	major	version	of	the	server.	You	should	attempt	to
keep	the	client	up-to-date	though	as	fixes	and	features	are	made	on	to	the	client.

URL	Components

1.	 <vdb-name>	-	Name	of	the	VDB	you	are	connecting	to.	Optionally	VDB	name	can	also	contain	version	information	inside	it.
For	example:	"myvdb.2",	this	is	equivalent	to	supplying	the	"version=2"	connection	property	defined	below.	However,	use	of
vdb	name	in	this	format	and	the	"version"	property	at	the	same	time	is	not	allowed.

2.	 mm	-	defines	Teiid	JDBC	protocol,	mms	defines	a	secure	channel	(see	SSL	Client	Connections	for	more)

3.	 <host>	-	defines	the	server	where	the	Teiid	Server	is	installed.	If	you	are	using	IPv6	binding	address	as	the	host	name,	place
it	in	square	brackets.	ex:[::1]

4.	 <port>	-	defines	the	port	on	which	the	Teiid	Server	is	listening	for	incoming	JDBC	connections.

5.	 [prop-name=prop-value]	-	additionally	you	can	supply	any	number	of	name	value	pairs	separated	by	semi-colon	[;].	All
compatible	URL	properties	are	defined	in	the	connection	properties	section.	Property	values	should	be	URL	encoded	if	they
contain	reserved	characters,	e.g.	(’?’,	'=',	';',	etc.)

Note host	and	port	may	be	a	comma	separated	list	to	specify	multiple	hosts.

Local	Connections

To	make	a	in-VM	connection,	omit	the	protocol	and	host/port:	jdbc:teiid:vdb-name;props

For	local	WildFly	deployments	it’s	preferred	to	configure	the	DataSource	as	an	in-VM	rather	than	socket	based	connection.

URL	Connection	Properties

The	following	table	shows	all	the	connection	properties	that	you	can	use	with	Teiid	JDBC	Driver	URL	connection	string,	or	on	the
Teiid	JDBC	Data	Source	class.

Table	1.	Connection	Properties

Property	Name Type Description

	ApplicationName	 	String	
Name	of	the	client	application;	allows	the	administrator	to	identify	the
connections

	FetchSize	 	int	
Size	of	the	resultset;	The	default	size	if	500.	⇐0	indicates	that	the	default
should	be	used.

	partialResultsMode	 	boolean	
Enable/disable	partial	results	mode.	Default	false.	See	the	Partial	Results
Mode	section.

Connecting	to	a	Teiid	Server

143

	autoCommitTxn	 	String	

Only	applies	only	when	"autoCommit"	is	set	to	"true".	This	determines	how	a
executed	command	needs	to	be	transactionally	wrapped	inside	the	Teiid
engine	to	maintain	the	data	integrity.

ON	-	Always	wrap	command	in	distributed	transaction

OFF	-	Never	wrap	command	in	distributed	transaction

DETECT	(default)-	If	the	executed	command	is	spanning	more	than	one
source	it	automatically	uses	distributed	transaction.	Transactions
more	information.

	disableLocalTxn	 	boolean	
If	"true",	the	autoCommit	setting,	commit	and	rollback	will	be	ignored	for
local	transactions.	Default	false.

	user	 	String	 User	name

	Password	 	String	 Credential	for	user

	ansiQuotedIdentifiers	 	boolean	

Sets	the	parsing	behavior	for	double	quoted	entries	in	SQL.	The	default,	true,
parses	doubled	quoted	entries	as	identifiers.	If	set	to	false,	then	double	quoted
values	that	are	valid	string	literals	will	be	parsed	as	string	literals.

	version	 	integer	 Version	number	of	the	VDB

	resultSetCacheMode	 	boolean	 ResultSet	caching	is	turned	on/off.	Default	false.

	autoFailover	 	boolean	

If	true,	will	automatically	select	a	new	server	instance	after	a	communication
exception.	Default	false.	This	is	typically	not	needed	when	connections	are
managed,	as	the	connection	can	be	purged	from	the	pool.	If	true	in	embedded
mode,	connections	will	reconnect	to	a	newer	VDB	of	the	same	name/version.

	SHOWPLAN	 	String	

(typically	not	set	as	a	connection	property)	Can	be	ON,	OFF,DEBUG;

ON	returns	the	query	plan	along	with	the	results

DEBUG	additionally	prints	the	query	planner	debug	information	in	the
log	and	returns	it	with	the	results.	Both	the	plan	and	the	log	are	available
through	JDBC	API	extensions.

Default	OFF.

	NoExec	 	String	
(typically	not	set	as	a	connection	property)	Can	be	ON,	OFF;	ON	prevents
query	execution,	but	parsing	and	planning	will	still	occur.	Default	OFF.

	PassthroughAuthentication	 	boolean	

Only	applies	to	"local"	connections.	When	this	option	is	set	to	"true",	then
Teiid	looks	for	already	authenticated	security	context	on	the	calling	thread.	If
one	found	it	uses	that	users	credentials	to	create	session.	Teiid	also	verifies
that	the	same	user	is	using	this	connection	during	the	life	of	the	connection.	if
it	finds	a	different	security	context	on	the	calling	thread,	it	switches	the
identity	on	the	connection,	if	the	new	user	is	also	eligible	to	log	in	to	Teiid
otherwise	connection	fails	to	execute.

	useCallingThread	 	boolean	

Only	applies	to	"local"	connections.	When	this	option	is	set	to	"true"	(the
default),	then	the	calling	thread	will	be	used	to	process	the	query.	If	false,
then	an	engine	thread	will	be	used.

	QueryTimeout	 	integer	
Default	query	timeout	in	seconds.	Must	be	>=	0.	0	indicates	no	timeout.	Can
be	overriden	by		Statement.setQueryTimeout	.	Default	0.

Connecting	to	a	Teiid	Server

144

	useJDBC4ColumnNameAndLabelSemantics	 	boolean	 A	change	was	made	in	JDBC4	to	return	unaliased	column	names	as	the
ResultSetMetadata	column	name.	Prior	to	this,	if	a	column	alias	were	used	it
was	returned	as	the	column	name.	Setting	this	property	to	false	will	enable
backwards	compatibility	with	JDBC3	and	earlier.	Defaults	to	true.

	jaasName	 	String	

JAAS	configuration	name.	Only	applies	when	configuring	a	GSS
authentication.	Defaults	to	Teiid.	See	the	Security	Guide	for	configuration
required	for	GSS.

	kerberosServicePrincipleName	 	String	
Kerberos	authenticated	principle	name.	Only	applies	when	configuring	a	GSS
authentication.	See	the	Security	Guide	for	configuration	required	for	GSS

	encryptRequest	 	boolean	

Only	applies	to	non-SSL	socket	connections.		When	"true"	the	request
message	and	any	associate	payload	will	be	encrypted	using	the	connection
cryptor.		Default	false.

	disableResultSetFetchSize	 	boolean	
In	some	situations	tooling	may	choose	undesirable	fetch	sizes	for	processing
results.	Set	to	true	to	disable	honoring	ResultSet.setFetchSize.	Default	false.

	loginTimeout	 	integer	

The	login	timeout	in	seconds.	Must	be	>=	0.	0	indicates	no	specific	timeout,
but	other	timeouts	may	apply.	If	a	connection	cannot	be	created	in
approximately	the	the	timeout	value	an	exception	will	be	thrown.	A	default	of
0	does	not	mean	that	the	login	will	wait	indefinitely.	Typically	if	an	active
vdb	cannot	be	found,	the	login	will	fail	at	that	time.	Local	connections	that
specify	a	vdb	version	however	can	wait	by	default	for	up	to	the	time	specified
in	the	property
org.teiid.clientVdbLoadTimeoutMillis[org.teiid.clientVdbLoadTimeoutMillis

	reportAsViews	 	boolean	
If	DatabaseMetaData	will	report	Teiid	views	as	a	VIEW	table	type.	If	false
then	Teiid	views	will	be	reported	as	a	TABLE.	Default	true.

Connecting	to	a	Teiid	Server

145

DataSource	Connection
To	use	a	data	source	based	connection,	use		org.teiid.jdbc.TeiidDataSource		as	the	data	source	class.	The		TeiidDataSource		is
also	an	XADatasource.	Teiid	DataSource	class	is	also	Serializable,	so	it	possible	for	it	to	be	used	with	JNDI	naming	services.

Teiid	is	compatible	with	the	XA	protocol,	XA	transactions	will	be	extended	to	Teiid	sources	that	support	XA.

All	the	properties	(except	for	version,	which	is	known	on	TeiidDataSource	as	DatabaseVersion)	defined	in	the	Driver
Connection#URL	Connection	Properties	have	corresponding	"set"	methods	on	the		org.teiid.jdbc.TeiidDataSource	.	Properties
that	are	assumed	from	the	URL	string	have	additional	"set"	methods,	which	are	described	in	the	following	table.

Table	1.	Datasource	Properties

Property	Name Type Description

	DatabaseName	 	String	

The	name	of	a	virtual	database
(VDB)	deployed	to	Teiid.	Optionally
Database	name	can	also	contain
"DatabaseVersion"	information
inside	it.	For	example:	"myvdb.2",
this	is	equivalent	to	supplying	the
"DatabaseVersion"	property	set	to
value	of	2.	However,	use	of	Database
name	in	this	format	and	use	of
DatabaseVersion	property	at	the	same
time	is	not	allowed.

	ServerName	 	String	

Server	hostname	where	the	Teiid
runtime	installed.	If	you	are	using
IPv6	binding	address	as	the	host
name,	place	it	in	square	brackets.	ex:
[::1]

	AlternateServers	 	String	

Optional	delimited	list	of	host:port
entries.	See	the	Using	Multiple	Hosts
for	more	information.	If	you	are
using	IPv6	binding	address	as	the
host	name,	place	them	in	square
brackets.	ex:[::1]

	AdditionalProperties	 	String	

Optional	setting	of	properties	that	has
the	same	format	as	the	property
string	in	a	connection	URL.

	PortNumber	 	integer	
Port	number	on	which	the	Server
process	is	listening	on.

	secure	 	boolean	

Secure	connection.	Flag	to	indicate
to	use	SSL	(mms)	based	connection
between	client	and	server

	DatabaseVersion	 	integer	 VDB	version

	DataSourceName	 	String	 Name	given	to	this	data	source

Note
Additional	Properties	-	All	the	properties	from	URL	Connection	Properties	can	be	used	on	DataSource	using	the
AdditionalProperties	setter	method	if	the	corresponding	setter	method	is	not	already	available.	For	example,	you
can	add	"useCallingThread"	property	as		<xa-datasource-property
name="AdditionalProperties">useCallingThread=false</xa-datasource-property>	

Connecting	to	a	Teiid	Server

146

Connecting	to	a	Teiid	Server

147

Standalone	Application
To	use	either	Driver	or	DataSource	based	connections,	add	the	client	JAR	to	your	Java	client	application’s	classpath.	See	the
simple	client	example	in	the	kit	for	a	full	Java	sample	of	the	following.

Driver	Connection

Sample	Code:

public	class	TeiidClient	{

				public	Connection	getConnection(String	user,	String	password)	throws	Exception	{

								String	url	=	"jdbc:teiid:myVDB@mm://localhost:31000;ApplicationName=myApp";

								return	DriverManager.getConnection(url,	user,	password);

				}

}

Datasource	Connection

Sample	Code:

public	class	TeiidClient	{

				public	Connection	getConnection(String	user,	String	password)	throws	Exception	{

								TeiidDataSource	ds	=	new	TeiidDataSource();

								ds.setUser(user);

								ds.setPassword(password);

								ds.setServerName("localhost");

								ds.setPortNumber(31000);

								ds.setDatabaseName("myVDB");

								return	ds.getConnection();

				}

}

Connecting	to	a	Teiid	Server

148

WildFly	DataSource
Teiid	can	be	configured	as	a	JDBC	data	source	in	a	WildFly	Server	to	be	accessed	from	JNDI	or	injected	into	your	JEE
applications.	Deploying	Teiid	as	data	source	in	WildFly	is	exactly	same	as	deploying	any	other	RDBMS	resources	like	Oracle	or
DB2.

Defining	as	data	source	is	not	limited	to	WildFly,	you	can	also	deploy	as	data	source	in	Glassfish,	Tomcat,	Websphere,	Weblogic
etc	servers,	however	their	configuration	files	are	different	than	WildFly.	Consult	the	respective	documentation	of	the	environment
in	which	you	are	deploying.

A	special	case	exists	if	the	Teiid	instance	you	are	connecting	to	is	in	the	same	VM	as	the	WildFly	instance.	If	that	matches	you
deployment,	then	follow	the	Local	JDBC	Connection	instructions

Installation	Steps

1.	 If	you	are	working	with	an	AS	instance	that	already	has	Teiid	installed	then	required	module	/	jar	files	are	already	installed.	If
the	AS	instance	does	not	have	Teiid	installed,	then	you	should	create	a	module	for	the	client	jar.	Under	the	path
module/org/jboss/teiid/client	add	the	client	jar	and	a	module.xml	defined	as:

Sample	Teiid	Client	Module

<module	xmlns="urn:jboss:module:1.1"	name="org.jboss.teiid.client">

				<resources>

								<resource-root	path="teiid-{version}-jdbc.jar"/>

				</resources>

				<dependencies>

								<module	name="javax.api"/>

								<module	name="javax.transaction.api"/>

				</dependencies>

</module>

Note Prior	to	Teiid	8.12.3	a	module	dependency	on	sun.jdk	was	also	required.

2.	 Use	the	CLI	or	edit	the		standalone-teiid.xml		or		domain-teiid.xml		file	and	add	a	datasource	into	the	"datasources"
subsystem.

Based	on	the	type	of	deployment	(XA,	driver,	or	local),	the	contents	of	this	will	be	different.	See	the	following	sections	for	more.
The	data	source	will	then	be	accessible	through	the	JNDI	name	specified	in	the	below	configuration.

DataSource	Connection

Make	sure	you	know	the	correct	DatabaseName,	ServerName,	Port	number	and	credentials	that	are	specific	to	your	deployment
environment.

Sample	XADataSource	in	the	WildFly	using	the	Teiid	DataSource	class	org.teiid.jdbc.TeiidDataSource

<datasources>

								<xa-datasource	jndi-name="java:/teiidDS"	pool-name="teiidDS"	enabled="true"	use-java-context="true"	use

-ccm="true">

												<xa-datasource-property	name="PortNumber">31000</xa-datasource-property>

												<xa-datasource-property	name="DatabaseName">{db-name}</xa-datasource-property>

												<xa-datasource-property	name="ServerName">{host}</xa-datasource-property>

												<driver>teiid</driver>

												<xa-pool>

																<min-pool-size>10</min-pool-size>

Connecting	to	a	Teiid	Server

149

																<max-pool-size>20</max-pool-size>

																<is-same-rm-override>true</is-same-rm-override>

																<prefill>false</prefill>

																<use-strict-min>false</use-strict-min>

																<flush-strategy>FailingConnectionOnly</flush-strategy>

																<no-tx-separate-pools/>

												</xa-pool>

												<security>

																<user-name>{user}</user-name>

																<password>{password}</password>

												</security>

								</xa-datasource>

								<drivers>

												<driver	name="teiid"	module="org.jboss.teiid.client">

																<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>

																<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>

												</driver>

								</drivers>

				</datasources>

Driver	based	connection
You	can	also	use	Teiid’s	JDBC	driver	class		org.teiid.jdbc.TeiidDriver		to	create	a	data	source

<datasources>

								<datasource	jndi-name="java:/teiidDS"	pool-name="teiidDS">

												<connection-url>jdbc:teiid:{vdb}@mm://{host}:31000</connection-url>

												<driver>teiid</driver>

												<pool>

																<prefill>false</prefill>

																<use-strict-min>false</use-strict-min>

																<flush-strategy>FailingConnectionOnly</flush-strategy>

												</pool>

												<security>

																<user-name>{user}</user-name>

																<password>{password}</password>

												</security>

								</datasource>

								<drivers>

												<driver	name="teiid"	module="org.jboss.teiid.client">

																<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>

																<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>

												</driver>

								</drivers>

				</datasources>

Local	JDBC	Connection
If	you	are	deploying	your	client	application	on	the	same	WildFly	instance	as	the	Teiid	runtime	is	installed,	then	you	will	want	to
configure	the	connection	to	by-pass	making	a	socket	based	JDBC	connection.	By	using	a	slightly	different	data	source
configuration	to	make	a	"local"	connection,	the	JDBC	API	will	lookup	a	local	Teiid	runtime	in	the	same	VM.

Warning

Since	DataSources	start	before	Teiid	VDBs	are	deployed,	leave	the	min	pool	size	of	0	for	local	connections.
Otherwise	errors	may	occur	on	the	startup	of	the	Teiid	DataSource.		Also	note	that	local	connections
specifying	a	VDB	version	will	wait	for	their	VDB	to	be	loaded	before	allowing	a	connection.	See
loginTimeout	and	the	org.teiid.clientVdbLoadTimeoutMillis	system	property.

Warning
Do	not	include	any	additional	copy	of	Teiid	jars	in	the	application	classload	that	is	utilizing	the	local
connection.		Even	if	the	exact	same	version	of	the	client	jar	is	included	in	your	application	classloader,	you
will	fail	to	connect	to	the	local	connection	with	a	class	cast	exception.

Connecting	to	a	Teiid	Server

150

Note
By	default	local	connections	use	their	calling	thread	to	perform	processing	operations	rather	than	using	an	engine
thread	while	the	calling	thread	is	blocked.	To	disable	this	behavior	set	the	connection	property
useCallingThreads=false.	The	default	is	true,	and	is	recommended	in	transactional	queries.

Local	data	source

<datasources>

								<datasource	jndi-name="java:/teiidDS"	pool-name="teiidDS">

												<connection-url>jdbc:teiid:{vdb}</connection-url>

												<driver>teiid-local</driver>

												<pool>

																<prefill>false</prefill>

																<use-strict-min>false</use-strict-min>

																<flush-strategy>FailingConnectionOnly</flush-strategy>

												</pool>

												<security>

																<user-name>{user}</user-name>

																<password>{password}</password>

												</security>

								</datasource>

								<drivers>

												<driver	name="teiid-local"	module="org.jboss.teiid">

																<driver-class>org.teiid.jdbc.TeiidDriver</driver-class>

																<xa-datasource-class>org.teiid.jdbc.TeiidDataSource</xa-datasource-class>

												</driver>

								</drivers>

				</datasources>

This	is	essentially	the	same	as	the	XA	configuration,	but	"ServerName"	and	"PortNumber"	are	not	specified.	Local	connections
have	additional	features	such	as	using	PassthroughAuthentication

Connecting	to	a	Teiid	Server

151

Using	Multiple	Hosts
A	group	of	Teiid	Servers	in	the	same	WildFly	cluster	may	be	connected	using	failover	and	load-balancing	features.

External	HA	/	Load	Balancers

You	may	choose	to	use	an	external	tcp	load	balancer,	such	as	haproxy.	The	Teiid	driver/DataSource	should	then	typically	be
configured	to	just	use	the	single	host/port	of	your	load	balancer.

Even	if	you	configure	the	load	balancer	to	redirect	when	there	is	a	failed	host,	that	will	not	maintain	the	Teiid	session	state.	If	you
wish	to	keep	the	connection	alive,	then	use	the	autoFailover	feature	discussed	below.	Otherwise	the	other	Teiid	Client	Features
are	not	necessary	when	using	an	external	load	balancer.

Teiid	Client	Features

To	enable	theses	features	in	their	simplest	form,	the	client	needs	to	specify	multiple	host	name	and	port	number	combinations	on
the	URL	connection	string.

Example	URL	connection	string

jdbc:teiid:<vdb-name>@mm://host1:31000,host1:31001,host2:31000;version=2

If	you	are	using	a	DataSource	to	connect	to	Teiid	Server,	use	the	"AlternateServers"	property/method	to	define	the	failover
servers.	The	format	is	also	a	comma	separated	list	of	host:port	combinations.

The	client	will	randomly	pick	one	the	Teiid	server	from	the	list	and	establish	a	session	with	that	server.	If	that	server	cannot	be
contacted,	then	a	connection	will	be	attempted	to	each	of	the	remaining	servers	in	random	order.	This	allows	for	both	connection
time	fail-over	and	random	server	selection	load	balancing.

Fail	Over

Post	connection	fail	over	will	be	used	if	the	autoFailover	connection	property	on	JDBC	URL	is	set	to	true.	Post	connection
failover	works	by	sending	a	ping,	at	most	every	second,	to	test	the	connection	prior	to	use.	If	the	ping	fails,	a	new	instance	will	be
selected	prior	to	the	operation	being	attempted.

This	is	not	true	"transparent	application	failover"	as	the	client	will	not	restart	the	transaction/query/recreate	session	scoped	temp
tables,	etc.	So	this	feature	should	be	used	with	caution.

Connecting	to	a	Teiid	Server

152

https://www.haproxy.org/

Client	SSL	Settings

The	following	sections	define	the	properties	required	for	each	SSL	mode.	Note	that	when	connecting	to	Teiid	Server	with	SSL
enabled,	you	MUST	use	the	"mms"	protocol,	instead	of	"mm"	in	the	JDBC	connection	URL,	for	example

Note Anonymous	SSL	mode	is	not	provided	for	some	JREs,	see	the	Teiid	Server	Transport	Security	for	alternatives.

jdbc:teiid:<myVdb>@mms://<host>:<port>

There	are	two	different	sets	of	properties	that	a	client	can	configure	to	enable	1-way	or	2-way	SSL.

See	also	the	Teiid	Server	Transport	Security	chapter	if	you	are	responsible	for	configuring	the	server	as	well.

Option	1:	Java	SSL	properties

These	are	standard	Java	defined	system	properties	to	configure	the	SSL	under	any	JVM,	Teiid	is	not	unique	in	its	use	of	SSL.
Provide	the	following	system	properties	to	the	client	VM	process.

1-way	SSL

-Djavax.net.ssl.trustStore=<dir>/server.truststore	(required)

-Djavax.net.ssl.trustStorePassword=<password>	(optional)

-Djavax.net.ssl.keyStoreType	(optional)

2-way	SSL

-Djavax.net.ssl.keyStore=<dir>/client.keystore	(required)

-Djavax.net.ssl.keyStrorePassword=<password>	(optional)

-Djavax.net.ssl.trustStore=<dir>/server.truststore	(required)

-Djavax.net.ssl.trustStorePassword=<password>	(optioanl)

-Djavax.net.ssl.keyStroreType=<keystore	type>	(optional)

Option	2:	Teiid	Specific	Properties

Use	this	option	when	the	above	"javax"	based	properties	are	already	in	use	by	the	host	process.	For	example	if	your	client
application	is	a	Tomcat	process	that	is	configured	for	https	protocol	and	the	above	Java	based	properties	are	already	in	use,	and
importing	Teiid-specific	certificate	keys	into	those	https	certificate	keystores	is	not	allowed.

In	this	scenario,	a	different	set	of	Teiid-specific	SSL	properties	can	be	set	as	system	properties	or	defined	inside	the	a	"teiid-client-
settings.properties"	file.	A	sample	"teiid-client-settings.properties"	file	can	be	found	inside	the	"teiid-<version>-client.jar"	file	at
the	root	called	"teiid-client-settings.orig.properties".	Extract	this	file,	make	a	copy,	change	the	property	values	required	for	the
chosen	SSL	mode,	and	place	this	file	in	the	client	application’s	classpath	before	the	"teiid-<version>-client.jar"	file.

SSL	properties	and	definitions	that	can	be	set	in	a	"teiid-client-settings.properties"	file	are	shown	below.

##

#	SSL	Settings

##

#

#	The	key	store	type.		Defaults	to	JKS

#

org.teiid.ssl.keyStoreType=JKS

#

Connecting	to	a	Teiid	Server

153

#	The	key	store	algorithm,	defaults	to

#	the	system	property	"ssl.TrustManagerFactory.algorithm"

#

#org.teiid.ssl.algorithm=

#

#	The	classpath	or	filesystem	location	of	the

#	key	store.

#

#	This	property	is	required	only	if	performing	2-way

#	authentication	that	requires	a	specific	private

#	key.

#

#org.teiid.ssl.keyStore=

#

#	The	key	store	password	(not	required)

#

#org.teiid.ssl.keyStorePassword=

#

#	The	key	alias(not	required,	if	given	named	certificate	is	used)

#

#org.teiid.ssl.keyAlias=

#

#	The	key	password(not	required,	used	if	the	key	password	is	different	than	the	keystore	password)

#

#org.teiid.ssl.keyPassword=

#

#	The	classpath	or	filesystem	location	of	the

#	trust	store.

#

#	This	property	is	required	if	performing	1-way

#	authentication	that	requires	trust	not	provided

#	by	the	system	defaults.

#

#org.teiid.ssl.trustStore=

#

#	The	trust	store	password	(not	required)

#

#org.teiid.ssl.trustStorePassword=

#

#	The	cipher	protocol,	defaults	to	TLSv3

#

org.teiid.ssl.protocol=TLSv1

#

#	Whether	to	allow	anonymous	SSL

#	(the	TLS_DH_anon_WITH_AES_128_CBC_SHA	cipher	suite)

#	defaults	to	true

#

org.teiid.ssl.allowAnon=true

#

#	Whether	to	allow	trust	all	server	certificates

#	defaults	to	false

Connecting	to	a	Teiid	Server

154

#

#org.teiid.ssl.trustAll=false

#

#	Whether	to	check	for	expired	server	certificates	(no	affect	in	anonymous	mode	or	with	trustAll=true)

#	defaults	to	false

#

#org.teiid.ssl.checkExpired=false

1-way	SSL

org.teiid.ssl.trustStore=<dir>/server.truststore	(required)

2-way	SSL

org.teiid.ssl.keyStore=<dir>/client.keystore	(required)

org.teiid.ssl.trustStore=<dir>/server.truststore	(required)

Connecting	to	a	Teiid	Server

155

Additional	Socket	Client	Settings
A		teiid-client-settings.properties		file	can	be	used	to	configure	Data	Virtualization	low	level	and	SSL	connection
properties.	Currently	only	a	single	properties	file	is	expected	per	driver/classloader	combination.	A	sample		teiid-client-
settings.properties		file	can	be	found	inside	the		teiid-<version>-client.jar		file	at	the	root	called		teiid-client-
settings.orig.properties	.	To	customize	the	settings,	extract	this	file,	make	a	copy,	change	the	property	values	accordingly,	and
place	this	file	in	the	client	application’s	classpath	before	the		teiid-<version>-client.jar"	file	.	Typically	clients	will	not	need
to	adjust	the	non-SSL	properties.	The	following	properties	are	available:

##

#	Misc	Socket	Configuration

##

#

#	The	time	in	milliseconds	for	socket	timeouts.

#	Timeouts	during	the	initialization,	handshake,	or

#	a	server	ping	may	be	treated	as	an	error.

#

#	This	is	the	lower	bound	for	all	other	timeouts

#	the	JDBC	login	timeout.

#

#	Typically	this	should	be	left	at	the	default	of	1000

#	(1	second).	Setting	this	value	too	low	may	cause	read

#	errors.

#

org.teiid.sockets.soTimeout=1000

#

#	Set	the	max	time	to	live	(in	milliseconds)	for	non-execution

#	synchronous	calls.

#

org.teiid.sockets.synchronousttl=240000

#

#	Set	the	socket	receive	buffer	size	(in	bytes)

#	0	indicates	that	the	default	socket	setting	will	be	used.

#

org.teiid.sockets.receiveBufferSize=0

#

#	Set	the	socket	send	buffer	size	(in	bytes)

#	0	indicates	that	the	default	socket	setting	will	be	used.

#

org.teiid.sockets.sendBufferSize=0

#

#	Set	to	true	to	enable	Nagle's	algorithm	to	conserve	bandwidth

#	by	minimizing	the	number	of	segments	that	are	sent.

#

org.teiid.sockets.conserveBandwidth=false

#

#	Maximum	number	of	bytes	per	server	message.

#	May	need	to	be	increased	when	using	custom	types	and/or	large	batch	sizes.

#

org.teiid.sockets.maxObjectSize=33554432

Connecting	to	a	Teiid	Server

156

Note All	properties	listed	in	"teiid-client-settings.properties"	can	also	be	set	as	System	or	env	properties.

Connecting	to	a	Teiid	Server

157

Prepared	Statements
Teiid	provides	a	standard	implementation	of		java.sql.PreparedStatement	.	PreparedStatements	can	be	very	important	in
speeding	up	common	statement	execution,	since	they	allow	the	server	to	skip	parsing,	resolving,	and	planning	of	the	statement.
See	the	Java	documentation	for	more	information	on	PreparedStatement	usage.

	PreparedStatement		Considerations

It	is	not	necessary	to	pool	client	side	Teiid		PreparedStatements	,	since	Teiid	performs	plan	caching	on	the	server	side.

The	number	of	cached	plans	is	configurable,	and	cached	plans	are	purged	by	the	least	recently	used	(LRU).	For	information
about	configuring	cached	plans,	see	the	Admin	Guide.

Cached	plans	are	not	distributed	through	a	cluster.	A	new	plan	must	be	created	for	each	cluster	member.

Plans	are	cached	for	the	entire	VDB	or	for	just	a	particular	session.	The	scope	of	a	plan	is	detected	automatically	based	upon
the	functions	evaluated	during	it’s	planning	process.

Stored	procedures	executed	through	a		CallableStatement		have	their	plans	cached	just	as	a		PreparedStatement	.

Bind	variable	types	in	function	signatures,	e.g.	"where	t.col	=	abs(?)"	can	be	determined	if	the	function	has	only	one
signature	or	if	the	function	is	used	in	a	predicate	where	the	return	type	can	be	determined.	In	more	complex	situations	it	may
be	necessary	to	add	a	type	hint	with	a	cast	or	convert,	e.g.	upper(convert(?,	string)).

If	you	have	the	same	value	of	a	binding	repeated	multiple	times	in	your	query,	you	can	consolidate	that	usage	in	a	couple	of
ways.

The	query	can	be	enclosed	as	a	anonymous	procedure	block:

BEGIN

		DECLARE	string	PARAM1	=	cast(?	as	string);

		SELECT	...	WHERE	COLUMN1	=	$1	AND	COLUMN2	=	$1	...;

Note	the	cast	of	the	bind	variable,	which	is	due	to	a	small	issue	with	the	resolver	that	isn’t	inferring	the	type	from	the	variable
declaration.

You	can	also	use	the	PostgreSQL	like	feature	of	$n	positional	bindings:

SELECT	...	WHERE	COLUMN1	=	$1	AND	COLUMN2	=	$1	...

Prepared	Statements

158

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039

ResultSet	Limitations
The	following	limitations	apply	to	result	sets	in	Teiid:

TYPE_SCROLL_SENSITIVE	are	not	compatible.

	UPDATABLE		ResultSets	are	not	compatible.

You	cannot	return	multiple	ResultSets	from	a	Procedure	execution.

ResultSet	Limitations

159

JDBC	Extensions
These	are	custom	extensions	to	JDBC	API	from	Teiid	to	provide	compatibility	with	various	features.

JDBC	Extensions

160

Statement	Extensions
The	Teiid	statement	extension	interface,		org.teiid.jdbc.TeiidStatement	,	provides	functionality	beyond	the	JDBC	standard.	To
use	the	extension	interface,	simply	cast	or	unwap	the	statement	returned	by	the	Connection.	The	following	methods	are	provided
on	the	extension	interface:

Table	1.	Connection	Properties

Method	Name Description

	getAnnotations	

Get	the	query	engine	annotations	if	the	statement	was	last
executed	with	SHOWPLAN	ON/DEBUG.	Each
	org.teiid.client.plan.Annotation		contains	a
description,	a	category,	a	severity,	and	possibly	a	resolution
of	notes	recorded	during	query	planning	that	can	be	used	to
understand	choices	made	by	the	query	planner.

	getDebugLog	
Get	the	debug	log	if	the	statement	was	last	executed	with
SHOWPLAN	DEBUG.

	getExecutionProperty	
Get	the	current	value	of	an	execution	property	on	this
statement	object.

	getPlanDescription	

Get	the	query	plan	description	if	the	statement	was	last
executed	with	SHOWPLAN	ON/DEBUG.	The	plan	is	a
tree	made	up	of		org.teiid.client.plan.PlanNode	
objects.	Typically		PlanNode.toString()		or
	PlanNode.toXml()		will	be	used	to	convert	the	plan	into	a
textual	form.

	getRequestIdentifier	

Get	an	identifier	for	the	last	command	executed	on	this
statement.	If	no	command	has	been	executed	yet,	null	is
returned.

	setExecutionProperty	

Set	the	execution	property	on	this	statement.	See	the
Execution	Properties	section	for	more	information.	It	is
generally	preferable	to	use	the	SET	Statement	unless	the
execution	property	applies	only	to	the	statement	being
executed.

	setPayload	

Set	a	per-command	payload	to	pass	to	translators.
Currently	the	only	built-in	use	is	for	sending	hints	for
Oracle	data	source.

JDBC	Extensions

161

Partial	Results	Mode
You	can	use	a	"partial	results"	query	mode	with	the	Teiid	Server.	In	this	mode,	the	behavior	of	the	query	processor	changes	so	that
the	server	returns	results	even	when	some	data	sources	are	unavailable.

For	example,	suppose	that	two	data	sources	exist	for	different	suppliers	and	your	data	designers	have	created	a	virtual	group	that
creates	a	union	between	the	information	from	the	two	suppliers.	If	your	application	submits	a	query	without	using	partial	results
query	mode	and	one	of	the	suppliers’	databases	is	down,	the	query	against	the	virtual	group	returns	an	exception.	However,	if	your
application	runs	the	same	query	in	"partial	results"	query	mode,	the	server	returns	data	from	the	running	data	source	and	no	data
from	the	data	source	that	is	down.

When	using	"partial	results"	mode,	if	a	source	throws	an	exception	during	processing	it	does	not	cause	the	user’s	query	to	fail.
Rather,	that	source	is	treated	as	returning	no	more	rows	after	the	failure	point.	Most	commonly,	that	source	will	return	0	rows.

This	behavior	is	most	useful	when	using		UNION		or		OUTER	JOIN		queries	as	these	operations	handle	missing	information	in	a
useful	way.	Most	other	kinds	of	queries	will	simply	return	0	rows	to	the	user	when	used	in	partial	results	mode	and	the	source	is
unavailable.

For	each	source	that	is	excluded	from	the	query,	a	warning	will	be	generated	describing	the	source	and	the	failure.	These	warnings
can	be	obtained	from	the		Statement.getWarnings()		method.	This	method	returns	a		SQLWarning		object	but	in	the	case	of
"partial	results"	warnings,	this	will	be	an	object	of	type		org.teiid.jdbc.PartialResultsWarning		class.	This	class	can	be	used	to
obtain	a	list	of	all	the	failed	sources	by	name	and	to	obtain	the	specific	exception	thrown	by	each	source.

Note

Because	Teiid	enables	cursoring	before	an	entire	result	is	formed,	it	is	possible	that	a	data	source	failure	will	not
be	determined	until	after	the	first	batch	of	results	have	been	returned	to	the	client.	This	can	happen	in	the	case	of
unions,	but	not	joins.	To	ensure	that	all	warnings	have	been	accumulated,	the	statement	should	be	checked	after
the	entire	result	set	has	been	read.

Note If	other	warnings	are	returned	by	execution,	then	the	partial	results	warnings	may	occur	after	the	first	warning	in
the	warning	chain.

Partial	results	mode	is	off	by	default	but	can	be	turned	on	for	all	queries	in	a	Connection	with	either	setPartialResultsMode("true")
on	a	DataSource	or	partialResultsMode=true	on	a	JDBC	URL.	In	either	case,	partial	results	mode	may	be	toggled	later	with	a	SET
Statement.

Setting	Partial	Results	Mode

Statement	statement	=	...obtain	statement	from	Connection...

statement.execute("set	partialResultsMode	true");

Getting	Partial	Results	Warnings

statement.execute("set	partialResultsMode	true");

ResultSet	results	=	statement.executeQuery("SELECT	Name	FROM	Accounts");

while	(results.next())	{

		...	//process	the	result	set

}

SQLWarning	warning	=	statement.getWarnings();

while(warning	!=	null)	{

		if	(warning	instanceof	PartialResultsWarning)	{

				PartialResultsWarning	partialWarning	=	(PartialResultsWarning)warning;

				Collection	failedConnectors	=	partialWarning.getFailedConnectors();

				Iterator	iter	=	failedConnectors.iterator();

				while(iter.hasNext())	{

						String	connectorName	=	(String)	iter.next();

						SQLException	connectorException	=	partialWarning.getConnectorException(connectorName);

						System.out.println(connectorName	+	":	"	+	connectorException.getMessage());

				}

JDBC	Extensions

162

		}

		warning	=	warning.getNextWarning();

}

Warning

In	some	instances,	typically	JDBC	sources,	the	source	not	being	initially	available	will	prevent	Teiid	from
automatically	determining	the	appropriate	set	of	source	capabilities.	If	you	get	an	exception	indicating	that	the
capabilities	for	an	unavailable	source	are	not	valid	in	partial	results	mode,	then	it	may	be	necessary	to
manually	set	the	database	version	or	similar	property	on	the	translator	to	ensure	that	the	capabilities	are	known
even	if	the	source	is	not	available.

JDBC	Extensions

163

Non-blocking	Statement	Execution
JDBC	query	execution	can	indefinitely	block	the	calling	thread	when	a	statement	is	executed	or	a	resultset	is	being	iterated.	In
some	situations	you	may	not	wish	to	have	your	calling	threads	held	in	these	blocked	states.	When	using	embedded/local
connections,	you	may	optionally	use	the		org.teiid.jdbc.TeiidStatement		and		org.teiid.jdbc.TeiidPreparedStatement	
interfaces	to	execute	queries	with	a	callback		org.teiid.jdbc.StatementCallback		that	will	be	notified	of	statement	events,	such
as	an	available	row,	an	exception,	or	completion.	Your	calling	thread	will	be	free	to	perform	other	work.	The	callback	will	be
executed	by	an	engine	processing	thread	as	needed.	If	your	results	processing	is	itself	blocking	and	you	want	query	processing	to
be	concurrent	with	results	processing,	then	your	callback	should	implement	onRow	handling	in	a	multi-threaded	manner	to	allow
the	engine	thread	to	continue.

Non-blocking	Prepared	Statement	Execution

PreparedStatement	stmt	=	c.prepareStatemen(sql);

TeiidPreparedStatement	tStmt	=	stmt.unwrap(TeiidPreparedStatement.class);

tStmt.submitExecute(new	StatementCallback()	{

				@Override

				public	void	onRow(Statement	s,	ResultSet	rs)	{

								//any	logic	that	accesses	the	current	row	...

								System.out.println(rs.getString(1));

				}

				@Override

				public	void	onException(Statement	s,	Exception	e)	throws	Exception	{

								s.close();

				}

				@Override

				public	void	onComplete(Statement	s)	throws	Exception	{

								s.close();

				},	new	RequestOptions()

});

The	non-blocking	logic	is	limited	to	statement	execution	only.	Other	JDBC	operations,	such	as	connection	creation	or	batched
executions	do	not	yet	have	non-blocking	options.

If	you	access	forward	positions	in	the	onRow	method	(calling	next,	isLast,	isAfterLast,	absolute),	they	may	not	yet	be	valid	and	a
	org.teiid.jdbc.AsynchPositioningException		will	be	thrown.	That	exception	is	recoverable	if	caught	or	can	be	avoided	by
calling		TeiidResultSet.available()		to	determine	if	your	desired	positioning	will	be	valid.

Continuous	Execution

The		RequestOptions		object	may	be	used	to	specify	a	special	type	of	continuous	asynch	execution	via	the		continuous		or
	setContinuous		methods.	In	continuous	mode	the	statement	will	be	continuously	re-executed.	This	is	intended	for	consuming
real-time	or	other	data	streams	processed	through	a	SQL	plan.	A	continuous	query	will	only	terminate	on	an	error	or	when	the
statement	is	explicitly	closed.	The	SQL	for	a	continuous	query	is	no	different	than	any	other	statement.	Care	should	be	taken	to
ensure	that	retrievals	from	non-continuous	sources	is	appropriately	cached	for	reuse,	such	as	by	using	materialized	views	or
session	scoped	temp	tables.

A	continuous	query	must	do	the	following:

return	a	result	set

be	executed	with	a	forward-only	result	set

cannot	be	used	in	the	scope	of	a	transaction

JDBC	Extensions

164

Since	resource	consumption	is	expected	to	be	different	in	a	continuous	plan,	it	does	not	count	against	the	server	max	active	plan
limit.	Typically	custom	sources	will	be	used	to	provide	data	streams.

For	more	information,	see	ReusableExecutions	in	the	Developers	Guide.

When	the	client	wishes	to	end	the	continuous	query,	the		Statement.close()		or		Statement.cancel()		method	should	be	called.	
Typically	your	callback	will	close	whenever	it	no	long	needs	to	process	results.

See	also	the		ContinuousStatementCallback		for	use	as	the		StatementCallback		for	additional	methods	related	to	continuous
processing.

JDBC	Extensions

165

ResultSet	Extensions
The	Teiid	result	set	extension	interface,		org.teiid.jdbc.TeiidResultSet	,	provides	functionality	beyond	the	JDBC	standard.	To
use	the	extension	interface,	simply	cast	or	unwrap	a	result	set	returned	by	a	Teiid	statement.	The	following	methods	are	provided
on	the	extension	interface:

Table	1.	Connection	Properties

Method	Name Description

	available	

Returns	an	estimate	of	the	minimum	number	of	rows	that
can	be	read	(after	the	current)	without	blocking	or	the	end
of	the	ResultSet	is	reached.

JDBC	Extensions

166

Connection	Extensions
Teiid	connections	(defined	by	the		org.teiid.jdbc.TeiidConnection		interface)	are	compatible	with	the	changeUser	method	to
reauthenticate	a	given	connection.	If	the	reauthentication	is	successful	the	current	connection	my	be	used	with	the	given	identity.
Existing	statements/result	sets	are	still	available	for	use	under	the	old	identity.

See	the	JBossAS	issue	JBAS-1429	for	more	on	using	reauthentication	support	with	JCA.

JDBC	Extensions

167

https://issues.redhat.com/browse/JBAS-1429

Incompatible	JDBC	Methods
Based	upon	the	JDBC	in	JDK	1.6,	this	appendix	details	only	those	JDBC	methods	that	Teiid	is	not	compatible	with.	Unless
specified	below,	Teiid	is	compatible	with	all	other	JDBC	Methods.

Those	methods	listed	without	comments	throw	a	SQLException	stating	that	it	is	not	supported.

Where	specified,	some	listed	methods	do	not	throw	an	exception,	but	possibly	exhibit	unexpected	behavior.	If	no	arguments	are
specified,	then	all	related	(overridden)	methods	are	not	compatible.	If	an	argument	is	listed	then	only	those	forms	of	the	method
specified	are	not	compatible.

Unsupported	JDBC	Methods

168

Incompatible	Classes	and	Methods	in	"java.sql"

Class	name Methods

	Blob	

getBinaryStream(long,	long)	-	throws	SQLFeatureNotSupportedException

setBinaryStream(long)	-	-	throws	SQLFeatureNotSupportedException

setBytes	-	-	throws	SQLFeatureNotSupportedException

truncate(long)	-	throws	SQLFeatureNotSupportedException

	CallableStatement	

getObject(int	parameterIndex,	Map<String,	Class<?>>	map)	-	throws	

SQLFeatureNotSupportedException

getRef	-	throws	SQLFeatureNotSupportedException

getRowId	-	throws	SQLFeatureNotSupportedException

getURL(String	parameterName)	-	throws	SQLFeatureNotSupportedException

registerOutParameter	-	ignores

registerOutParameter(String	parameterName,	*)	-	throws	SQLFeatureNotSupportedE

xception

setRowId(String	parameterName,	RowId	x)	-	throws	SQLFeatureNotSupportedExcepti

on

setURL(String	parameterName,	URL	val)	-	throws	SQLFeatureNotSupportedException

	Clob	

getCharacterStream(long	arg0,	long	arg1)	-	throws	SQLFeatureNotSupportedExcept

ion

setAsciiStream(long	arg0)	-	throws	SQLFeatureNotSupportedException

setCharacterStream(long	arg0)	-	throws	SQLFeatureNotSupportedException

setString	-	throws	SQLFeatureNotSupportedException

truncate	-	throws	SQLFeatureNotSupportedException

	Connection	

createBlob	-	throws	SQLFeatureNotSupportedException

createClob	-	throws	SQLFeatureNotSupportedException

createNClob	-	throws	SQLFeatureNotSupportedException

createSQLXML	-	throws	SQLFeatureNotSupportedException

createStruct(String	typeName,	Object[]	attributes)	-	throws	SQLFeatureNotSuppo

rtedException

getClientInfo	-	throws	SQLFeatureNotSupportedException

releaseSavepoint	-	throws	SQLFeatureNotSupportedException

rollback(Savepoint	savepoint)	-	throws	SQLFeatureNotSupportedException

setHoldability	-	throws	SQLFeatureNotSupportedException

setSavepoint	-	throws	SQLFeatureNotSupportedException

setTypeMap	-	throws	SQLFeatureNotSupportedException

setRealOnly	-	effectively	ignored

	DatabaseMetaData	

getAttributes	-	throws	SQLFeatureNotSupportedException

getClientInfoProperties		-	throws	SQLFeatureNotSupportedException

getRowIdLifetime	-	throws	SQLFeatureNotSupportedException

	NClob	 	Not	Supported	

	PreparedStatement	

setRef	-	throws	SQLFeatureNotSupportedException

setRowId	-	throws	SQLFeatureNotSupportedException

setUnicodeStream	-	throws	SQLFeatureNotSupportedException

	Ref	 	Not	Implemented	

deleteRow	-	throws	SQLFeatureNotSupportedException

getHoldability	-	throws	SQLFeatureNotSupportedException

getObject(*,	Map<String,	Class<?>>	map)	-	throws	SQLFeatureNotSupp

ortedException

Unsupported	JDBC	Methods

169

	ResultSet	

getRef	-	throws	SQLFeatureNotSupportedException

getRowId	-	throws	SQLFeatureNotSupportedException

getUnicodeStream	-	throws	SQLFeatureNotSupportedException

getURL	-	throws	SQLFeatureNotSupportedException

insertRow	-	throws	SQLFeatureNotSupportedException

moveToInsertRow	-	throws	SQLFeatureNotSupportedException

refreshRow	-	throws	SQLFeatureNotSupportedException

rowDeleted	-	throws	SQLFeatureNotSupportedException

rowInserted	-	throws	SQLFeatureNotSupportedException

rowUpdated	-	throws	SQLFeatureNotSupportedException

setFetchDirection	-	throws	SQLFeatureNotSupportedException

update*		-	throws	SQLFeatureNotSupportedException

	RowId	 	Not	Supported	

	Savepoint	 	not	Supported	

	SQLData	 	Not	Supported	

	SQLInput	 	not	Supported	

	SQLOutput	 	Not	Supported	

Unsupported	JDBC	Methods

170

Incompatible	Classes	and	Methods	in	"javax.sql"

Class	name Methods

	RowSet*	 	Not	Supported	

Unsupported	JDBC	Methods

171

ODBC	compatibility
Open	Database	Connectivity	(ODBC)	is	a	standard	database	access	method	developed	by	the	SQL	Access	group	in	1992.	ODBC,
just	like	JDBC	in	Java,	allows	consistent	client	access	regardless	of	which	database	management	system	(DBMS)	is	handling	the
data.	ODBC	uses	a	driver	to	translate	the	application’s	data	queries	into	commands	that	the	DBMS	understands.	For	this	to	work,
both	the	application	and	the	DBMS	must	be	ODBC-compliant	–	that	is,	the	application	must	be	capable	of	issuing	ODBC
commands	and	the	DBMS	must	be	capable	of	responding	to	them.

Teiid	can	provide	ODBC	access	to	deployed	VDBs	in	the	Teiid	runtime	through	PostgreSQL’s	ODBC	driver.	This	is	possible
because	Teiid	has	a	PostgreSQL	server	emulation	layer	accessible	via	socket	clients.

Note By	default,	ODBC	is	enabled	and	running	on	on	port	35432.

The	pg	emulation	is	not	complete.	The	intention	of	the	ODBC	access	is	to	provide	non-JDBC	connectivity	to	issue	Teiid	queries	-
not	pgsql	queries.	Although	you	can	use	many	PostgreSQL	constructs,	the	default	behavior	for	queries	matches	Teiid’s
expectations.	See	System	Properties	for	optional	properties	that	further	emulate	pgsql	handling.

Note

Handling	names	with	underscore	("")	in	ODBC.	By	default	Teiid	does	not	have	a	default	like	escape	character.
Depending	upon	the	ODBC	client	however	there	may	be	an	expectation	that	backslash	is	used	by	default	-	which
is	the	behavior	of	PostgreSQL.	This	may	cause	metadata	queries	to	be	issued	against	objects	with	""	in	their	name
to	return	no	or	incorrect	results.	You	may	globally	emulate	the	behavior	of	PostgreSQL	by	setting	the
	org.teiid.backslashDefaultMatchEscape		system	property	to		true	.	To	alter	the	property	just	for	the	current
session	then	have	your	ODBC	client	issue		select	cast(teiid_session_set('backslashDefaultMatchEscape',
true)	as	boolean)		statement	before	any	other	statement.

Postgres	ODBC	drivers	9.5	and	later	do	not	require	this	special	property	as	the	client	will	use	an	E	escaped	literal	instead.

Compatibility	was	last	ensured	with	the	9.6	Postgres	ODBC	driver.	You	are	encouraged	to	use	later	client	versions	when	needed
and	report	any	issues	to	the	community.

Known	Limitations:

Updateable	cursors	are	not	supported.	You	will	receive	parsing	errors	containing	the	pg	system	column	ctid	if	this	feature	is
not	disabled.

LO	support	is	not	available.	LOBs	will	be	returned	as	string	or	bytea	as	appropriate	using	the	transport	max	lob	size	setting.

The	Teiid	object	type	will	map	to	the	PostgreSQL	UNKNOWN	type,	which	cannot	be	serialized	by	the	ODBC	layer.
Cast/Convert	should	be	used	to	provide	a	type	hint	when	appropriate	-	for	example	teiid_session_set	returns	an	object	value.
"SELECT	teiid_session_set('x',	'y')"	will	fail,	but	"SELECT	cast(teiid_session_set('x',	'y')	as	string)"	will	succeed.

Multi-dimensional	arrays	are	not	supported.

Installation
Before	an	application	can	use	ODBC,	you	must	first	install	the	ODBC	driver	on	same	machine	that	the	application	is	running	on
and	then	create	a	Data	Source	Name	(DSN)	that	represents	a	connection	profile	for	your	Teiid	VDB.

For	a	Windows	client,	see	the	Windows	Installation	Guide.

Configuration

ODBC	Support

172

http://www.postgresql.org/

Warning By	default,	clients	use	plain	text	password	authentication	in	Teiid	for	pg/ODBC	interfaces.	If	the	client/server
are	not	configured	to	use	SSL	or	GSS	authentication,	the	password	will	be	sent	in	plain	text	over	the	network.

For	a	Windows	client,	see	Configuring	the	Data	Source	Name.

See	also	DSN	Less	Connection.

Connection	Settings

All	the	available	pg	driver	connection	options	with	their	descriptions	that	can	be	used	are	defined	here
https://odbc.postgresql.org/docs/config.html.	When	using	these	properties	on	the	connection	string,	their	property	names	are
defined	here	https://odbc.postgresql.org/docs/config-opt.html.

However	Teiid	does	not	honor	all	properties,	and	some,	such	as	Updatable	Cursors,	will	cause	query	failures.

Table	1.	Primary	ODBC	Settings	For	Teiid

Name Description

Updateable	Cursors	&	Row	Versioning Should	not	be	used.

Use	serverside	prepare	&	Parse	Statements	&	Disallow
Premature

It	is	recommended	that	"Use	serverside	prepare"	is	enabled
and	"Parse	Statements"/"Disallow	Premature"	are	disabled

SSL	mode May	be	needed	if	you	are	connecting	to	a	secured	pg
transport	port.	See	Security	Guide

Use	Declare/Fetch	cursors	&	Fetch	Max	Count Should	be	used	to	better	manage	resources	when	large
result	sets	are	used

Logging/debug	settings	can	be	utilized	as	needed.

Settings	that	manipulate	datatypes,	metadata,	or	optimizations	such	as	"Show	SystemTables",	"True	is	-1",	"Backend	genetic
optimizer",	"Bytea	as	LongVarBinary",	"Bools	as	Char",	etc.	are	ignored	by	the	Teiid	server	and	have	no	client	side	effect.	If	there
is	a	need	for	these	or	any	other	settings	to	have	a	defined	affect,	please	open	an	issue	with	the	product/project.

Any	other	setting	that	does	have	a	client	side	affect,	such	as	"LF	<→	CR/LF	conversion",	may	be	used	if	desired	but	there	is
currently	no	server	side	usage	of	the	setting.

Teiid	Connection	Settings

Most	Teiid	specific	connection	properties	do	not	map	to	ODBC	client	connection	settings.	If	you	find	yourself	in	this	situation	and
cannot	use	post	connection	SET	statements,	then	you	can	set	default	ODBC	connection	properties	for	the	virtual	database.	Use
VDB	properties	of	the	form		connection.XXX		to	control	things	like	partial	results	mode,	result	set	caching,	etc.

The	application	name	may	be	set	by	some	clients.	If	not,	you	may	use	a	SET	statement	-	"SET	application_name	name"	-	to	set
the	name	even	after	the	connection	is	made.

ODBC	Support

173

https://odbc.postgresql.org/docs/config.html
https://odbc.postgresql.org/docs/config-opt.html

Installing	the	ODBC	Driver	Client
A	PostgreSQL	ODBC	driver	needed	to	make	the	ODBC	connection	to	Teiid	is	not	bundled	with	the	Teiid	distribution.	The
appropriate	driver	needs	be	downloaded	directly	from	the	PostgreSQL	web	site.	The	8.04.200	version	of	the	ODBC	driver	was
extensively	tested	for	compatibility.

Microsoft	Windows

1.	 Download	at	least	the	ODBC	8.4	driver	from	the	PostgreSQL	download	site.	If	you	are	looking	for	64-bit	Windows	driver
download	the	driver	from	here.	Later	versions	of	the	driver	may	be	used	the	9.0-9.5	clients	have	been	used	extensively	by	the
Teiid	community.	There	are	no	active	issues	against	9.6	and	later,	but	they	have	not	yet	seen	as	much	use	-	if	you	encounter
an	issue,	please	create	a	JIRA.

2.	 Extract	the	contents	of	the	ZIP	file	into	a	temporary	location	on	your	system.	For	example:	"c:\temp\pgodbc"

3.	 Double	click	on	"psqlodbc.msi"	file	or	(.exe	file	in	the	case	of	64	bit)	to	start	installation	of	the	driver.

4.	 The	Wizard	appears	as

Click	"Next".	5.	The	next	step	of	the	wizard	displays.

Installing	the	ODBC	Driver	Client

174

http://www.postgresql.org/ftp/odbc/versions/
http://ftp.postgresql.org/pub/odbc/versions/msi
http://code.google.com/p/visionmap/wiki/psqlODBC

Carefully	read	it,	and	check	the	"I	accept	the	terms	in	the	License	Agreement",	if	you	are	agreeing	to	the	licensing	terms.	Then
click	"Next".	6.	The	next	step	of	the	wizard	displays.

If	you	want	to	install	in	a	different	directory	than	the	default	that	is	already	selected,	click	the	"Browse"	button	and	select	a
directory.	Click	"Next"	to	start	installing	in	the	selected	directory.	7.	The	next	step	of	the	wizard	displays.

Installing	the	ODBC	Driver	Client

175

This	step	summarizes	the	choices	you	have	made	in	the	wizard.	Review	this	information.	If	you	need	to	change	anything,	you	can
use	the	Back	button	to	return	to	previous	steps.	Click	"Install"	to	proceed.	8.	1.The	installation	wizard	copies	the	necessary	files	to
the	location	you	specified.	When	it	finishes,	the	following	screen	displays.

Click	"Finish"	to	complete.

Other	*nix	Platform	Installations

Installing	the	ODBC	Driver	Client

176

For	all	other	platforms	other	than	Microsoft	Windows,	the	ODBC	driver	needs	built	from	the	source	files	provided.	Download	the
ODBC	driver	source	files	from	the	PostgreSQL	download	site.	Untar	the	files	to	a	temporary	location.	For	example:
"~/tmp/pgodbc".	Build	and	install	the	driver	by	running	the	commands	below.

Note You	should	use	super	user	account	or	use	"sudo"	command	for	running	the	"make	install"	command.

%	tar	-zxvf	psqlodbc-xx.xx.xxxx.tar.gz

%	cd	psqlodbc-xx.xx.xxxx

%	./configure

%	make

%	make	install

Some	*nix	distributions	may	already	provide	binary	forms	of	the	appropriate	driver,	which	can	be	used	as	an	alternative	to
building	from	source.

Installing	the	ODBC	Driver	Client

177

http://wwwmaster.postgresql.org/download/mirrors-ftp/odbc/versions/src/psqlodbc-08.04.0200.tar.gz

Configuring	the	Data	Source	Name	(DSN)
See	Teiid	compatible	options	for	a	description	of	the	available	client	configuration	options.

Windows	Installation

Once	you	have	installed	the	ODBC	Driver	Client	software	on	your	workstation,	you	have	to	configure	it	to	connect	to	a	Teiid
Runtime.	Note	that	the	following	instructions	are	specific	to	the	Microsoft	Windows	Platform.

To	do	this,	you	must	have	logged	into	the	workstation	with	administrative	rights,	and	you	need	to	use	the	Control	Panel’s	Data
Sources	(ODBC)	applet	to	add	a	new	data	source	name.

Each	data	source	name	you	configure	can	only	access	one	VDB	within	a	Teiid	System.	To	make	more	than	one	VDB	available,
you	need	to	configure	more	than	one	data	source	name.

Follow	the	below	steps	in	creating	a	data	source	name	(DSN)

1.	 From	the	Start	menu,	select	Settings	>	Control	Panel.

2.	 The	Control	Panel	displays.	Double	click	Administrative	Tools.

3.	 Then	Double-click	Data	Sources	(ODBC).

4.	 The	ODBC	Data	Source	Administrator	applet	displays.	Click	the	tab	associated	with	the	type	of	DSN	you	want	to	add.

5.	 The	Create	New	Data	Source	dialog	box	displays.	In	the	Select	a	driver	for	which	you	want	to	set	up	a	data	source	table,
select	PostgreSQL	Unicode.

6.	 Click	Finish

7.	 The	PostgreSQL	ODBC	DSN	Setup	dialog	box	displays.

In	the	Data	Source	Name	edit	box,	type	the	name	you	want	to	assign	to	this	data	source.	In	the	Database	edit	box,	type	the
name	of	the	virtual	database	you	want	to	access	through	this	data	source.	In	the	Server	edit	box,	type	the	host	name	or	IP
address	of	your	Teiid	runtime.	If	connecting	via	a	firewall	or	NAT	address,	the	firewall	address	or	NAT	address	should	be
entered.	In	the	Port	edit	box,	type	the	port	number	to	which	the	Teiid	System	listens	for	ODBC	requests.	By	default,	Teiid
listens	for	ODBC	requests	on	port	35432	In	the	User	Name	and	Password	edit	boxes,	supply	the	user	name	and	password	for
the	Teiid	runtime	access.	Provide	any	description	about	the	data	source	in	the	Description	field.

8.	 Click	on	the	Datasource	button,	you	will	see	this	below	figure.	Configure	options	as	shown.

Configuring	the	Data	Source	Name	(DSN)

178

Click	on	"page2"	and	make	sure	the	options	are	selected	as	shown

9.	 Click	"save"	and	you	can	optionally	click	"test"	to	validate	your	connection	if	the	Teiid	is	running.	You	have	configured	a
Teiid’s	virtual	database	as	a	data	source	for	your	ODBC	applications.	Now	you	can	use	applications	such	as	Excel,	Access	to
query	the	data	in	the	VDB

Configuring	the	Data	Source	Name	(DSN)

179

Other	*nix	Platform	Installations

Before	you	can	access	Teiid	using	ODBC	on	any	*nix	platforms,	you	need	to	either	install	a	ODBC	driver	manager	or	verify	that
one	already	exists.	As	the	ODBC	Driver	manager	Teiid	recommends	unixODBC.	If	you	are	working	with	RedHat	Linux	or
Fedora	you	can	check	the	graphical	"yum"	installer	to	search,	find	and	install	unixODBC.	Otherwise	you	can	download	the
unixODBC	manager	here.	To	install,	simply	untar	the	contents	of	the	file	to	a	temporary	location	and	execute	the	following
commands	as	super	user.

./configure

make

make	install

Check	unixODBC	website	site	for	more	information,	if	you	run	into	any	issues	during	the	installation.

Now,	to	verify	that	PostgreSQL	driver	installed	correctly	from	earlier	step,	execute	the	following	command

odbcinst	-q	-d

That	should	show	you	all	the	ODBC	drivers	installed	in	your	system.	Now	it	is	time	to	create	a	DSN.	Edit	"/etc/odbc.ini"	file	and
add	the	following

		[<DSN	name>]

		Driver	=	/usr/lib/psqlodbc.so

		Description	=	PostgreSQL	Data	Source

		Servername	=	<Teiid	Host	name	or	ip>

		Port	=	35432

		Protocol	=	7.4-1

		UserName	=	<user-name>

		Password	=	<password>

		Database	=	<vdb-name>

		ReadOnly	=	no

		ServerType	=	Postgres

		ConnSettings	=

		UseServerSidePrepare=1

		Debug=0

		Fetch	=	10000

		#	enable	below	when	dealing	large	resultsets	to	enable	cursoring

		#UseDeclareFetch=1

Note	that	you	need	"sudo"	permissions	to	edit	the	"/etc/odbc.ini"	file.	For	all	the	available	configurable	options	that	you	can	use	in
defining	a	DSN	can	be	found	here	on	postgreSQL	ODBC	page.

Once	you	are	done	with	defining	the	DSN,	you	can	verify	your	DSN	using	the	following	command

isql	<DSN-name>	[<user-name>	<password>]	<	commands.sql

where	"commands.sql"	file	contains	the	SQL	commands	you	would	like	to	execute.	You	can	also	omit	the	commands.sql	file,	then
you	will	be	provided	with	a	interactive	shell.

Tip You	can	also	use	languages	like	Perl,	Python,	C/C++	with	ODBC	ports	to	Postgres,	or	if	they	have	direct	Postgres
connection	modules	you	can	use	them	too	to	connect	Teiid	and	issue	queries	an	retrieve	results.

Configuring	the	Data	Source	Name	(DSN)

180

http://www.unixodbc.org/
http://www.unixodbc.org/unixODBC-2.3.0.tar.gz
http://www.unixodbc.org/
http://psqlodbc.projects.postgresql.org/config.html

Configuring	the	Data	Source	Name	(DSN)

181

DSN	Less	Connection
You	can	also	connect	to	Teiid	VDB	using	ODBC	with	out	explicitly	creating	a	DSN.	However,	in	these	scenarios	your	application
needs,	what	is	called	as	"DSN	less	connection	string".	The	below	is	a	sample	connection	string

For	Windows:

ODBC;DRIVER={PostgreSQL	Unicode};DATABASE=<vdb-name>;SERVER=<host-name>;PORT=

<port>;Uid=<username>;Pwd=<password>;c4=0;c8=1;

For	*nix:

ODBC;DRIVER={PostgreSQL};DATABASE=<vdb-name>;SERVER=<host-name>;PORT=<port>;Uid=

<username>;Pwd=<password>;c4=0;c8=1;

See	the	available	Teiid	ODBC	connection	settings.

DSN	Less	Connection

182

Configuring	Connection	Properties	with	ODBC
When	working	with	ODBC	connections,	you	can	set	the	URL	connection	properties	that	are	available	in	Teiid	by	running	a
command	such	as	the	following:

SET	<property-name>	TO	<property-value>

For	example,	to	turn	on	result	set	caching	you	can	run	the	following	command:

SET	resultSetCacheMode	TO	'true'

Another	option	is	to	use	VDB	properties	in	the	vdb	file	to	configure	the	connection,	as	in	the	following	example:

CREATE	DATABASE	vdb	OPTIONS	("connection.partialResultsMode"	true);

Or	in	an	XML	VDB:

<vdb	name="...">

				<property	name="connection.resultSetCacheMode"	value="true"/>

				...

</vdb>

ODBC	Connection	Properties

183

OData	compatibility

What	is	OData

The	Open	Data	Protocol	(OData)	is	a	Web	protocol	for	querying	and	updating	data	that	provides	a	way	to	unlock	your	data	and
free	it	from	silos	that	exist	in	applications	today.	OData	does	this	by	applying	and	building	upon	Web	technologies	such	as	HTTP,
Atom	Publishing	Protocol	(AtomPub)	and	JSON	to	provide	access	to	information	from	a	variety	of	applications,	services,	and
stores.	The	protocol	emerged	from	experiences	implementing	AtomPub	clients	and	servers	in	a	variety	of	products	over	the	past
several	years.	OData	is	used	to	expose	and	access	information	from	a	variety	of	sources	including,	but	not	limited	to,	relational
databases,	file	systems,	content	management	systems	and	traditional	Web	sites.

OData	is	consistent	with	the	way	the	Web	works	-	it	makes	a	deep	commitment	to	URIs	for	resource	identification	and	commits	to
an	HTTP-based,	uniform	interface	for	interacting	with	those	resources	(just	like	the	Web).	This	commitment	to	core	Web
principles	allows	OData	to	enable	a	new	level	of	data	integration	and	interoperability	across	a	broad	range	of	clients,	servers,
services,	and	tools.

copied	from	http://odata.org

Teiid	compatibility	for	OData

Teiid	is	compatible	with	OData	Version	4.0.

When	a	user	successfully	deploys	a	VDB	into	a	Teiid	Server,	the	OData	protocol	compatibility	is	implicitly	provided	by	the	Teiid
server	without	any	further	configuration.

OData	support	is	currently	not	available	in	the	Teiid	Embedded	profile.

OData	support	is	implemented	and	deployed	through	WAR	file(s).	Access	is	similar	to	accessing	to	any	web	resources	deployed
on	the	container.	The	war	file(s)	are	located	at	<container	root>/modules/org/jboss/teiid/deployments/*.war.

Legacy	OData	Version	2.0	support	has	been	removed,	but	could	be	maintained	as	it’s	own	project	-	please	contact	the	community
if	you	still	need	this	feature	and	want	to	maintain	it.

OData	Support

184

http://odata.org

OData	Version	4.0	compatibility
Teiid	strives	to	be	compliant	with	the	OData	specification.	The	rest	of	this	chapter	highlight	some	specifics	of	OData	and	Teiid’s
compatibility,	but	you	should	also	consult	the	specification.

Table	of	Contents
How	to	Access	the	data?
Query	Basics

How	to	execute	a	stored	procedure?
Not	seeing	all	the	rows?
"EntitySet	Not	Found"	error?

How	to	update	your	data?
Security
Configuration
Limitations
Client	Tools	for	Access
OData	Metadata	(How	Teiid	interprets	the	relational	schema	into	OData’s	$metadata)

Functions	And	Actions
OpenAPI	Metadata

How	to	Access	the	data?

For	example,	if	you	have	a	vdb	by	name	northwind	deployed	that	has	a	customers	table	in	a	NW	model,	then	you	can	access	that
table	with	an	HTTP	GET	via	the	URL:

All	users	are	granted	an	odata	role	by	default,	which	allows	all	authenticated	users	to	access	odata	end	points.	In	previous	versions
of	Teiid	this	role	had	to	be	manually	assigned.	If	you	still	want	that	behavior	remove	the	Identity	login	module	from	the	teiid-
security	security	domain	that	is	granting	the	odata	role.

http://localhost:8080/odata4/northwind/NW/customers

this	would	be	akin	to	making	a	JDBC/ODBC	connection	and	issuing	the	SQL:

SELECT	*	FROM	NW.customers

Note Use	correct	case	(upper	or	lower)	in	the	resource	path.	Unlike	SQL,	the	names	used	in	the	URI	as	case-sensitive.

The	returned	results	from	OData	query	can	be	in	Atom/AtomPub	XML	or	JSON	format.	JSON	results	are	returned	by	default.

Query	Basics
Users	can	submit	predicates	with	along	their	query	to	filter	the	results:

http://localhost:8080/odata4/northwind/NW/customers?$filter=name	eq	'bob'

Note
Spaces	around	'eq'	are	for	readability	of	the	example	only;	in	real	URLs	they	must	be	percent-encoded	as	%20.
OData	mandates	percent	encoding	for	all	spaces	in	URLs.	http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-
part2-url-conventions.html

OData	Version	4.0	Support

185

http://www.odata.org/documentation/
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

this	would	be	similar	to	making	a	JDBC/ODBC	connection	and	issuing	the	SQL

SELECT	*	FROM	NW.customers	where	name	=	'bob'

To	request	the	result	to	be	formatted	in	a	specific	format,	add	the	query	option	$format

http://localhost:8080/odata4/northwind/NW/customers?$format=JSON

Query	options	can	be	combined	as	needed.	For	example	format	with	a	filter:

http://localhost:8080/odata4/northwind/NW/customers?$filter=name	eq	'bob'&$format=xml

OData	allows	for	querying	navigations	from	one	entity	to	another.	A	navigation	is	similar	to	the	foreign	key	relationships	in
relational	databases.

For	example,	if	the	customers	table	has	an	exported	key	to	the	orders	table	on	the	customers	primary	key	called	the	customer_fk,
then	an	OData	GET	could	be	issued	like:

http://localhost:8080/odata4/northwind/NW/customers(1234)/customer_fk?$filter=orderdate	gt	datetime'2012-12-31T

21:23:38Z'

this	would	be	akin	to	making	a	JDBC/ODBC	connection	and	issuing	the	SQL:

SELECT	o.*	FROM	NW.orders	o	join	NW.customers	c	on	o.customer_id	=	c.id	where	c.id=1234	and	o.orderdate	>	{ts	'

2012-12-31	21:23:38'}

Note
More	Comprehensive	Documentation	about	ODATA	-	For	detailed	protocol	access	you	can	read	the
specification	at	http://odata.org.	You	can	also	read	this	very	useful	web	resource	for	an	example	of	accessing	an
OData	server.

How	to	execute	a	stored	procedure?

Odata	allows	you	to	call	your	exposed	stored	procedure	methods	via	odata.

http://localhost:8080/odata4/northwind/NW/getcustomersearch(id=120,firstname='miche

al')

Not	seeing	all	the	rows?

See	the	configuration	section	below	for	more	details.	Generally	batching	is	being	utilized,	which	tooling	should	understand
automatically,	and	additional	queries	with	a	$skiptoken	query	option	specified	are	needed:

http://localhost:8080/odata4/northwind/NW/customers?$skiptoken=xxx

"EntitySet	Not	Found"	error?

When	you	issue	the	above	query	are	you	seeing	a	message	similar	to	below?

{"error":{"code":null,"message":"Cannot	find	EntitySet,	Singleton,	ActionImport	or	FunctionImport	with	name	'xx

x'."}}

OData	Version	4.0	Support

186

http://odata.org
http://msdn.microsoft.com/en-us/library/ff478141.aspx

Then,	it	means	that	either	you	supplied	the	model-name/table-name	combination	wrong,	check	the	spelling	and	case.

It	is	possible	that	the	entity	is	not	part	of	the	metadata,	such	as	when	a	table	does	not	have	any	PRIMARY	KEY	or	UNIQUE
KEY(s).

How	to	update	your	data?

Using	the	OData	protocol	it	is	possible	to	perform	CREATE/UPDATE/DELETE	operations	along	with	READ	operations	shown
above.	These	operations	use	different	HTTP	methods.

INSERT/CREATE	is	accomplished	through	an	HTTP	method	"POST".

Example	POST

POST	/service.svc/Customers	HTTP/1.1

Host:	host

Content-Type:	application/json

Accept:	application/json

{

		"CustomerID":	"AS123X",

		"CompanyName":	"Contoso	Widgets",

		"Address"	:	{

					"Street":	"58	Contoso	St",

					"City":	"Seattle"

		}

}

An	UPDATE	is	performed	with	an	HTTP	"PUT".

Example	PUT	Update	of	Customer

PUT	/service.svc/Customers('ALFKI')	HTTP/1.1

Host:	host

Content-Type:	application/josn

Accept:	application/json

{

		"CustomerID":	"AS123X",

		"CompanyName":	"Updated	Company	Name",

		"Address"	:	{

					"Street":	"Updated	Street"

		}

}

The	DELETE	operation	uses	the	HTTP	"DELETE"	method.

Example	Delete

DELETE	/service.svc/Customers('ALFKI')	HTTP/1.1

Host:	host

Content-Type:	application/json

Accept:	application/json

Security

By	default	OData	access	is	secured	using	HTTPBasic	authentication.	The	user	will	be	authenticated	against	Teiid’s	default
security	domain	"teiid-security".

However,	if	you	wish	to	change	the	security	domain	use	a	deployment-overlay	to	override	the	web.xml	file	in	the	odata4	file	in	the
<modules>/org/jboss/teiid/main/deployments	directory.

OData	Version	4.0	Support

187

OData	WAR	is	also	compatible	with	Kerberos,	SAML	and	OAuth2	authentications.	For	information	about	configuring	these
security	schemes,	see	Security	Guide

Configuration

The	OData	WAR	file	can	be	configured	with	following	properties	in	the	web.xml	file.

Property	Name Description Default	Value

batch-size Number	of	rows	to	send	back	each
time,	-1	returns	all	rows 256

skiptoken-cache-time
Time	interval	between	the	results
being	recycled/expired	between
$skiptoken	requests

300000

invalid-xml10-character-replacement XML	1.0	replacement	character	for
non	UTF-8	characters.

local-transport-name Teiid	Local	transport	name	for
connection odata

invalid-xml10-character-replacement

Replacement	string	if	an	invalid
XML	1.0	character	appears	in	the
data	-	note	that	this	replacement	will
occur	even	if	JSON	is	requested.	No
value	(the	default)	means	that	an
exception	will	be	thrown	with	XML
results	if	such	a	character	is
encountered.

proxy-base-uri

Defines	the	proxy	server’s	URI	to	be
used	in	OData	responses.	Only	needs
to	be	set	for	proxies	that	do	not
support	the	Forwarded	nor	the	X-
Forwarded	headers.

n/a

connection.XXX

Sets	XXX	as	an	execution	property
on	the	local	connection.	Can	be	used
for	example	to	enable	result	set	cache
mode.

n/a

explicit-vdb-version

When	explicit-vdb-version	is	true,	an
explicit	vdb	version	needs	to	be	part
of	the	url	to	use	anything	other	than
the	default	version	1	vdb.	When
explicit-vdb-version	is	false,	the
odata	vdb	version	will	be	determined
just	like	a	JDBC	connection.

true

Note

"Behind	Proxy	or	In	Cloud	Environments?"	-	If	the	Teiid	server	is	configured	behind	a	proxy	server	or
deployed	in	cloud	environment,	or	using	a	load-balancer	that	does	not	support	the	Forwarded	nor	X-Forwarded
headers,	then	the	URI	of	the	server	which	is	handling	the	OData	request	is	different	from	URI	of	proxy.	To
generate	valid	links	in	the	OData	responses	configure	"proxy-base-uri"	property	in	the	web.xml.	If	this	value	is
available	as	system	property	then	define	the	property	value	like	below

				<init-param>

								<param-name>proxy-base-uri</param-name>

								<param-value>${system-property-name}</param-value>

OData	Version	4.0	Support

188

				</init-param>

To	modify	the	web.xml,	create	a	deployment-overlay	using	the	cli	with	the	modified	contents:

deployment-overlay	add	--name=myOverlay	--content=/WEB-INF/web.xml=/modified/web.xml	--deployments=teiid-odata-

odata4.war	--redeploy-affected

Teiid	OData	server	implements	cursoring	logic	when	the	result	rows	exceed	the	configured	batch	size.	On	every	request,	only
batch-size	number	of	rows	are	returned.	Each	such	request	is	considered	an	active	cursor,	with	a	specified	amount	of	idle	time
specified	by	skip-token-cache-time.	After	the	cursor	is	timed	out,	the	cursor	will	be	closed	and	remaining	results	will	be	cleaned
up,	and	will	no	longer	be	available	for	further	queries.	Since	there	is	no	session	based	tracking	of	these	cursors,	if	the	request	for
skiptoken	comes	after	the	expired	time,	the	original	query	will	be	executed	again	and	tries	to	reposition	the	cursor	to	relative
absolute	position,	however	the	results	are	not	guaranteed	to	be	same	as	the	underlying	sources	may	have	been	updated	with	new
information	meanwhile.

Limitations

The	OData4	interface	is	subject	to	some	feature	limitations.	You	cannot	use	the	following	features.

Search.

Delta	processing.

Data-aggregation	extension	of	the	OData	specification.

$it	usage	is	limited	to	only	primitive	collection	properties.

Client	Tools	for	Access
OData	access	is	really	where	the	user	comes	in,	depending	upon	your	programming	model	and	needs	there	are	various	ways	you
write	your	access	layer	into	OData.	The	following	are	some	suggestions:

Your	Browser:	The	OData	Explorer	is	an	online	tool	for	browsing	an	OData	data	service.

Olingo:	Is	a	Java	framework	that	supports	OData	V4,	has	both	consumer	and	producer	framework.

Microsoft	has	various	.Net	based	libraries,	see	http://odata.github.io/

Windows	Desktop:	LINQPad	is	a	wonderful	tool	for	building	OData	queries	interactively.	See	https://www.linqpad.net/

Shell	Scripts:	use	CURL	tool

For	latest	information	other	frameworks	and	tools	available	please	see	http://www.odata.org/ecosystem/

OData	Metadata	(How	Teiid	interprets	the	relational	schema	into
OData’s	$metadata)

OData	defines	its	schema	using	Conceptual	Schema	Definition	Language	(CSDL).	A	VDB	in	an	ACTIVE	state	in	Teiid	exposes
its	visible	metadata	in	CSDL	format.	For	example	if	you	want	retrieve	metadata	for	your	vdb,	you	need	to	issue	a	request	like:

http://localhost:8080/odata4/northwind/NW/$metadata

OData	Version	4.0	Support

189

https://docs.wildfly.org/19/Admin_Guide.html#Deployment_Overlays
http://odata.github.io/
https://www.linqpad.net/
http://www.odata.org/ecosystem/

Since	OData	schema	model	is	not	a	relational	schema	model,	Teiid	uses	the	following	semantics	to	map	its	relational	schema
model	to	OData	schema	model.

Relational	Entity Mapped	OData	Entity

Model	Name Schema	Namespace,	EntityContainer	Name

Table/View EntityType,	EntitySet

Table	Columns EntityType’s	Properties

Primary	Key EntityType’s	Key	Properties

Foreign	Key Navigation	Property	on	EntityType

Procedure/Function FunctionImport,	ActionImport

Procedure’s	Table	Return ComplexType

Teiid	by	design	does	not	define	any	"embedded"	ComplexType	in	the	EntityType.

Since	OData	access	is	more	key	based,	it	is	MANDATORY	that	every	table	Teiid	exposes	through	OData	must	have	a	PK	or	at
least	one	UNIQUE	key.	A	table	which	does	not	either	of	these	will	be	dropped	out	of	the	$metadata.

Since	all	data	roles	are	not	consulted	in	the	construction	of	the	OData	metadata	there	are	times	when	tables	or	procedures	will
need	to	be	specifically	hidden.	This	can	be	done	in	the	vdb	via	a	"teiid_odata:visible"	extension	metadata	property	on	the	object.

create	foreign	table	HIDDEN	(id	long	primary	key,	...)	OPTIONS	("teiid_odata:visible"	false);

With	teiid_odata:visible	set	to	false	the	OData	layer	will	not	expose	the	given	object.

Datatype	Mapping

Teiid	Type OData	Type

STRING Edm.String

BOOLEAN Edm.Boolean

BYTE Edm.SByte

SHORT Edm.Int16

INTEGER Edm.Int32

LONG Edm.Int64

FLOAT Edm.Single

DOUBLE Edm.Double

BIG_INTEGER Edm.Decimal

BIG_DECIMAL Edm.Decimal

OData	Version	4.0	Support

190

DATE Edm.Date

TIME Edm.TimeOfDay

TIMESTAMP Edm.DateTimeOffset

BLOB Edm.Stream

CLOB Edm.Stream

XML Edm.Stream

VARBINARY Edm.Binary

Geography	and	Geometry	will	be	mapped	to	the	corresponding	Edm.GeometryXXX	and	Edm.GeographyXXX	types	based	upon
the	associated	{http://www.teiid.org/translator/spatial/2015}type	property.	A	general	mapping	to	Edm.Geometry	or
EdmGeography	will	fail	to	serialize	the	values	correctly.

Where	possible,	array	types	will	be	mapped	to	a	collection	type.	However	you	cannot	include	multidimensional	arrays.	Also
array/collection	values	cannot	be	used	as	parameters	nor	in	comparisons.

Functions	And	Actions

The	mapping	of	entities	and	their	properties	is	relatively	straight-forward.	The	mapping	of	Teiid	procedures/functions	to	OData
Functions	and	Actions	is	more	involved.	Virtual	procedures,	source	procedure,	and	virtual	functions	defined	by	DDL	(not	a	Java
class)	are	all	eligible	to	be	mapped.	Source	functions	or	virtual	functions	defined	by	a	Java	class	are	currently	not	mapped	to
corresponding	OData	constructs	-	please	create	a	virtual	procedure	that	invokes	the	desired	function	if	calling	through	odata	is
needed.	OData	does	not	have	an	out	parameter	concept,	thus	OUT	parameters	are	ignored,	and	INOUT	parameters	are	treated	only
as	IN.	VARIADIC	support	is	not	yet	enabled.	If	there	is	a	VARIADIC	parameter	it	will	be	represented	by	single	parameter.	A
result	set	is	mapped	to	a	complex	type	collection	result.	An	array	result	will	be	mapped	to	a	simple	type	collection.

An	OData	Function	will	be	used	if:

The	procedure/function	has	a	return	value	-	either	scalar	or	a	result	set.

The	procedure/function	has	no	LOB	input	parameters	-	currently	Clob,	Blob,	XML,	Geometry,	Geography,	and	JSON	are
considered	LOB	types.

The	procedure/function	is	side	effect	free	-	this	is	determined	by	an	explicit	value	of	0	for	the	update	count.	For	example:
CREATE	VIRTUAL	PROCEDURE	…	OPTIONS	(UPDATECOUNT	0)	AS	BEGIN	…

If	any	one	of	those	conditions	are	not	met	the	procedure/function	is	represented	instead	by	an	OData	Action.	However	if	there	is	a
result	set	that	has	a	LOB	value,	then	the	procedure	is	not	mapped	at	all	as	multiple	streaming	values	cannot	be	returned.

Note	that	OData	Functions	and	Actions	are	called	differently.	A	Function	is	called	by	a	GET	request	where	the	parameter	values
are	included	in	the	URI.	An	Action	is	called	by	a	POST	where	the	content	provides	the	parameter	values.

Currently	only	unbounded	Functions	and	Actions	are	compatible.

You	should	always	consult	the	$metadata	about	Functions	and	Actions	to	validate	how	the	procedures/functions	were	mapped.

OpenAPI	Metadata

OData	Version	4.0	Support

191

An	experimental	feature	is	available	to	automatically	provide	a	Swagger	2.0	/	OpenAPI	metadata	via	[swagger|openapi].json
rather	than	$metadata.

Example	OpenAPI	2.0	URLs

http://localhost:8080/odata4/northwind/NW/swagger.json

http://localhost:8080/odata4/northwind/NW/openapi.json

http://localhost:8080/odata4/northwind/NW/openapi.json?version=2

Example	OpenAPI	3.0	URL

http://localhost:8080/odata4/northwind/NW/openapi.json?version=3

Warning Due	to	all	of	the	possible	query	options	and	expansions	this	metadata	will	be	significantly	larger	than	the
OData	EDM	representation.

OData	Version	4.0	Support

192

https://issues.redhat.com/browse/TEIID-5555
https://www.openapis.org/

Using	Teiid	with	Hibernate

Configuration

For	the	most	part,	interacting	with	Teiid	VDBs	(Virtual	Databases)	through	Hibernate	is	no	different	from	working	with	any	other
type	of	data	source.		First,	depending	on	where	your	Hibernate	application	will	reside,	either	in	the	same	VM	as	the	Teiid	Runtime
or	on	a	separate	VM,	will	determine	which	jar’s	are	used.

Running	in	same	VM	in	the	WildFly	server,	then	the	teiid-client-{version}.jar	and	teiid-hibernate-dialect-{version}.jar
already	reside	in	<jboss-install>/modules/org/jboss/teiid/client

Running	separate	VM’s,you	need	the	Teiid	JDBC	Driver	JAR	and	Teiid’s	Hibernate	Dialect	JAR	in	the	Hibernate’s
classpath.		The	Hibernate	JAR	can	be	found	in	<jboss-install>/modules/org/jboss/teiid/client,	teiid-hibernate-dialect-
{version}.jar	and	the	Teiid	JDBC	Driver	JAR	needs	to	be	downloaded.

These	JAR	files	have	the		org.teiid.dialect.TeiidDialect		and		org.teiid.jdbc.TeiidDriver		and
	org.teiid.jdbc.TeiidDataSource		classes.

You	configure	Hibernate	(via	hibernate.cfg.xml)	as	follows:

Specify	the	Teiid	driver	class	in	the		connection.driver_class		property:

<property	name="connection.driver_class">

					org.teiid.jdbc.TeiidDriver

</property>

Specify	the	URL	for	the	VDB	in	the		connection.url		property	(replacing	terms	in	angle	brackets	with	the	appropriate
values):

<property	name="connection.url">

				jdbc:teiid:<vdb-name>@mm://<host>:<port>;user=<user-name>;password=<password>

</property>

Tip Be	sure	to	use	a	Local	JDBC	Connection	if	Hibernate	is	in	the	same	VM	as	the	application	server.

Specify	the	Teiid	dialect	class	in	the		dialect		property:

<property	name="dialect">

				org.teiid.dialect.TeiidDialect

</property>

Alternatively,	if	you	put	your	connection	properties	in		hibernate.properties		instead	of		hibernate.cfg.xml	,	they	would	look
like	this:

hibernate.connection.driver_class=org.teiid.jdbc.TeiidDriver

hibernate.connection.url=jdbc:teiid:<vdb-name>@mm://<host>:<port>

hibernate.connection.username=<user-name>

hibernate.connection.password=<password>

hibernate.dialect=org.teiid.dialect.TeiidDialect

Note	also	that	since	your	VDBs	will	likely	contain	multiple	source	and	view	models	with	identical	table	names,	you	will	need	to
fully	qualify	table	names	specified	in	Hibernate	mapping	files:

Using	Teiid	with	Hibernate

193

http://www.jboss.org/teiid/downloads.html

<class	name="<Class	name>"	table="<Source/view	model	name>.[<schema	name>.]<Table	name>">

				...

</class>

Example	Mapping

<class	name="org.teiid.example.Publisher"	table="BOOKS.BOOKS.PUBLISHERS">

				...

</class>

Identifier	Generation

SEQUENCE	Based	Identity	Generation

If	you	want	to	use	SEQUENCE	based	Identity	generation	with	Teiid,	you	can	do	so	through	the	TeiidDialect.	When	you	define	a
JPA	Entity

public	class	Customer	{

	 @GeneratedValue(strategy	=	GenerationType.SEQUENCE,	generator	=	

"customer_generator")

	 @SequenceGenerator(name="customer_generator",	sequenceName	=	

"customer_seq")

	 @Id

	 Long	id;

}

In	the	Teiid	VDB,	define	a	virtual	function	as	below	example.	Note,	"_nextval"	appended	to	the	sequence	name	on	the	name	of
the	function.

CREATE	VIRTUAL	FUNCTION	customer_seq_nextval()	RETURNS	long

AS

BEGIN

				--	Your	code	to	retrieve	the	sequence	from	source	database

				--	or	generate	one	in	Teiid.

END;

Given	the	above	template,	if	for	example	you	are	working	with	Oracle	would	like	to	use	the	Oracle	sequence	you	already	defined
as	"customer_seq"	in	your	Oracle	database,	then	create	View	procedure	in	Teiid	as

CREATE	VIRTUAL	FUNCTION	customer_seq_nextval()	RETURNS	long

AS

BEGIN

				SELECT	OracleDB.mySequence_nextval();

END;

Stating	with	Teiid	10.0,	for	some	sources,	including	DB2,	Oracle,	H2,	PostgreSQL,	DB2,	you	can	automatically	import	sequence
information.	For	other	sources	you	need	to	add	source	functions	to	represent	the	sequence	calls.	For	example	assuming	you
wanted	to	do	this	manually	for	Oracle,	then	in	your	OracleDB	source	model,	create	a	source	function:

CREATE	FOREIGN	FUNCTION	mySequence_nextval()	RETURNS	long

Using	Teiid	with	Hibernate

194

OPTIONS	("teiid_rel:native-query"	'SELECT	customer_seq.NEXTVAL	FROM	dual',	

DETERMINISM	'NONDETERMINISTIC');

Then	when	the	Customer	entity	is	inserted,	the	sequence	is	used.

TABLE	Based	Idenity	Generation

If	you	want	use	TABLE	based	Identity	generation	with	Teiid,	you	can	do	so	through	the	TeiidDialect.	When	you	define	a	JPA
Entity	like

public	class	Customer	{

	 @TableGenerator(name	=	"customer",

	 	 	 table	=	"id_generator",

	 	 	 pkColumnName	=	"idkey",

	 	 	 valueColumnName	=	"idvalue",

	 	 	 pkColumnValue	=	"customer",

	 	 	 allocationSize	=	1)

	 @GeneratedValue(strategy	=	GenerationType.TABLE,	generator	=	"customer")

	 @Id

	 Long	id;

	 ...

}

Then	create	a	virtual	table	in	Teiid’s	view	model	as

CREATE	VIEW	id_generator	(

	 idkey	string(255)	NOT	NULL,

	 idvalue	long,

	 CONSTRAINT	id_generatorPK	PRIMARY	KEY(idkey)

)	OPTIONS	(UPDATABLE	TRUE)

AS

SELECT	IDKEY,	IDVALUE	FROM	OracleDB.IDGENERATOR;

Where	in	OracleDB,	you	have	a	physical	Table	called	"IDGENERATOR"	and	with	above	shown	columns.	When	you	use	this
technique,	please	make	sure	you	have	seed	content	like	below	to	begin	with

INSERT	INTO	IDGENERATOR(IDKEY,	IDVALUE)	VALUES	('customer',	100);

such	that	the	IDKEY	matches	and	IDVALUE	has	a	initializer	value.

IDENTITY	Based	identity	generation

Teiid	provides	for	GUID	and	Identity	(using	generated	key	retrieval)	identifier	generation	strategy.

Limitations

Using	Teiid	with	Hibernate

195

Many	Hibernate	use	cases	assume	a	data	source	has	the	ability	(with	proper	user	permissions)	to	process	Data	Definition
Language	(DDL)	statements	like	CREATE	TABLE	and	DROP	TABLE	as	well	as	Data	Manipulation	Language	(DML)
statements	like	SELECT,	UPDATE,	INSERT	and	DELETE.	Teiid	can	handle	a	broad	range	of	DML,	but	does	not	directly
handle	DDL	against	a	particular	source.

Sequence	generation	is	not	directly	supported.

Using	Teiid	with	Hibernate

196

Using	Teiid	with	EclipseLink

Overview

We	can	use	Teiid	with	Hibernate,	we	also	have	a	quick	start	to	show	how:	Hibernate	on	top	of	Teiid.	Both	Hibernate	and
Eclipselink	fully	support	JSR-317	(JPA	2.0).	The	primary	purpose	of	this	document	is	demonstrate	how	use	Teiid	with
EclipseLink.

Configuration

For	the	most	part,	interacting	with	Teiid	VDBs	(Virtual	Databases)	through	Eclipselink	is	no	different	from	working	with	any
other	type	of	data	source.	First,	depending	on	where	your	Eclipselink	application	will	reside,	either	in	the	same	VM	as	the	Teiid
Runtime	or	on	a	separate	VM,	will	determine	which	jar’s	are	used.

Running	in	same	VM	in	the	WildFly	server,	the	teiid-client-{version}.jar	and	teiid-eclipselink-platform-{version}.jar	are
needed

Running	separate	VM’s,you	need	the	Teiid	JDBC	Driver	JAR(Download	Teiid	JDBC	Driver	JAR)	and	Teiid’s	Eclipselink
Platform	JAR(teiid-eclipselink-platform	{version}.jar)	in	the	Eclipselink’s	classpath.

These	JAR	files	have	the	org.teiid.eclipselin.platform.TeiidPlatform	and	org.teiid.jdbc.TeiidDriver	classes.

You	configure	EclipseLink	(via	persistence.xml)	as	follows:

Specify	the	Teiid	driver	class,	connection	url

	<property	name="javax.persistence.jdbc.driver"	value="org.teiid.jdbc.TeiidDriver"	/>

	<property	name="javax.persistence.jdbc.url"	value="jdbc:teiid:<vdb-name>@mm://<host>:<port>"	/>

	<property	name="javax.persistence.jdbc.user"	value="<username>"	/>

	<property	name="javax.persistence.jdbc.password"	value="<password>"	/>

Specify	the	Teiid	platform	class

	<property	name="eclipselink.target-database"	value="org.teiid.eclipselink.platform.TeiidPlatform"/>

Limitations

Many	Eclipselink	use	cases	assume	a	data	source	has	the	ability	(with	proper	user	permissions)	to	process	Data	Definition
Language	(DDL)	statements	like	CREATE	TABLE	and	DROP	TABLE	as	well	as	Data	Manipulation	Language	(DML)
statements	like	SELECT,	UPDATE,	INSERT	and	DELETE.	Teiid	can	handle	a	broad	range	of	DML,	but	does	not	directly
support	DDL	against	a	particular	source.

Sequence	generation	is	not	directly	supported.

Using	Teiid	with	EclipseLink

197

https://github.com/teiid/teiid-wildfly-quickstarts/tree/master/hibernate-on-top-of-teiid
http://www.jboss.org/teiid/downloads.html

GeoServer	Integration
GeoServer	is	an	open	source	server	for	geospatial	data.	It	can	be	integrated	with	Teiid	to	serve	geospatial	data	from	a	variety	of
sources.

Prerequisites

Have	GeoServer	installed.	By	default	this	will	be	in	a	different	container	than	the	Teiid	WildFly	instance,	but	it	should	be
possible	to	deploy	into	the	same	WildFly	instance.	Teiid	integration	was	initially	tested	with	GeoServer	version	2.6.x,	and	is
compatible	with	versions	2.8.x	and	2.12.x.	See	TEIID-5236

Your	Teiid	installation	should	already	be	setup	for	pg/ODBC	access.	This	allows	the	built-in	compatibility	with	GeoServer
for	PostGIS/PostgreSQL	to	be	used.

Have	a	VDB	deployed	that	exposes	one	or	more	tables	containing	an	appropriate	Geometry	column.

a.	 The	Teiid	system	table	GEOMETY_COLUMNS	will	be	used	by	GeoServer.	Please	ensure	that	the	relevant	geometry
columns	have	the	appropriate	srid	and	coord_dimensions,	which	may	require	setting	the
{http://www.teiid.org/translator/spatial/2015}srid	and	{http://www.teiid.org/translator/spatial/2015}coord_dimension
extension	property	on	the	geometry	column.

GeoServer	Configuration

This	process	will	need	to	be	repeated	for	each	VDB	schema	you	are	exposing	that	contains	geospatial	data.

1.	 Using	the	GeoServer	admin	web	application,	select	Stores	→	Add	new	Store.	Under	Vector	Data	Sources,	select	PostGIS.

2.	 Using	the	non-JNDI	connection,	fill	in	the	Teiid	server	host,	ODBC	port,	database	(VDB	Name	with	optional	version),	user,
and	password,	schema	(schema/model	from	the	target	VDB).

i.	 If	your	VDBs	contain	target	schema	or	table	names	with	%	or	_,	Teiid	must	be	configured	to	use	the	same	default	like
escape	character	'\'	as	PostgreSQL	to	properly	respond	to	metadata	queries.	Either	the	system	property
org.teiid.backslashDefaultMatchEscape	must	be	set	to	true	or	the	Teiid	session	variable	backslashDefaultMatchEscape
must	be	set	to	true	-	for	example	enter	"select	cast(teiid_session_set('backslashDefaultMatchEscape',	true)	as	boolean)"
in	the	"Session	startup	SQL"	to	configure	just	this	GeoServer	connection	pool.

3.	 Follow	the	typical	GeoServer	instructions	for	creating	a	Layer	based	upon	the	Teiid	store.

i.	 Note	that	Teiid	is	not	compatible	with	the	PostGIS	function	ST_Estimated_Extent	and	attempts	to	compute	the
bounding	box	from	the	data,	result	in	log	errors.

Additional	Considerations

If	you	are	integrating	a	PostgreSQL	source,	you	must	not	re-expose	the	geometry_columns	or	geography_columns	tables.
This	is	because	GeoServer	makes	unqualified	queries	that	reference	geometry_columns	and	the	query	should	resolve	against
the	Teiid	system	table	instead.

Teiid	does	not	by	default	expose	a	GT_PK_METADATA,	which	is	optionally	used	by	GeoServer

GeoServer	Integration

198

http://geoserver.org/
https://issues.redhat.com/browse/TEIID-5236

GeoServer	Integration

199

QGIS	Integration
QGIS	is	an	open	source	geospatial	platform.	It	can	be	integrated	with	Teiid	to	serve	geospatial	data	from	a	variety	of	sources.

Prerequisites

Have	QGIS	installed.	Teiid	integration	was	last	tested	with	version	2.14.

Your	Teiid	installation	should	already	be	setup	for	ODBC	access.	This	allows	the	built-in	compatibility	of	QGIS	for
PostGIS/PostgreSQL	to	be	used.

Have	a	VDB	deployed	that	exposes	one	or	more	tables	containing	an	appropriate	Geometry	column.

a.	 The	Teiid	system	table	GEOMETY_COLUMNS	will	be	used	by	QGIS.	Please	ensure	that	the	relevant	geometry
columns	have	the	appropriate	srid	and	coord_dimensions,	which	may	require	setting	the
{http://www.teiid.org/translator/spatial/2015}srid	and	{http://www.teiid.org/translator/spatial/2015}coord_dimension
extension	property	on	the	geometry	column.

QGIS	Configuration

This	process	will	need	to	be	repeated	for	each	VDB	schema	you	are	exposing	that	contains	geospatial	data.

1.	 In	the	QGIS	GUI	browser	panel	right	click	on	PostGIS	and	select	"New	Connection".

2.	 Fill	in	the	Teiid	server	host,	ODBC	port,	database	(VDB	Name	with	optional	version),	user,	and	password.

i.	 If	your	VDBs	contain	target	schema	or	table	names	with	%	or	_,	Teiid	must	be	configured	to	use	the	same	default	like
escape	character	'\'	as	PostgreSQL	to	properly	respond	to	metadata	queries.	Either	the	system	property
org.teiid.backslashDefaultMatchEscape	must	be	set	to	true.

3.	 Follow	the	typical	QGIS	instructions	for	creating	a	Layer	by	browsing	to	the	appropriate	schema	and	selecting	a	table	that
exposes	a	geometry.

Additional	Considerations
If	you	are	integrating	a	PostgreSQL	source,	you	must	not	re-expose	the	postgres	system	tables	including	the	PostGIS
geometry_columns	or	geography_columns	tables.	This	is	because	QGIS	makes	unqualified	references	to	these	tables,	which
may	then	be	ambiguous.

Operations	involving	creating	or	deleting	schemas	or	tables	will	not	work.

The	logs	might	contain	messages	related	to	information_schema.tables	-	this	is	to	determine	if	the	qgis_editor_widget_styles
table	exists.	Teiid	is	not	compatible	with	QGIS	editor	widget	styles.

QGIS	Integration

200

http://www.qgis.org/

SQLAlchemy	Integration
SQLAlchemy	is	an	open	source	SQL	toolkit	and	ORM	for	Python.

Prerequisites

Have	SQLAlchemy	installed	installed.	Teiid	integration	was	last	tested	with	version	1.1.6.

Your	Teiid	installation	should	already	be	setup	for	ODBC	access.	This	allows	the	built-in	compatibility	with	SQLAlchemy
for	PostgreSQL	to	be	used.

Usage

You	should	be	able	to	use	a	SQLAlchemy	engine	for	querying.	Reflective	import	of	most	table	metadata	is	also	provided.

Sample	Usage

import	sqlalchemy

from	sqlalchemy	import	create_engine,	Table,	MetaData

engine	=	create_engine("postgresql+psycopg2://user:password@host:35432/vdb")

engine.connect()

#engine	is	ready	for	queries

result	=	connection.execute("select	*	from	some_table")

#reflective	table	import

meta	=	MetaData()

test	=	Table('public.test',	meta,	autoload=True,	autoload_with=engine,postgresql_ignore_search_path=True)

Limitations

Only	a	subset	of	the	PostgreSQL	dialect	is	available.	The	primary	intent	is	to	allow	querying	through	Teiid.	If	there	are	additional
features	that	are	needed,	please	log	an	enhancement	request.

Column	metadata	will	not	be	available	for	tables	that	contain	the	period	'.'	character.	Depending	upon	your	needs,	you	may	need
import	settings	that	use	simple	Teiid	names	and	not	source	schema	qualified	names.

Application	compatibility

Superset

Superset	is	an	open	source	data	visualization	and	dashboard	builder.	It	uses	SQLAlchemy	to	access	relational	sources.

Once	you	have	followed	the	above	instructions,	you	may	access	a	Teiid	VDB	by	adding	a	Database	under	the	Sources	menu.

The	URL	will	be	of	the	same	form	shown	in	the	SQLAlchemy	integration:
postgresql+psycopg2://user:password@host:35432/vdb

Basic	usage	scenarios	involving	aggregation	and	all	basic	types	have	been	tested.	If	there	are	additional	features	that	are	needed,
please	log	an	enhancement	request

SQLAlchemy	Integration

201

http://www.sqlalchemy.org/
http://airbnb.io/superset/

SQLAlchemy	Integration

202

Node.js	Integration
Node.js	is	an	open	source	event	driven	runtime	that	can	be	integrated	with	Teiid.

Prerequisites

Have	Node.js	installed.	The	npm	pagckage	pg	is	also	required.	Use	"

Your	Teiid	installation	should	already	be	setup	for	ODBC	access.	This	allows	the	optional	compatibility	with	Node.js	for
PostGIS/PostgreSQL	to	be	used.

Usage

For	example	if	you	have	VDB	called	"northwind"	deployed	on	your	Teiid	server,	and	it	has	table	called	"customers"	and	you	are
using	default	configuration	such	as

user	=	'user'	password	=	'user'	host	=	127.0.0.1	port	=	35432

Simple	Access	Example

				const	{	Client	}	=	require('pg')

				const	client	=	new	Client({

								user:	'user',

								host:	'localhost',

								database:	'northwind',

								password:	'secretpassword',

								port:	35432,

				})

				client.connect()

				client.query('SELECT	CustomerID,	ContactName,	ContactTitle	FROM	Customers',	(err,	res)	=>	{

								console.log(err,	res)

								client.end()

				})

Note you	do	not	have	to	programmatically	specify	the	connection	information	in	the	code	as	it	can	be	obtained	from
environment	variables	and	other	mechanisms	-	see	https://node-postgres.com

For	more	information	please	refer	to:	https://npmjs.org/package/pg

Node.js	Integration

203

https://nodejs.org
https://node-postgres.com
https://npmjs.org/package/pg

ADO.Net	Integration
Npgsql	is	an	open	source	ADO.NET	Data	Provider	for	PostgreSQL.	It	can	be	integrated	with	Teiid	to	provide	access	from
programs	written	in	C#,	Visual	Basic,	F#.

Prerequisites

Install	the	Npgsql	using	the	.msi	Windows	installer.	Teiid	integration	was	last	tested	with	version	3.2.6.

Your	Teiid	installation	should	already	be	setup	for	pg/ODBC	access.

Have	a	VDB	deployed.

Npgsql	Configuration
For	information	about	the	available	connection	parameters,	see	the	Npgsql	documentation.	Not	all	configuration	parameters	have
been	tested	for	use	with	Teiid.

Known	Limitations
TEIID-5220	prevents	displaying	the	metadata	of	tables	and	views,	but	does	not	affect	querying.	Certain	tools,	such	as
PowerBi,	may	have	options	to	turn	of	the	need	to	perform	metadata	introspection.

ADO.NET	Integration

204

http://www.npgsql.org/
http://www.npgsql.org/doc/connection-string-parameters.html
https://issues.redhat.com/browse/TEIID-5220

Reauthentication
Teiid	allows	for	connections	to	be	reauthenticated	so	that	the	identity	on	the	connection	can	be	changed	rather	than	creating	a
whole	new	connection.		If	using	JDBC,	see	the	changeUser	Connection	extension.		If	using	ODBC,	or	simply	need	a	statement
based	mechanism	for	reauthentication,	see	also	the	SET	Statement	for	SESSION	AUTHORIZATION.

Reauthentication

205

Execution	Properties
Execution	properties	may	be	set	on	a	per	statement	basis	through	the		TeiidStatement		interface	or	on	the	connection	via	the	SET
Statement.	For	convenience,	the	property	keys	are	defined	by	constants	on	the		org.teiid.jdbc.ExecutionProperties		interface.

Table	1.	Execution	Properties

Property	Name/String	Constant Description

	PROP_TXN_AUTO_WRAP	/	autoCommitTxn	 Same	as	the	connection	property.

	PROP_PARTIAL_RESULTS_MODE	/	partialResultsMode	 See	the	Partial	Results	Mode

	RESULT_SET_CACHE_MODE	/	resultSetCacheMode	 Same	as	the	connection	property.

	SQL_OPTION_SHOWPLAN	/	SHOWPLAN	 Same	as	the	connection	property.

	NOEXEC	/	NOEXEC	 Same	as	the	connection	property.

	JDBC4COLUMNNAMEANDLABELSEMANTICS	/

useJDBC4ColumnNameAndLabelSemantics	
Same	as	the	connection	property.

Execution	Properties

206

SET	Statement
Execution	properties	may	also	be	set	on	the	connection	by	using	the	SET	statement.	The	SET	statement	is	not	yet	a	language
feature	of	Teiid	and	is	handled	only	in	the	JDBC	client.	Since	a	JDBC	clients	backs	the	pg/ODBC	transport,	it	will	work	there	as
well.

SET	Syntax:

SET	[PAYLOAD]	(parameter|SESSION	AUTHORIZATION)	value

SET	SESSION	CHARACTERISTICS	AS	TRANSACTION	ISOLATION	LEVEL	(READ	UNCOMMITTED|READ
COMMITTED|REPEATABLE	READ|SERIALIZABLE)

Syntax	Rules:

The	parameter	must	be	an	identifier	-	it	can	contain	spaces	or	other	special	characters	only	if	quoted.

The	value	may	be	either	a	non-quoted	identifier	or	a	quoted	string	literal	value.

If	payload	is	specified,	e.g.	"SET	PAYLOAD	x	y",	then	a	session	scoped	payload	properties	object	will	have	the
corresponding	name	value	pair	set.		The	payload	object	is	not	fully	session	scoped.		It	will	be	removed	from	the	session	when
the	XAConnection	handle	is	closed/returned	to	the	pool	(assumes	the	use	of	TeiidDataSource).		The	session	scoped	payload
is	superseded	by	the	usage	of	TeiidStatement.setPayload.

Using	SET	SESSION	CHARACTERISTICS	AS	TRANSACTION	ISOLATION	LEVEL	is	equivalent	to	calling
Connection.setTransactionIsolation	with	the	corresponding	level.

The	SET	statement	is	most	commonly	used	to	control	planning	and	execution.

SET	SHOWPLAN	(ON|DEBUG|OFF)

SET	NOEXEC	(ON|OFF)

Enabling	Plan	Debug

Statement	s	=	connection.createStatement();

s.execute("SET	SHOWPLAN	DEBUG");

...

Statement	s1	=	connection.createStatement();

ResultSet	rs	=	s1.executeQuery("select	col	from	table");

ResultSet	planRs	=	s1.exeuteQuery("SHOW	PLAN");

planRs.next();

String	debugLog	=	planRs.getString("DEBUG_LOG");

Query	Plan	without	executing	the	query

s.execute("SET	NOEXEC	ON");

s.execute("SET	SHOWPLAN	DEBUG");

...

e.execute("SET	NOEXEC	OFF");

The	SET	statement	may	also	be	used	to	control	authorization.	A	SET	SESSION	AUTHORIZATION	statement	will	perform	a
Reauthentication	given	the	credentials	currently	set	on	the	connection.	The	connection	credentials	may	be	changed	by	issuing	a
SET	PASSWORD	statement.	A	SET	PASSWORD	statement	does	not	perform	a	reauthentication.

Changing	Session	Authorization

Statement	s	=	connection.createStatement();

s.execute("SET	PASSWORD	'someval'");

SET	Statement

207

s.execute("SET	SESSION	AUTHORIZATION	'newuser'");

SET	Statement

208

SHOW	Statement
The	SHOW	statement	can	be	used	to	see	a	varitey	of	information.	The	SHOW	statement	is	not	yet	a	language	feature	of	Teiid	and
is	handled	only	in	the	JDBC	client.

SHOW	Usage:

SHOW	PLAN-	returns	a	resultset	with	a	clob	column	PLAN_TEXT,	an	xml	column	PLAN_XML,	and	a	clob	column
DEBUG_LOG	with	a	row	containing	the	values	from	the	previously	executed	query.	If	SHOWPLAN	is	OFF	or	no	plan	is
available,	no	rows	are	returned.	If	SHOWPLAN	is	not	set	to	DEBUG,	then	DEBUG_LOG	will	return	a	null	value.

SHOW	ANNOTATIONS-	returns	a	resultset	with	string	columns	CATEGORY,	PRIORITY,	ANNOTATION,
RESOLUTION	and	a	row	for	each	annotation	on	the	previously	executed	query.	If	SHOWPLAN	is	OFF	or	no	plan	is
available,	no	rows	are	returned.

SHOW	<property>	-	the	inverse	of	SET,	shows	the	property	value	for	the	given	property,	returns	a	resultset	with	a	single
string	column	with	a	name	matching	the	property	key.

SHOW	ALL-	returns	a	resultset	with	a	NAME	string	column	and	a	VALUE	string	column	with	a	row	entry	for	every
property	value.	The	SHOW	statement	is	most	commonly	used	to	retrieve	the	query	plan,	see	the	plan	debug	example.

SHOW	Statement

209

Transactions
Teiid	provides	three	types	of	transactions	from	a	client	perspective:

1.	 Global

2.	 Local

3.	 Request	Level

All	are	implemented	by	Teiid	logically	as	XA	transactions.	See	the	JTA	specification	for	more	on	XA	Transactions.

Transactions

210

http://java.sun.com/javaee/technologies/jta/index.jsp

Local	Transactions
A	Local	transaction	from	a	client	perspective	affects	only	a	single	resource,	but	can	coordinate	multiple	statements.

JDBC	Specific

The		Connection		class	uses	the		autoCommit		flag	to	explicitly	control	local	transactions.	By	default,	autoCommit	is	set	to
	true	,	which	indicates	request	level	or	implicit	transaction	control.

An	example	of	how	to	use	local	transactions	by	setting	the	autoCommit	flag	to	false.

Local	transaction	control	using	autoCommit

//	Set	auto	commit	to	false	and	start	a	transaction

connection.setAutoCommit(false);

try	{

				//	Execute	multiple	updates

				Statement	statement	=	connection.createStatement();

				statement.executeUpdate("INSERT	INTO	Accounts	(ID,	Name)	VALUES	(10,	'Mike')");

				statement.executeUpdate("INSERT	INTO	Accounts	(ID,	Name)	VALUES	(15,	'John')");

				statement.close();

				//	Commit	the	transaction

				connection.commit();

}	catch(SQLException	e)	{

				//	If	an	error	occurs,	rollback	the	transaction

				connection.rollback();

}

This	example	demonstrates	several	things:

1.	 Setting	autoCommit	flag	to	false.	This	will	start	a	transaction	bound	to	the	connection.

2.	 Executing	multiple	updates	within	the	context	of	the	transaction.

3.	 When	the	statements	are	complete,	the	transaction	is	committed	by	calling	commit().

4.	 If	an	error	occurs,	the	transaction	is	rolled	back	using	the	rollback()	method.

Any	of	the	following	operations	will	end	a	local	transaction:

1.	 Connection.setAutoCommit(true)	–	if	previously	set	to	false

2.	 Connection.commit()

3.	 Connection.rollback()

4.	 A	transaction	will	be	rolled	back	automatically	if	it	times	out.

Turning	Off	JDBC	Local	Transaction	Controls

In	some	cases,	tools	or	frameworks	above	Teiid	will	call	setAutoCommit(false),	commit()	and	rollback()	even	when	all	access	is
read-only	and	no	transactions	are	necessary.	In	the	scope	of	a	local	transaction	Teiid	will	start	and	attempt	to	commit	an	XA
transaction,	possibly	complicating	configuration	or	causing	performance	degradation.

In	these	cases,	you	can	override	the	default	JDBC	behavior	to	indicate	that	these	methods	should	perform	no	action	regardless	of
the	commands	being	executed.	To	turn	off	the	use	of	local	transactions,	add	this	property	to	the	JDBC	connection	URL

Local	Transactions

211

disableLocalTxn=true

Tip
Turning	off	local	transactions	can	be	dangerous	and	can	result	in	inconsistent	results	(if	reading	data)	or
inconsistent	data	in	data	stores	(if	writing	data).	For	safety,	this	mode	should	be	used	only	if	you	are	certain	that	the
calling	application	does	not	need	local	transactions.

Transaction	Statements

Transaction	control	statements,	which	are	also	applicable	to	ODBC	clients,	explicitly	control	the	local	transaction	boundaries.	The
relevant	statements	are:

START	TRANSACTION-	synonym	for		connection.setAutoCommit(false)	

COMMIT-	synonym	for		connection.setAutoCommit(true)	

ROLLBACK-	synonym	for		connection.rollback()		and	returning	to	auto	commit	mode.

Local	Transactions

212

Request	Level	Transactions
Request	level	transactions	are	used	when	the	request	is	not	in	the	scope	of	a	global	or	local	transaction,	which	implies
"autoCommit"	is	"true".	In	a	request	level	transaction,	your	application	does	not	need	to	explicitly	call	commit	or	rollback,	rather
every	command	is	assumed	to	be	its	own	transaction	that	will	automatically	be	committed	or	rolled	back	by	the	server.

The	Teiid	Server	can	perform	updates	through	virtual	tables.	These	updates	might	result	in	an	update	against	multiple	physical
systems,	even	though	the	application	issues	the	update	command	against	a	single	virtual	table.	Often,	a	user	might	not	know
whether	the	queried	tables	actually	update	multiple	sources	and	require	a	transaction.

For	that	reason,	the	Teiid	Server	allows	your	application	to	automatically	wrap	commands	in	transactions	when	necessary.
Because	this	wrapping	incurs	a	performance	penalty	for	your	queries,	you	can	choose	from	a	number	of	available	wrapping	modes
to	suit	your	environment.	You	need	to	choose	between	the	highest	degree	of	integrity	and	performance	your	application	needs.	For
example,	if	your	data	sources	are	not	transaction-compliant,	you	might	turn	the	transaction	wrapping	off	(completely)	to	maximize
performance.

You	can	set	your	transaction	wrapping	to	one	of	the	following	modes:

1.	 ON:	This	mode	always	wraps	every	command	in	a	transaction	without	checking	whether	it	is	required.	This	is	the	safest
mode.

2.	 OFF:	This	mode	never	automatically	wraps	a	command	in	a	transaction	or	check	whether	it	needs	to	wrap	a	command.	This
mode	can	be	dangerous	as	it	will	allow	multiple	source	updates	outside	of	a	transaction	without	an	error.	This	mode	has	best
performance	for	applications	that	do	not	use	updates	or	transactions.

3.	 DETECT:	This	mode	assumes	that	the	user	does	not	know	to	execute	multiple	source	updates	in	a	transaction.	The	Teiid
Server	checks	every	command	to	see	whether	it	is	a	multiple	source	update	and	wraps	it	in	a	transaction.	If	it	is	single	source
then	uses	the	source	level	command	transaction.	You	can	set	the	transaction	mode	as	a	property	when	you	establish	the
Connection	or	on	a	per-query	basis	using	the	execution	properties.	For	more	information	on	execution	properties,	see	the
section	Execution	Properties

Multiple	Insert	Batches

When	issuing	an	INSERT	with	a	query	expression	(or	the	deprecated	SELECT	INTO),	multiple	insert	batches	handled	by	separate
source	INSERTS	may	be	processed	by	the	Teiid	server.	Be	sure	that	the	sources	that	you	target	support	XA	or	that	compensating
actions	are	taken	in	the	event	of	a	failure.

Request	Level	Transactions

213

Using	Global	Transactions
Global	or	client	XA	transactions	are	only	applicable	to	JDBC	clients.	They	all	the	client	to	coordinate	multiple	resources	in	a
single	transaction.	To	take	advantage	of	XA	transactions	on	the	client	side,	use	the		TeiidDataSource		(or	Teiid	Embedded	with
transaction	detection	enabled).

When	an	XAConnection	is	used	in	the	context	of	a	UserTransaction	in	an	application	server,	such	as	JBoss,	WebSphere,	or
Weblogic,	the	resulting	connection	will	already	be	associated	with	the	current	XA	transaction.	No	additional	client	JDBC	code	is
necessary	to	interact	with	the	XA	transaction.

Usage	with	UserTransaction

			UserTransaction	ut	=	context.getUserTransaction();

			try	{

						ut.begin();

						Datasource	oracle	=	lookup(...)

						Datasource	teiid	=	lookup(...)

						Connection	c1	=	oracle.getConnection();

						Connection	c2	=	teiid.getConnection();

						//	do	something	with	Oracle	connection

						//	do	something	with	Teiid	connection

						c1.close();

						c2.close();

						ut.commit();

			}	catch	(Exception	ex)	{

							ut.rollback();

			}

In	the	case	that	you	are	not	running	in	a	JEE	container	environment	and	you	have	your	own	transaction	manger	to	co-ordinate	the
XA	transactions,	code	will	look	some	what	like	below.

Manual	Usage	of	XA	transactions

XAConnection	xaConn	=	null;

XAResource	xaRes	=	null;

Connection	conn	=	null;

Statement	stmt	=	null;

try	{

		xaConn	=	<XADataSource	instance>.getXAConnection();

		xaRes	=	xaConn.getXAResource();

		Xid	xid	=	<new	Xid	instance>;

		conn	=	xaConn.getConnection();

		stmt	=	conn.createStatement();

		xaRes.start(xid,	XAResource.TMNOFLAGS);

		stmt.executeUpdate("insert	into	…");

		<other	statements	on	this	connection	or	other	resources	enlisted	in	this	transaction>

		xaRes.end(xid,	XAResource.TMSUCCESS);

		if	(xaRes.prepare(xid)	==	XAResource.XA_OK)	{

				xaRes.commit(xid,	false);

		}

}

catch	(XAException	e)	{

		xaRes.rollback(xid);

}

finally	{

		<clean	up>

}

Using	Global	Transactions

214

With	the	use	of	global	transactions	multiple	Teiid	XAConnections	may	participate	in	the	same	transaction.	The	Teiid	JDBC
XAResource	"isSameRM"	method	returns	"true"	only	if	connections	are	made	to	the	same	server	instance	in	a	cluster.	If	the	Teiid
connections	are	to	different	server	instances	then	transactional	behavior	may	not	be	the	same	as	if	they	were	to	the	same	cluster
member.	For	example,	if	the	client	transaction	manager	uses	the	same	XID	for	each	connection	(which	it	should	not	since
isSameRM	will	return	false),	duplicate	XID	exceptions	may	arise	from	the	same	physical	source	accessed	through	different	cluster
members.	More	commonly	if	the	client	transaction	manager	uses	a	different	branch	identifier	for	each	connection,	issues	may
arise	with	sources	that	lock	or	isolate	changes	based	upon	branch	identifiers.

Using	Global	Transactions

215

Restrictions

Application	Restrictions

The	use	of	global,	local,	and	request	level	transactions	are	all	mutually	exclusive.	Request	level	transactions	only	apply	when	not
in	a	global	or	local	transaction.	Any	attempt	to	mix	global	and	local	transactions	concurrently	will	result	in	an	exception.

Enterprise	Information	System	(EIS)	compatibility

The	underlying	data	source	that	represents	the	EIS	system	and	the	EIS	system	itself	must	support	XA	transactions	if	they	want	to
participate	in	distributed	XA	transaction	through	Teiid.	If	source	system	does	not	support	the	XA,	then	it	can	not	fully	participate
in	the	distributed	transaction.	However,	the	source	is	still	eligible	to	participate	in	data	integration	without	the	XA	support.

The	participation	in	the	XA	transaction	is	automatically	determined	based	on	the	source	XA	capability.	It	is	user’s	responsibility	to
make	sure	that	they	configure	a	XA	resource	when	they	require	them	to	participate	in	distributed	transaction.

Restrictions

216

Developer’s	Guide
This	guide	contains	information	for	developers	creating	custom	solutions	with	Teiid.	It	covers	creating	JEE	JCA	connectors	with
the	Teiid	framework,	Teiid	Translators,	Teiid	User	Defined	Functions	(UDFs)	as	well	as	related	topics.

Integrating	data	from	a	Enterprise	Information	System	(EIS)	into	Teiid,	is	separated	into	two	parts.

1.	 A	Translator,	which	is	required.

2.	 An	optional	Resource	Adapter,	which	will	typically	be	a	JCA	Resource	Adapter	(also	called	a	JEE	Connector)

A	Translator	is	used	to:

Translate	a	Teiid-specific	command	into	a	native	command

Execute	the	command

Return	batches	of	results	translated	to	expected	Teiid	types.

A	Resource	Adapter	is	used	to:

Handles	all	communications	with	individual	enterprise	information	system	(EIS),	which	can	include	databases,	data	feeds,
flat	files,	etc.

Can	be	a	JCA	Connector	or	any	other	custom	connection	provider.	The	reason	Teiid	recommends	and	uses	JCA	is	this
specification	defines	how	one	can	write,	package,	and	configure	access	to	EIS	system	in	consistent	manner.	There	are	also
various	commercial/open	source	software	vendors	already	providing	JCA	Connectors	to	access	a	variety	of	back-end
systems.	Refer	to	http://java.sun.com/j2ee/connector/.

Abstracts	Translators	from	many	common	concerns,	such	as	connection	information,	resource	pooling,	or	authentication.	+
Given	a	combination	of	a	Translator	+	Resource	Adapter,	one	can	connect	any	EIS	system	to	Teiid	for	their	data	integration
needs.

Do	You	Need	a	New	Translator?

Teiid	provides	several	translators	for	common	enterprise	information	system	types.	If	you	can	use	one	of	these	enterprise
information	systems,	you	do	not	need	to	develop	a	custom	one.

Teiid	offers	numerous	built-in	translators,	including:

JDBC	Translator	-	Works	with	many	relational	databases.	The	JDBC	translator	is	validated	against	the	following	database
systems:	Oracle,	Microsoft	SQL	Server,	IBM	DB2,	MySQL,	Postgres,	Derby,	Sybase,	SQP-IQ,	H2,	and	HSQL.	In	addition,
the	JDBC	Translator	can	often	be	used	with	other	3rd-party	drivers	and	provides	a	wide	range	of	extensibility	options	to
specialize	behavior	against	those	drivers.

File	Translator	-	Provides	a	procedural	way	to	access	the	file	system	to	handle	text	files.

WS	Translator	-	Provides	procedural	access	to	XML	content	using	Web	Services.

LDAP	Translator	-	Accesses	to	LDAP	directory	services.

Salesforce	Translator	-	Works	with	Salesforce	interfaces.

To	see	a	full	list	of	available	translators,	see	Translators

Developer’s	Guide

217

http://java.sun.com/j2ee/connector/

If	there’s	not	an	available	translator	that	meets	your	need,	Teiid	provides	the	framework	for	developing	your	own	custom
translator.	See	the	Translator	Development	section,	as	it	will	describe	how	to	develop,	package	and	deploy	a	custom	developed
translator.

Do	You	Need	a	New	Resource	Adapter?

As	mentioned	above,	for	every	Translator	that	needs	to	gather	data	from	external	source	systems,	it	requires	a	resource	adapter.

The	following	are	some	of	resource	adapters	that	are	available	to	Teiid:

DataSource:	This	is	provided	by	the	WildFly	container.	This	is	used	by	the	JDBC	Translator.

File:	Provides	a	JEE	JCA	based	Connector	to	access	defined	directory	on	the	file	system.	This	is	used	by	the	File	Translator

WS:	Provides	JEE	JCA	Connector	to	invoke	Web	Services	using	WildFly	Web	services	stack.	This	is	used	by	the	WS
Translator

LDAP:	Provides	JEE	JCA	connector	to	access	LDAP;	Used	by	the	LDAP	Translator.

Salesforce:	Provides	JEE	JCA	connector	to	access	Salesforce	by	invoking	their	Web	Service	interface.	Used	by	the
SalesForce	Translator.

To	see	a	full	list,	see	Deploying	VDB	Dependencies

If	there’s	not	an	available	resource-adapter	that	meets	your	need,	Teiid	provides	the	framework	for	developing	your	own	JEE	JCA
Connector.	See	the	Developing	JEE	Connectors	section,	as	it	will	describe	how	to	develop,	package	and	deploy	a	resource	adapter.

Other	Teiid	Development

Teiid	is	highly	extensible	in	other	ways:

You	may	add	User	Defined	Functions.	Refer	to	User	Defined	Functions.

You	may	adapt	logging	to	your	needs,	which	is	especially	useful	for	custom	audit	or	command	logging.	Refer	to	Custom
Logging.

You	may	change	the	subsystem	for	custom	authentication	and	authorization.	Refer	to	Custom	Login	Modules.

Developer’s	Guide

218

Developing	JEE	Connectors

Developing	(Custom)	JEE	Connectors	(Resource	Adapters)

This	chapter	examines	how	to	use	facilities	provided	by	the	Teiid	API	to	develop	a	JEE	JCA	Connector.	Please	note	that	these	are
standard	JEE	JCA	connectors,	nothing	special	needs	to	be	done	for	Teiid.	As	an	aid	to	our	Translator	developers,	we	provided	a
base	implementation	framework.	If	you	already	have	a	JCA	Connector	or	some	other	mechanism	to	get	data	from	your	source
system,	you	can	skip	this	chapter.

If	you	are	not	familiar	with	JCA	API,	please	read	the	JCA	1.5	Specification	at	http://java.sun.com/j2ee/connector/.	There	are	lot	of
online	tutorials	on	how	to	design	and	build	a	JCA	Connector.	The	below	are	high-level	steps	for	creating	a	very	simple	connector,
however	building	actual	connector	that	supports	transactions,	security	can	get	much	more	complex.

1.	 Understand	the	JEE	Connector	specification	to	have	basic	idea	about	what	JCA	connectors	are	how	they	are	developed	and
packaged.	Refer	to	http://java.sun.com/j2ee/connector/.

2.	 Gather	all	necessary	information	about	your	Enterprise	Information	System	(EIS).	You	will	need	to	know:

API	for	accessing	the	system

Configuration	and	connection	information	for	the	system

Expectation	for	incoming	queries/metadata

The	processing	constructs,	or	capabilities,	supported	by	information	system.

Required	properties	for	the	connection,	such	as	URL,	user	name,	etc.

3.	 Base	classes	for	all	of	the	required	supporting	JCA	SPI	classes	are	provided	by	the	Teiid	API.	The	JCA	CCI	support	is	not
provided	from	Teiid,	since	Teiid	uses	the	Translator	API	as	it’s	common	client	interface.	You	will	want	to	extend:

BasicConnectionFactory	–	Defines	the	Connection	Factory

BasicConnection	–	represents	a	connection	to	the	source.

BasicResourceAdapter	–	Specifies	the	resource	adapter	class

4.	 Package	your	resource	adapter.	Refer	to	Packaging	the	Adapter.

5.	 Deploy	your	resource	adapter.	Refer	to	Packaging	the	Adapter.

For	sample	resource	adapter	code	refer	to	the	Teiid	Source	code	at	https://github.com/teiid/teiid/tree/master/connectors/.

Refer	to	the	JBoss	Application	Server	Connectors	documentation	at
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html.

Developing	JEE	Connectors

219

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/
https://github.com/teiid/teiid/tree/master/connectors/
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html

Archetype	Template	Connector	Project
One	way	to	start	developing	a	custom	connector	(resource-adapter)	is	to	create	a	project	using	the	Teiid	archetype	template.	When
the	project	is	created	from	the	template,	it	will	contain	the	essential	classes	and	resources	for	you	to	begin	adding	your	custom
logic.	Additionally,	the	maven	dependencies	are	defined	in	the	pom.xml	so	that	you	can	begin	compiling	the	classes.

Note The	project	will	be	created	as	an	independent	project	and	has	no	parent	maven	dependencies.	It’s	designed	to	be
built	independent	of	building	Teiid.

You	have	2	options	for	creating	a	connector	project;	in	Eclipse	by	creating	a	new	maven	project	from	the	arche	type	or	by	using
the	command	line	to	generate	the	project.

Create	Project	in	Eclipse
To	create	a	Java	project	in	Eclipse	from	an	arche	type,	perform	the	following:

Open	the	JAVA	perspective

From	the	menu	select	File	–>	New	—>	Other

In	the	tree,	expand	Maven	and	select	Maven	Project,	press	Next

On	the	"Select	project	name	and	Location"	window,	you	can	accept	the	defaults,	press	Next

On	the	"Select	an	Archetype"	window,	select	Configure	button

Add	the	remote	catalog:	link:http://central.maven.org/maven2/	then	click	OK	to	return

Enter	"teiid"	in	the	filter	to	see	the	Teiid	arche	types.

Select	the	connector-archetype,	then	press	Next

Enter	all	the	information	(i.e.,	Group	ID,	Artifact	ID,	etc.)	needed	to	generate	the	project,	then	click	Finish

The	project	will	be	created	and	name	according	to	the	*ArtifactID*.

Create	Project	using	Command	Line

Note make	sure	the	link:http://central.maven.org/maven2/	repository	is	accessible	via	your	maven	settings.

To	create	a	custom	connector	project	from	the	command	line,	you	can	use	the	following	template	command:

TEMPLATE

mvn	archetype:generate							\

		-DarchetypeGroupId=org.teiid.arche-types																\

		-DarchetypeArtifactId=connector-archetype										\

		-DarchetypeVersion=${archetypeVersion}															\

		-DgroupId=${groupId}																		\

		-DartifactId=connector-${connector-type}		\

		-Dpackage=${package}				\

		-Dversion=${version}				\

		-Dconnector-type=${connector-type}			\

Archetype	Template	Connector	Project

220

		-Dconnector-name=${connector-name}			\

		-Dvendor-name=${vendor-name}				\

		-Dteiid-version=${teiid-version}

where:

-DarchetypeGroupId				-		is	the	group	ID	for	the	arche	type	to	use	to	generate

-DarchetypeArtifactId	-		is	the	artifact	ID	for	the	arche	type	to	use	to	generate

-DarchetypeVersion				-		is	the	version	for	the	arche	type	to	use	to	generate

-DgroupId					-		(user	defined)	group	ID	for	the	new	connector	project	pom.xml

-DartifactId						-		(user	defined)	artifact	ID	for	the	new	connector	project	

pom.xml

-Dpackage					-		(user	defined)	the	package	structure	where	the	java	and	resource	

files	will	be	created

-Dversion					-		(user	defined)	the	version	that	the	new	connector	project	pom.xml	

will	be

-Dconnector-type		-		(user	defined)	the	type	of	the	new	connector	project,	used	in	

defining	the	package	name

-Dconnector-name		-		(user	defined)	the	name	of	the	new	connector	project,	used	as	

the	prefix	to	creating	the	java	class	names

-Dvendor-name					-		name	of	the	Vendor	for	the	data	source,	updates	the	rar

-Dteiid-version			-		the	Teiid	version	the	connector	will	depend	upon

EXAMPLE

this	is	an	example	of	the	template	that	can	be	run:

mvn	archetype:generate																				\

		-DarchetypeGroupId=org.teiid.arche-types			\

		-DarchetypeArtifactId=connector-archetype		\

		-DarchetypeVersion=12.0.0		\

		-DgroupId=org.example		\

		-Dpackage=org.example.adapter.type	\

		-DartifactId=adapter-type	\

		-Dversion=0.0.1-SNAPSHOT				\

		-Dconnector-type=type			\

		-Dconnector-name=Type			\

		-Dvendor-name=Vendor		\

		-Dteiid-version=15.0.0

When	executed,	you	will	be	asked	to	confirm	the	package	property

Confirm	properties	configuration:	groupId:	org.example	artifactId:	adapter-type	version:	0.0.1-SNAPSHOT	package:
org.example.adapter.type	connector-type:	type	connector-name:	Type	vendor-name:	Vendor	teiid-version:	15.0.0	Y:	:

type	Y	(yes)	and	press	enter,	and	the	creation	of	the	connector	project	will	be	done

Upon	creation,	a	directory	based	on	the	*artifactId*	will	be	created,	that	will	contain	the	project.	Note:	The	project	will	not
compile	because	the	${connector-name}	Connection	interface	in	the	ConnectionImpl	has	not	been	added	as	a	dependency	in	the
pom.xml.	This	will	need	to	be	done.

Now	you	are	ready	to	start	adding	your	custom	code.

Archetype	Template	Connector	Project

221

Archetype	Template	Connector	Project

222

Implementing	the	Teiid	Framework
If	you	are	going	to	use	the	Teiid	framework	for	developing	a	JCA	connector,	follow	these	steps.	The	required	classes	are	in
	org.teiid.resource.api		package.	Please	note	that	Teiid	framework	does	not	make	use	JCA’s	CCI	framework,	only	the	JCA’s
SPI	interfaces.

Define	Managed	Connection	Factory

Define	the	Connection	Factory	class

Define	the	Connection	class

Define	the	configuration	properties	in	a	"ra.xml"	file

Define	Managed	Connection	Factory
Extend	the		BasicManagedConnectionFactory	,	and	provide	a	implementation	for	the	"createConnectionFactory()"	method.	This
method	defines	a	factory	method	that	can	create	connections.

This	class	also	defines	configuration	variables,	like	user,	password,	URL	etc	to	connect	to	the	EIS	system.	Define	an	attribute	for
each	configuration	variable,	and	then	provide	both	"getter"	and	"setter"	methods	for	them.	Note	to	use	only	"java.lang"	objects	as
the	attributes,	DO	NOT	use	Java	primitives	for	defining	and	accessing	the	properties.	See	the	following	code	for	an	example.

public	class	MyManagedConnectionFactory	extends	BasicManagedConnectionFactory

{

			@Override

			public	Object	createConnectionFactory()	throws	ResourceException

			{

						return	new	MyConnectionFactory();

			}

			//	config	property	name	(metadata	for	these	are	defined	inside	the	ra.xml)

			String	userName;

			public	String	getUserName()										{		return	this.userName;		}

			public	void	setUserName(String	name){		this.userName	=	name;		}

			//	config	property	count		(metadata	for	these	are	defined	inside	the	ra.xml)

			Integer	count;

			public	Integer	getCount()												{		return	this.count;		}

			public	void	setCount(Integer	value)	{		this.count	=	value;	}

}

Define	the	Connection	Factory	class

Extend	the		BasicConnectionFactory		class,	and	provide	a	implementation	for	the	"getConnection()"	method.

public	class	MyConnectionFactory	extends	BasicConnectionFactory

{

			@Override

			public	MyConnection	getConnection()	throws	ResourceException

			{

						return	new	MyConnection();

			}

}

Implementing	the	Teiid	Framework

223

Since	the	Managed	connection	object	created	the	"ConnectionFactory"	class	it	has	access	to	all	the	configuration	parameters,	if
"getConnection"	method	needs	to	do	pass	any	of	credentials	to	the	underlying	EIS	system.	The	Connection	Factory	class	can	also
get	reference	to	the	calling	user’s		javax.security.auth.Subject		during	"getConnection"	method	by	calling

Subject	subject	=	ConnectionContext.getSubject();

This	"Subject"	object	can	give	access	to	logged-in	user’s	credentials	and	roles	that	are	defined.	Note	that	this	may	be	null.

Note	that	you	can	define	"security-domain"	for	this	resource	adapter,	that	is	separate	from	the	Teiid	defined	"security-domain"	for
validating	the	JDBC	end	user.	However,	it	is	the	user’s	responsibility	to	make	the	necessary	logins	before	the	Container’s	thread
accesses	this	resource	adapter,	and	this	can	get	overly	complex.

Define	the	Connection	class

Extend	the		BasicConnection		class,	and	provide	a	implementation	based	on	your	access	of	the	Connection	object	in	the
Translator.	If	your	connection	is	stateful,	then	override	"isAlive()"	and	"cleanup()"	methods	and	provide	proper	implementations.
These	are	called	to	check	if	a	Connection	is	stale	or	need	to	flush	them	from	the	connection	pool	etc.	by	the	Container.

public	class	MyConnection	extends	BasicConnection

{

			public	void	doSomeOperation(command)

			{

						//	do	some	operation	with	EIS	system..

						//	This	is	method	you	use	in	the	Translator,	you	should	know

						//	what	need	to	be	done	here	for	your	source..

			}

			@Override

			public	boolean	isAlive()

			{

						return	true;

			}

			@Override

			public	void	cleanUp()

			{

			}

}

XA	Transactions

If	your	EIS	source	can	participate	in	XA	transactions,	then	on	your	Connection	object,	override	the	"getXAResource()"	method
and	provide	the	"XAResource"	object	for	the	EIS	system.	Refer	to	Define	the	Connection	class.	Also,	You	need	to	extend	the
"BasicResourceAdapter"	class	and	provide	implementation	for	method	"public	XAResource[]	getXAResources(ActivationSpec[]
specs)"	to	participate	in	crash	recovery.

Note	that,	only	when	the	resource	adapters	are	XA	capable,	then	Teiid	can	make	them	participate	in	a	distributed	transactions.	If
they	are	not	XA	capable,	then	source	can	participate	in	distributed	query	but	will	not	participate	in	the	transaction.	Transaction
semantics	are	defined	by	how	you	you	configured	"connection-factory"	in	a	"resource-adapter".	i.e.	jta=true/false.

Define	the	configuration	properties	in	a	"ra.xml"	file
Define	a	"ra.xml"	file	in	"META-INF"	directory	of	your	RAR	file.	An	example	file	is	provided	in	ra.xml	file	Template.

Implementing	the	Teiid	Framework

224

For	every	attribute	defined	inside	the	your	ManagedConnectionFactory	class,	define	the	following	XML	configuration	for	that
attribute	inside	the	"ra.xml"	file.	These	properties	are	used	by	user	to	configure	instance	of	this	Connector	inside	a	Container.
Also,	during	the	startup	the	Container	reads	these	properties	from	this	file	and	knows	how	to	inject	provided	values	in	the
datasource	definition	into	an	instance	of	"ManagedConnectionFactory"	to	create	the	Connection.	Refer	to	Developing	JEE
Connectors#Define	Managed	Connection	Factory.

<config-property>

			<description>

						{$display:"${display-name}",$description:"${description}",	$allowed="${allowed}",

						$required="${true|false}",	$defaultValue="${default-value}"}

			</description>

			<config-property-name>${property-name}</config-property-name>

			<config-property-type>${property-type}</config-property-type>

			<config-property-value>${optioal-property-value}</config-property-value>

</config-property>

The	format	and	contents	of	"<description>"	element	may	be	used	as	extended	metadata	for	tooling.	The	special	format	must	begin
and	end	with	curly	braces	e.g.	{…}.	This	use	of	the	special	format	and	all	properties	is	optional.	Property	names	begin	with	'$'	and
are	separated	from	the	value	with	':'.	Double	quotes	identifies	a	single	value.	A	pair	of	square	brackets,	e.g.	[…],	containing
comma	separated	double	quoted	entries	denotes	a	list	value.

Extended	metadata	properties

$display:	Display	name	of	the	property

$description:	Description	about	the	property

$required:	The	property	is	a	required	property;	or	optional	and	a	default	is	supplied

$allowed:	If	property	value	must	be	in	certain	set	of	legal	values,	this	defines	all	the	allowed	values

$masked:	The	tools	need	to	mask	the	property;	Do	not	show	in	plain	text;	used	for	passwords

$advanced:	Notes	this	as	Advanced	property

$editable:	Property	can	be	modified;	or	read-only

Note	that	all	these	are	optional	properties;	however	in	the	absence	of	this	metadata,	Teiid	tooling	may	not	work	as	expected.

Implementing	the	Teiid	Framework

225

ra.xml	file	Template
This	appendix	contains	an	example	of	the	ra.xml	file	that	can	be	used	as	a	template	when	creating	a	new	Connector.

<?xml	version="1.0"	encoding="UTF-8"?>

<connector	xmlns="http://java.sun.com/xml/ns/j2ee"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

			http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"	version="1.5">

			<vendor-name>${comapany-name}</vendor-name>

			<eis-type>${type-of-connector}</eis-type>

			<resourceadapter-version>1.0</resourceadapter-version>

			<license>

						<description>${license	text}</description>

						<license-required>true</license-required>

			</license>

			<resourceadapter>

						<resourceadapter-class>org.teiid.resource.spi.BasicResourceAdapter</resourceadapter-class>

						<outbound-resourceadapter>

									<connection-definition>

												<managedconnectionfactory-class>${connection-factory}</managedconnectionfactory-class>

												<!--	repeat	for	every	configuration	property	-->

												<config-property>

															<description>

																		{$display:"${short-name}",$description:"${description}",$allowed:[${value-list}],

																		$required:"${required-boolean}",	$defaultValue:"${default-value}"}

															</description>

															<config-property-name>${property-name}</config-property-name>

															<config-property-type>${property-type}</config-property-type>

															<config-property-value>${optional-property-value}</config-property-value>

												</config-property>

												<!--	use	the	below	as	is	if	you	used	the	Connection	Factory	interface	-->

												<connectionfactory-interface>

															javax.resource.cci.ConnectionFactory

												</connectionfactory-interface>

												<connectionfactory-impl-class>

															org.teiid.resource.spi.WrappedConnectionFactory

												</connectionfactory-impl-class>

												<connection-interface>

															javax.resource.cci.Connection

												</connection-interface>

												<connection-impl-class>

															org.teiid.resource.spi.WrappedConnection

												</connection-impl-class>

									</connection-definition>

									<transaction-support>NoTransaction</transaction-support>

									<authentication-mechanism>

												<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

												<credential-interface>

															javax.resource.spi.security.PasswordCredential

												</credential-interface>

									</authentication-mechanism>

									<reauthentication-support>false</reauthentication-support>

						</outbound-resourceadapter>

Implementing	the	Teiid	Framework

226

			</resourceadapter>

</connector>

${…}	indicates	a	value	to	be	supplied	by	the	developer.

Implementing	the	Teiid	Framework

227

Packaging	the	Adapter
Once	all	the	required	code	is	developed,	it	is	time	to	package	them	into	a	RAR	artifact,	that	can	be	deployed	into	a	Container.	A
RAR	artifact	is	similar	to	a	WAR.	To	put	together	a	RAR	file	it	really	depends	upon	the	build	system	you	are	using.

Eclipse:	You	can	start	out	with	building	Java	Connector	project,	it	will	produce	the	RAR	file

Ant:	If	you	are	using	"ant"	build	tool,	there	is	"rar"	build	task	available

Maven:	If	you	are	using	maven,	use	<packaging>	element	value	as	"rar".	Teiid	uses	maven,	you	can	look	at	any	of	the
"connector"	projects	for	sample	"pom.xml"	file.	See		Build	Environment		for	an	example	of	a	pom.xml	file.

Make	sure	that	the	RAR	file,	under	its	"META-INF"	directory	has	the	"ra.xml"	file.	If	you	are	using	maven	refer	to
http://maven.apache.org/plugins/maven-rar-plugin/.	In	the	root	of	the	RAR	file,	you	can	embed	the	JAR	file	containing	your
connector	code	and	any	dependent	library	JAR	files.

Packaging	the	Adapter

228

http://maven.apache.org/plugins/maven-rar-plugin/

Adding	Dependent	Libraries
Add	MANIFEST.MF	file	in	the	META-INF	directory,	and	the	following	line	to	add	the	core	Teiid	API	dependencies	for	resource
adapter.

Dependencies:	org.jboss.teiid.common-core,org.jboss.teiid.api,javax.api

If	your	resource	adapter	depends	upon	any	other	third	party	jar	files,	.dll	or	.so	files	they	can	be	placed	at	the	root	of	the	rar	file.	If
any	of	these	libraries	are	already	available	as	modules	in	WildFly,	then	you	can	add	the	module	name	to	the	above
MANIFEST.MF	file	to	define	as	dependency.

Packaging	the	Adapter

229

Deploying	the	Adapter
Once	the	RAR	file	is	built,	deploy	it	by	copying	the	RAR	file	into	"deploy"	directory	of	WildFly’s	chosen	profile.	Typically	the
server	does	not	need	to	be	restarted	when	a	new	RAR	file	is	being	added.	Alternatively,	you	can	also	use	"admin-console",	a	web
based	monitoring	and	configuration	tool,	to	deploy	this	file	into	the	container.

Once	the	Connector’s	RAR	file	is	deployed	into	the	WildFly	container,	now	you	can	create	an	instance	of	this	connector	to	be
used	with	your	Translator.	Creating	an	instance	of	this	Connector	is	no	different	than	creating	a	"Connection	Factory"	in	WildFly.
Again,	you	have	two	ways	to	create	a	""ConnectionFactory".

Edit	standalone.xml	or	domain.xml	file,	and	add	following	XML	in	the	"resource-adapters"	subystem.

<!--	If	susbsytem	is	already	defined,	only	copy	the	contents	under	it	and	edit	to	suit	your	needs	-->

<subsystem	xmlns="urn:jboss:domain:resource-adapters:1.0">

				<resource-adapters>

								<resource-adapter>

												<archive>teiid-connector-sample.rar</archive>

												<transaction-support>NoTransaction</transaction-support>

												<connection-definitions>

																<connection-definition	class-name="org.teiid.resource.adapter.MyManagedConnectionFactory"		jndi

-name="${jndi-name}"

																								enabled="true"

																								use-java-context="true"

																								pool-name="sample-ds">

																						<config-property	name="UserName">jdoe</config-property>

																						<config-property	name="Count">12</config-property>

																</connection-definition>

												</connection-definitions>

								</resource-adapter>

				</resource-adapters>

</subsystem>

There	are	lot	more	properties	that	you	can	define	for	pooling,	transactions,	security,	etc.,	in	this	file.	Check	the	WildFly
documentation	for	all	the	available	properties.

Alternatively,	you	can	use	the	web	based	""admin-console"	configuration	and	monitoring	program,	to	create	a	new	Connection
Factory.	Have	your	RAR	file	name	and	needed	configuration	properties	handy	and	fill	out	web	form	to	create	the
ConnectionFactory.

Deploying	the	Adapter

230

Translator	(Custom)	Development
Below	are	the	high-level	steps	for	creating	custom	Translators,	which	is	described	in	this	section.	This	section	will	cover	how	to
do	each	of	the	following	steps	in	detail.	It	also	provides	additional	information	for	advanced	topics,	such	as	streaming	large
objects.

For	sample	Translator	code,	refer	to	the	Teiid	source	code	at	https://github.com/teiid/teiid/tree/master/connectors/.

1.	 Create	a	new	or	reuse	an	existing	Resource	Adapter	for	the	EIS	system,	to	be	used	with	this	Translator.	Refer	to	Custom
Resource	Adapters.

2.	 Decide	whether	to	use	the	Teiid	archetype	template	to	create	your	initial	custom	translator	project	and	classes	or	manually
create	your	environment.	Refer	to	Environment	Setup.

3.	 Implement	the	required	classes	defined	by	the	Translator	API.	Refer	to	Implementing	the	Framework.
1)	Create	an	ExecutionFactory	–	Extend	the		org.teiid.translator.ExecutionFactory		class	2)	Create	relevant	Executions
(and	sub-interfaces)	–	specifies	how	to	execute	each	type	of	command

4.	 Define	the	template	for	exposing	configuration	properties.	Refer	to	Packaging.

5.	 Deploy	your	Translator.	Refer	to	Deployment.

6.	 Deploy	a	Virtual	Database	(VDB)	that	uses	your	Translator.

7.	 Execute	queries	via	Teiid.

Translator	Development

231

https://github.com/teiid/teiid/tree/master/connectors/

Translator	Environment	Setup
To	setup	the	environment	for	developing	a	custom	translator,	you	have	2	options;

1.	 Manually	setup	the	build	environment	-	structure,	framework	classes,	and	resources.

2.	 Use	the	Teiid	Translator	Archetype	template	to	generate	the	initial	project.

Environment	Setup

232

Setting	up	the	build	environment
For	Eclipse	users	(without	maven	integration),	create	a	java	project	and	add	dependencies	to	"teiid-common-core",	"teiid-api"	and
JEE	"connector-api"	jars.

For	maven	users	add	the	following	as	your	dependencies:

				<dependencyManagement>

								<dependencies>

												<dependency>

																<groupId>org.teiid</groupId>

																<artifactId>teiid-bom</artifactId>

																<version>${teiid-version}</version>

																<type>pom</type>

																<scope>import</scope>

												</dependency>

								</dependencies>

				</dependencyManagement>

				<dependencies>

								<dependency>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-api</artifactId>

												<scope>provided</scope>

								</dependency>

								<dependency>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-resource-spi</artifactId>

												<scope>provided</scope>

								</dependency>

								<dependency>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-common-core</artifactId>

												<scope>provided</scope>

								</dependency>

								<dependency>

												<groupId>javax.resource</groupId>

												<artifactId>connector-api</artifactId>

												<scope>provided</scope>

								</dependency>

				</dependencies>

Where	the	${teiid-version}	property	should	be	set	to	the	expected	version,	such	as	15.0.0.	You	can	find	Teiid	artifacts	in	the
Maven	Central	Repository.

Environment	Setup

233

Archetype	Template	Translator	Project
One	way	to	start	developing	a	custom	translator	is	to	create	a	project	using	the	Teiid	archetype	template.	When	the	project	is
created	from	the	template,	it	will	contain	the	essential	classes	(i.e.,	ExecutionFactory)	and	resources	for	you	to	begin	adding	your
custom	logic.	Additionally,	the	maven	dependencies	are	defined	in	the	pom.xml	so	that	you	can	begin	compiling	the	classes.

Note The	project	will	be	created	as	an	independent	project	and	has	no	parent	maven	dependencies.	It’s	designed	to	be
built	independent	of	building	Teiid.

You	have	2	options	for	creating	a	translator	project;	in	Eclipse	by	creating	a	new	maven	project	from	the	arche	type	or	by	using
the	command	line	to	generate	the	project.

Create	Project	in	Eclipse
To	create	a	Java	project	in	Eclipse	from	an	arche	type,	perform	the	following:

Open	the	JAVA	perspective

From	the	menu	select	File	–>	New	—>	Other

In	the	tree,	expand	Maven	and	select	Maven	Project,	press	Next

On	the	"Select	project	name	and	Location"	window,	you	can	accept	the	defaults,	press	Next

On	the	"Select	an	Archetype"	window,	select	Configure	button

Add	the	remote	catalog:	link:http://central.maven.org/maven2/	then	click	OK	to	return

Enter	"teiid"	in	the	filter	to	see	the	Teiid	arche	types.

Select	the	translator-archetype	v12.0.0,	then	press	Next

Enter	all	the	information	(i.e.,	Group	ID,	Artifact	ID,	etc.)	needed	to	generate	the	project,	then	click	Finish

The	project	will	be	created	and	name	according	to	the	*ArtifactID*.

Create	Project	using	Command	Line

Note make	sure	the	link:http://central.maven.org/maven2/	repository	is	accessible	via	your	maven	settings.

To	create	a	custom	translator	project	from	the	command	line,	you	can	use	the	following	template	command:

TEMPLATE

mvn	archetype:generate															\

		-DarchetypeGroupId=org.teiid.arche-types															\

		-DarchetypeArtifactId=translator-archetype										\

		-DarchetypeVersion=${archetypeVersion}															\

		-DgroupId=${groupId}																		\

		-DartifactId=translator-${translator-type}				\

		-Dpackage=${package}				\

		-Dversion=${version}				\

		-Dtranslator-type=${translator-type}			\

		-Dtranslator-name=${translator-name}

		-Dteiid-version=${teiid-version}

Environment	Setup

234

where:

		-DarchetypeGroupId				-		is	the	group	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeArtifactId	-		is	the	artifact	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeVersion				-		is	the	version	for	the	arche	type	to	use	to	generate

		-DgroupId					-		(user	defined)	group	ID	for	the	new	translator	project	pom.xml

		-DartifactId						-		(user	defined)	artifact	ID	for	the	new	translator	project	pom.xml

		-Dpackage					-		(user	defined)	the	package	structure	where	the	java	and	resource	files	will	be	created

		-Dversion					-		(user	defined)	the	version	that	the	new	connector	project	pom.xml	will	be

		-Dtranslator-type	-		(user	defined)	the	translator	type	that's	used	by	Teiid	when	mapping	the	physical	source

	to	the	translator	to	use

		-Dtranslator-name	-		(user	defined)	the	translator	name	thats	used	for	name	the	java	class	names

		-Dteiid-version			-		the	Teiid	version	the	connector	will	depend	upon

EXAMPLE

this	is	an	example	of	the	template	that	can	be	run:

mvn	archetype:generate																				\

		-DarchetypeGroupId=org.teiid.arche-types			\

		-DarchetypeArtifactId=translator-archetype		\

		-DarchetypeVersion=		\

		-DgroupId=org.example		\

		-DartifactId=translator-type		\

		-Dpackage=org.example.translator.type				\

		-Dversion=0.0.1-SNAPSHOT		\

		-Dtranslator-type=type		\

		-Dtranslator-name=Type		\

		-Dteiid-version=15.0.0

When	executed,	you	will	be	asked	to	confirm	the	properties

Confirm	properties	configuration:	groupId:	org.example	artifactId:	translator-type	version:	0.0.1-SNAPSHOT	package:
org.example.translator.type	teiid-version:	15.0.0	translator-name:	Type	translator-type:	type	Y:	:	y

type	Y	(yes)	and	press	enter,	and	the	creation	of	the	translator	project	will	be	done

Upon	creation,	a	directory	based	on	the	*artifactId*	will	be	created,	that	will	contain	the	project.	'cd'	into	that	directory	and
execute	a	test	build	to	confirm	the	project	was	created	correctly:

	mvn	clean	install

This	should	build	successfully,	and	now	you	are	ready	to	start	adding	your	custom	code.

Environment	Setup

235

Implementing	the	Framework

Implementing	the	Framework

236

Caching	API
Translators	may	contribute	cache	entries	to	the	result	set	cache	by	the	use	of	the		CacheDirective		object.	Translators	wishing	to
participate	in	caching	should	return	a		CacheDirective		from	the		ExecutionFactory.getCacheDirective		method,	which	is	called
prior	to	execution.	The	command	passed	to		getCacheDirective		will	already	have	been	vetted	to	ensure	that	the	results	are
eligible	for	caching.	For	example	update	commands	or	commands	with	pushed	dependent	sets	will	not	be	eligible	for	caching.

If	the	translator	returns	null	for	the		CacheDirective	,	which	is	the	default	implementation,	the	engine	will	not	cache	the	translator
results	beyond	the	current	command.	It	is	up	to	your	custom	translator	or	custom	delegating	translator	to	implement	your	desired
caching	policy.

Note In	special	circumstances	where	the	translator	has	performed	it’s	own	caching,	it	can	indicate	to	the	engine	that	the
results	should	not	be	cached	or	reused	by	setting	the		Scope		to		Scope.NONE	.

The	returned		CacheDirective		will	be	set	on	the		ExecutionContext		and	is	available	via	the
	ExecutionContext.getCacheDirective()		method.	Having		ExeuctionFactory.getCacheDirective		called	prior	to	execution
allows	the	translator	to	potentially	be	selective	about	which	results	to	even	attempt	to	cache.	Since	there	is	a	resource	overhead
with	creating	and	storing	the	cached	results	it	may	not	be	desirable	to	attempt	to	cache	all	results	if	it’s	possible	to	return	large
results	that	have	a	low	usage	factor.	If	you	are	unsure	about	whether	to	cache	a	particular	command	result	you	may	return	an
initial		CacheDirective		then	change	the		Scope		to		Scope.NONE		at	any	time	prior	to	the	final	cache	entry	being	created	and	the
engine	will	give	up	creating	the	entry	and	release	it’s	resources.

If	you	plan	on	modifying	the		CacheDirective		during	execution,	just	make	sure	to	return	a	new	instance	from	the
	ExecutionFactory.getCacheDirective		call,	rather	than	returning	a	shared	instance.

The		CacheDirective		readAll	Boolean	field	is	used	to	control	whether	the	entire	result	should	be	read	if	not	all	of	the	results	were
consumed	by	the	engine.	If	readAll	is	false	then	any	partial	usage	of	the	result	will	not	result	in	it	being	added	as	a	cache	entry.
Partial	use	is	determined	after	any	implicit	or	explicit	limit	has	been	applied.	The	other	fields	on	the		CacheDirective		object	map
to	the	cache	hint	options.	See	the	table	below	for	the	default	values	for	all	options.

option default

scope Session

ttl rs	cache	ttl

readAll true

updatable true

prefersMemory false

Implementing	the	Framework

237

Command	Language

Language

Teiid	sends	commands	to	your	Translator	in	object	form.	These	classes	are	all	defined	in	the	"org.teiid.language"	package.	These
objects	can	be	combined	to	represent	any	possible	command	that	Teiid	may	send	to	the	Translator.	However,	it	is	possible	to
notify	Teiid	that	your	Translator	can	only	accept	certain	kinds	of	constructs	via	the	capabilities	defined	on	the	"ExecutionFactory"
class.	Refer	to	Translator	Capabilities	for	more	information.

The	language	objects	all	extend	from	the		LanguageObject		interface.	Language	objects	should	be	thought	of	as	a	tree	where	each
node	is	a	language	object	that	has	zero	or	more	child	language	objects	of	types	that	are	dependent	on	the	current	node.

All	commands	sent	to	your	Translator	are	in	the	form	of	these	language	trees,	where	the	root	of	the	tree	is	a	subclass	of		Command	.
Command	has	several	sub-classes,	namely:

	QueryExpression	

	Insert		-	also	represents	an	upsert,	see	the	isUpsert	flag.

	Update	

	Delete	

	BatchedUpdates	

	Call	

Important	components	of	these	commands	are	expressions,	criteria,	and	joins,	which	are	examined	in	closer	detail	below.	For
more	on	the	classes	and	interfaces	described	here,	refer	to	the	Teiid	JavaDocs	https://docs.jboss.org/teiid/15.0.0/apidocs/.

Expressions
An	expression	represents	a	single	value	in	context,	although	in	some	cases	that	value	may	change	as	the	query	is	evaluated.		For
example,	a	literal	value,	such	as	5	represents	an	integer	value.		An	column	reference	such	as	"table.EmployeeName"	represents	a
column	in	a	data	source	and	may	take	on	many	values	while	the	command	is	being	evaluated.

	Expression		–	base	expression	interface

	ColumnReference		–	represents	an	column	in	the	data	source

	Literal		–	represents	a	literal	scalar	value.

	Parameter		–	represents	a	parameter	with	multiple	values.	The	command	should	be	an	instance	of	BulkCommand,	which
provides	all	values	via	getParameterValues.

	Function		–	represents	a	scalar	function	with	parameters	that	are	also	Expressions

	AggregateFunction		–	represents	an	aggregate	function	which	can	hold	a	single	expression

	WindowFunction		–	represents	an	window	function	which	holds	an	AggregateFunction	(which	is	also	used	to	represent
analytical	functions)	and	a	WindowSpecification

	ScalarSubquery		–	represents	a	subquery	that	returns	a	single	value

	SearchedCase,	SearchedWhenClause		–	represents	a	searched	CASE	expression.		The	searched	CASE	expression	evaluates
the	criteria	in	WHEN	clauses	till	one	evaluates	to	TRUE,	then	evaluates	the	associated	THEN	clause.

Implementing	the	Framework

238

https://docs.jboss.org/teiid/15.0.0/apidocs/

	Array		–	represents	an	array	of	expressions,	currently	only	used	by	the	engine	in	multi-attribute	dependent	joins	-	see	the
supportsArrayType	capability.

Condition

A	criteria	is	a	combination	of	expressions	and	operators	that	evaluates	to	true,	false,	or	unknown.		Criteria	are	most	commonly
used	in	the	WHERE	or	HAVING	clauses.

	Condition		–	the	base	criteria	interface

	Not		–	used	to	NOT	another	criteria

	AndOr		–	used	to	combine	other	criteria	via	AND	or	OR

	SubuqeryComparison		–	represents	a	comparison	criteria	with	a	subquery	including	a	quantifier	such	as	SOME	or	ALL

	Comparison		–	represents	a	comparison	criteria	with	=,	>,	<,	etc.

	BaseInCondition		–	base	class	for	an	IN	criteria

	In		–	represents	an	IN	criteria	that	has	a	set	of	expressions	for	values

	SubqueryIn		–	represents	an	IN	criteria	that	uses	a	subquery	to	produce	the	value	set

	IsNull		–	represents	an	IS	NULL	criteria

	Exists		–	represents	an	EXISTS	criteria	that	determines	whether	a	subquery	will	return	any	values

	Like		–	represents	a	LIKE/SIMILAR	TO/LIKE_REGEX	criteria	that	compares	string	values

The	FROM	Clause

The	FROM	clause	contains	a	list	of		TableReference	’s.

	NamedTable		–	represents	a	single	Table

	Join		–	has	a	left	and	right		TableReference		and	information	on	the	join	between	the	items

	DerivedTable		–	represents	a	table	defined	by	an	inline		QueryExpression	

A	list	of		TableReference		are	used	by	default,	in	the	pushdown	query	when	no	outer	joins	are	used.	If	an	outer	join	is	used
anywhere	in	the	join	tree,	there	will	be	a	tree	of		Join		s	with	a	single	root.	This	latter	form	is	the	ANSI	preferred	style.	If	you
wish	all	pushdown	queries	containing	joins	to	be	in	ANSI	style	have	the	capability	"useAnsiJoin"	return	true.	Refer	to	Command
Form	for	more	information.

QueryExpression	Structure

	QueryExpression		is	the	base	for	both	SELECT	queries	and	set	queries.	It	may	optionally	take	an		OrderBy		(representing	a	SQL
ORDER	BY	clause),	a		Limit		(represent	a	SQL	LIMIT	clause),	or	a		With		(represents	a	SQL	WITH	clause).

Select	Structure

Each		QueryExpression		can	be	a		Select		describing	the	expressions	(typically		ColumnReference`s)	being	selected	and	an
`TableReference		specifying	the	table	or	tables	being	selected	from,	along	with	any	join	information.		The		Select		may
optionally	also	supply	an		Condition		(representing	a	SQL	WHERE	clause),	a		GroupBy		(representing	a	SQL	GROUP	BY

Implementing	the	Framework

239

clause),	an	an		Condition		(representing	a	SQL	HAVING	clause).

SetQuery	Structure

A		QueryExpression		can	also	be	a		SetQuery		that	represents	on	of	the	SQL	set	operations	(UNION,	INTERSECT,	EXCEPT)	on
two		QueryExpression	.	The	all	flag	may	be	set	to	indicate	UNION	ALL	(currently	INTERSECT	and	EXCEPT	ALL	are	not
allowed	in	Teiid)

With	Structure

A		With		clause	contains	named		QueryExpressions		held	by		WithItems		that	can	be	referenced	as	tables	in	the	main
	QueryExpression	.

Insert	Structure

Each		Insert		will	have	a	single		NamedTable		specifying	the	table	being	inserted	into.		It	will	also	has	a	list	of		ColumnReference	
specifying	the	columns	of	the		NamedTable		that	are	being	inserted	into.	It	also	has		InsertValueSource	,	which	will	be	a	list	of
Expressions	(ExpressionValueSource)	or	a		QueryExpression	

Update	Structure

Each		Update		will	have	a	single		NamedTable		specifying	the	table	being	updated	and	list	of		SetClause		entries	that	specify
	ColumnReference		and		Expression		pairs	for	the	update.	The	Update	may	optionally	provide	a	criteria		Condition		specifying
which	rows	should	be	updated.

Delete	Structure

Each		Delete		will	have	a	single		NamedTable		specifying	the	table	being	deleted	from.	It	may	also	optionally	have	a	criteria
specifying	which	rows	should	be	deleted.

Call	Structure

Each		Call		has	zero	or	more		Argument		objects.	The		Argument		objects	describe	the	input	parameters,	the	output	result	set,	and
the	output	parameters.

BatchedUpdates	Structure

Each		BatchedUpdates		has	a	list	of		Command		objects	(which	must	be	either		Insert	,		Update		or		Delete)	that	compose	the
batch.

Language	Utilities

This	section	covers	utilities	available	when	using,	creating,	and	manipulating	the	language	interfaces.

Implementing	the	Framework

240

Data	Types

The	Translator	API	contains	an	interface		TypeFacility		that	defines	data	types	and	provides	value	translation	facilities.	This
interface	can	be	obtained	from	calling	"getTypeFacility()"	method	on	the	"ExecutionFactory"	class.

The	TypeFacitlity	interface	has	methods	that	support	data	type	transformation	and	detection	of	appropriate	runtime	or	JDBC
types.		The	TypeFacility.RUNTIME_TYPES	and	TypeFacility.RUNTIME_NAMES	interfaces	defines	constants	for	all	Teiid
runtime	data	types.		All		Expression		instances	define	a	data	type	based	on	this	set	of	types.		These	constants	are	often	needed	in
understanding	or	creating	language	interfaces.

Language	Manipulation
In	Translators	that	support	a	fuller	set	of	capabilities	(those	that	generally	are	translating	to	a	language	of	comparable	to	SQL),
there	is	often	a	need	to	manipulate	or	create	language	interfaces	to	move	closer	to	the	syntax	of	choice.		Some	utilities	are
provided	for	this	purpose:

Similar	to	the	TypeFacility,	you	can	call	"getLanguageFactory()"	method	on	the	"ExecutionFactory"	to	get	a	reference	to	the
	LanguageFactory		instance	for	your	translator.		This	interface	is	a	factory	that	can	be	used	to	create	new	instances	of	all	the
concrete	language	interface	objects.

Some	helpful	utilities	for	working	with		Condition		objects	are	provided	in	the		LanguageUtil		class.		This	class	has	methods	to
combine		Condition		with	AND	or	to	break	an		Condition		apart	based	on	AND	operators.		These	utilities	are	helpful	for
breaking	apart	a	criteria	into	individual	filters	that	your	translator	can	implement.

Runtime	Metadata
Teiid	uses	a	library	of	metadata,	known	as	"runtime	metadata"	for	each	virtual	database	that	is	deployed	in	Teiid.	The	runtime
metadata	is	a	subset	of	metadata	as	defined	by	models	in	the	Teiid	models	that	compose	the	virtual	database.		Extension	metadata
may	be	associated	via	the	OPTIONS	clause.	At	runtime,	using	this	runtime	metadata	interface,	you	get	access	to	those	set
properties	defined	during	the	design	time,	to	define/hint	any	execution	behavior.

Translator	gets	access	to	the		RuntimeMetadata		interface	at	the	time	of		Excecution		creation.	Translators	can	access	runtime
metadata	by	using	the	interfaces	defined	in		org.teiid.metadata		package.		This	package	defines	API	representing	a	Schema,
Table,	Columns	and	Procedures,	and	ways	to	navigate	these	objects.

Metadata	Objects

All	the	language	objects	extend		AbstractMetadataRecord		class

Column	-	returns	Column	metadata	record

Table	-	returns	a	Table	metadata	record

Procedure	-	returns	a	Procedure	metadata	record

ProcedureParameter	-	returns	a	Procedure	Parameter	metadata	record

Once	a	metadata	record	has	been	obtained,	it	is	possible	to	use	its	metadata	about	that	object	or	to	find	other	related	metadata.

Access	to	Runtime	Metadata

Implementing	the	Framework

241

The	RuntimeMetadata	interface	is	passed	in	for	the	creation	of	an	"Execution".	See	"createExecution"	method	on	the
"ExecutionFactory"	class.	It	provides	the	ability	to	look	up	metadata	records	based	on	their	fully	qualified	names	in	the	VDB.

The	process	of	getting	a	Table’s	properties	is	sometimes	needed	for	translator	development.		For	example	to	get	the
"NameInSource"	property	or	all	extension	properties:

Obtaining	Metadata	Properties

//getting	the	Table	metadata	from	an	Table	is	straight-forward

Table	table	=	runtimeMetadata.getTable("table-name");

String	contextName	=	table.getNameInSource();

//The	props	will	contain	extension	properties

Map<String,	String>	props	=	table.getProperties();

Language	Visitors

Framework

The	API	provides	a	language	visitor	framework	in	the		org.teiid.language.visitor		package.		The	framework	provides	utilities
useful	in	navigating	and	extracting	information	from	trees	of	language	objects.

The	visitor	framework	is	a	variant	of	the	Visitor	design	pattern,	which	is	documented	in	several	popular	design	pattern	references.
	The	visitor	pattern	encompasses	two	primary	operations:	traversing	the	nodes	of	a	graph	(also	known	as	iteration)	and	performing
some	action	at	each	node	of	the	graph.		In	this	case,	the	nodes	are	language	interface	objects	and	the	graph	is	really	a	tree	rooted	at
some	node.		The	provided	framework	allows	for	customization	of	both	aspects	of	visiting.

The	base		AbstractLanguageVisitor		class	defines	the	visit	methods	for	all	leaf	language	interfaces	that	can	exist	in	the	tree.		The
LanguageObject	interface	defines	an	acceptVisitor()	method	–	this	method	will	call	back	on	the	visit	method	of	the	visitor	to
complete	the	contract.		A	base	class	with	empty	visit	methods	is	provided	as	AbstractLanguageVisitor.		The
AbstractLanguageVisitor	is	just	a	visitor	shell	–	it	performs	no	actions	when	visiting	nodes	and	does	not	provide	any	iteration.

The		HierarchyVisitor		provides	the	basic	code	for	walking	a	language	object	tree.			The	HierarchyVisitor		performs	no	action
as	it	walks	the	tree	–	it	just	encapsulates	the	knowledge	of	how	to	walk	it.		If	your	translator	wants	to	provide	a	custom	iteration
that	walks	the	objects	in	a	special	order	(to	exclude	nodes,	include	nodes	multiple	times,	conditionally	include	nodes,	etc)	then
you	must	either	extend	HierarchyVisitor	or	build	your	own	iteration	visitor.		In	general,	that	is	not	necessary.

The		DelegatingHierarchyVisitor		is	a	special	subclass	of	the	HierarchyVisitor	that	provides	the	ability	to	perform	a	different
visitor’s	processing	before	and	after	iteration.		This	allows	users	of	this	class	to	implement	either	pre-	or	post-order	processing
based	on	the	HierarchyVisitor.		Two	helper	methods	are	provided	on		DelegatingHierarchyVisitor		to	aid	in	executing	pre-	and
post-order	visitors.

Provided	Visitors
The		SQLStringVisitor		is	a	special	visitor	that	can	traverse	a	tree	of	language	interfaces	and	output	the	equivalent	Teiid	SQL.
	This	visitor	can	be	used	to	print	language	objects	for	debugging	and	logging.		The		SQLStringVisitor		does	not	use	the
	HierarchyVisitor		described	in	the	last	section;	it	provides	both	iteration	and	processing	type	functionality	in	a	single	custom
visitor.

The		CollectorVisitor		is	a	handy	utility	to	collect	all	language	objects	of	a	certain	type	in	a	tree.	Some	additional	helper
methods	exist	to	do	common	tasks	such	as	retrieving	all	`ColumnReference`s	in	a	tree,	retrieving	all	groups	in	a	tree,	and	so	on.

Writing	a	Visitor

Implementing	the	Framework

242

Writing	your	own	visitor	can	be	quite	easy	if	you	use	the	provided	facilities.		If	the	normal	method	of	iterating	the	language	tree	is
sufficient,	then	just	follow	these	steps:

Create	a	subclass	of	AbstractLanguageVisitor.		Override	any	visit	methods	needed	for	your	processing.		For	instance,	if	you
wanted	to	count	the	number	of		ColumnReference`s	in	the	tree,	you	need	only	override	the	`visit(ColumnReference)	
method.		Collect	any	state	in	local	variables	and	provide	accessor	methods	for	that	state.

Decide	whether	to	use	pre-order	or	post-order	iteration.	Note	that	visitation	order	is	based	upon	syntax	ordering	of	SQL	clauses	-
not	processing	order.

Write	code	to	execute	your	visitor	using	the	utility	methods	on	DelegatingHierarchyVisitor:

//	Get	object	tree

LanguageObject	objectTree	=	…

//	Create	your	visitor	initialize	as	necessary

MyVisitor	visitor	=	new	MyVisitor();

//	Call	the	visitor	using	pre-order	visitation

DelegatingHierarchyVisitor.preOrderVisit(visitor,	objectTree);

//	Retrieve	state	collected	while	visiting

int	count	=	visitor.getCount();

Implementing	the	Framework

243

Connections	to	Source

Obtaining	connections

The	extended	"ExecutionFactory"	must	implement	the		getConnection()		method	to	allow	the	Connector	Manager	to	obtain	a
connection.

Releasing	Connections

Once	the	Connector	Manager	has	obtained	a	connection,	it	will	use	that	connection	only	for	the	lifetime	of	the	request.		When	the
request	has	completed,	the	closeConnection()	method	called	on	the	"ExecutionFactory".	You	must	also	override	this	method	to
properly	close	the	connection.

In	cases	(such	as	when	a	connection	is	stateful	and	expensive	to	create),	connections	should	be	pooled.	If	the	resource	adapter	is
JEE	JCA	connector	based,	then	pooling	is	automatically	provided	by	the	WildFly	container.	If	your	resource	adapter	does	not
implement	the	JEE	JCA,	then	connection	pooling	semantics	are	left	to	the	user	to	define	on	their	own.

Implementing	the	Framework

244

Dependent	Join	Pushdown
Dependent	joins	are	a	technique	used	in	federation	to	reduce	the	cost	of	cross	source	joins.	Join	values	from	one	side	of	a	join	are
made	available	to	the	other	side	which	reduces	the	number	of	tuples	needed	to	preform	the	join.	Translators	may	indicate	support
for	dependent	join	pushdown	via	the	supportsDependentJoin	and	supportsFullDependentJoin	capabilities.	The	handling	of
pushdown	dependent	join	queries	can	be	complicated.

Note See	the	JDBC	Translator	for	the	reference	implementation	of	dependent	join	pushdown	handling	based	up	the
creation	temporary	tables.

Key	Pushdown

The	more	simplistic	mode	of	dependent	join	pushdown	is	to	push	only	the	key	(equi-join)	values	to	effectively	evaluate	a	semi-
join	-	the	full	join	will	still	be	processed	by	the	engine	after	the	retrieval.	The	ordering	(if	present)	and	all	of	the	non-dependent
criteria	constructs	on	the	pushdown	command	must	be	honored.	The	dependent	criteria,	which	will	be	a		Comparison		with	a
	Parameter		(possibly	in		Array		form),	may	be	ignored	in	part	or	in	total	to	retrieve	a	superset	of	the	tuples	requested.

Pushdown	key	dependent	join	queries	will	be	instances	of		Select		with	the	relevant	dependent	values	available	via
	Select.getDependentValues()	.	A	dependent	value	tuple	list	is	associated	to	Parameters	by	id	via	the
	Parameter.getDepenentValueId()		identifier.	The	dependent	tuple	list	provide	rows	that	are	referenced	by	the	column	positions
(available	via		Parameter.getValueIndex()).	Care	should	be	taken	with	the	tuple	values	as	they	may	guaranteed	to	be	ordered,
but	will	be	unique	with	respect	to	all	of	the		Parameter		references	against	the	given	dependent	value	tuple	list.

Full	Pushdown
In	some	scenarios,	typically	with	small	independent	data	sets	or	extensive	processing	above	the	join	that	can	be	pushed	to	the
source,	it	is	advantageous	for	the	source	to	handle	the	dependent	join	pushdown.	This	feature	is	marked	as	supported	by	the
supportsFullDependentJoin	capability.	Here	the	source	is	expected	to	process	the	command	exactly	as	specified	-	the	dependent
join	is	not	optional

Full	pushdown	dependent	join	queries	will	be	instances	of		QueryExpression		with	the	relevant	dependent	values	available	via
special	common	table	definitions	using		QueryExpression.getWith()	.	The	independent	side	of	a	full	pushdown	join	will	appear
as	a	common	table		WithItem		with	a	dependent	value	tuple	list	available	via		WithItem.getDependentValues()	.	The	dependent
value	tuples	will	positionally	match	the	columns	defined	by		WithItem.getColumns()	.	The	dependent	value	tuple	list	is	not
guaranteed	to	be	in	any	particular	order.

Implementing	the	Framework

245

Executing	Commands

Execution	Modes

The	Teiid	query	engine	uses	the	"ExecutionFactory"	class	to	obtain	the	"Execution"	interface	for	the	command	it	is	executing.	The
actual	queries	themselves	are	sent	to	translators	in	the	form	of	a	set	of	objects,	which	are	further	described	in	Command
Language.	Refer	to	Command	Language.	Translators	are	allowed	to	support	any	subset	of	the	available	execution	modes.

Execution	Interface Command	interface(s) Description

	ResultSetExecution	 	QueryExpression	
A	query	corresponding	to	a	SQL
SELECT	or	set	query	statement.

	UpdateExecution	
	Insert,	Update,	Delete,

BatchedUpdates	

An	insert,	update,	or	delete,
corresponding	to	a	SQL	INSERT,
UPDATE,	or	DELETE	command

	ProcedureExecution	 	Call	

A	procedure	execution	that	may
return	a	result	set	and/or	output
values.

Types	of	Execution	Modes

All	of	the	execution	interfaces	extend	the	base		Execution		interface	that	defines	how	executions	are	cancelled	and	closed.
ProcedureExecution	also	extends	ResultSetExecution,	since	procedures	may	also	return	resultsets.

ExecutionContext

The		org.teiid.translator.ExecutionContext		provides	a	considerable	amount	of	information	related	to	the	current	execution.
An		ExecutionContext		instance	is	made	available	to	each		Execution	.	Specific	usage	is	highlighted	in	this	guide	where
applicable,	but	you	may	use	any	informational	getter	method	as	desired.	Example	usage	would	include	calling
	ExecutionContext.getRequestId()	,		ExecutionContext.getSession()	,	etc.	for	logging	purposes.

CommandContext

A		org.teiid.CommandContext		is	available	via	the		ExecutionContext.getCommandContext()		method.	The	CommandContext
contains	information	about	the	current	user	query,	including	the		VDB	,	the	ability	to	add	client	warnings	-		addWarning	,	or	handle
generated	keys	-		isReturnAutoGeneratedKeys	,		returnGeneratedKeys	,	and		getGeneratedKeys	.

Generated	Keys

To	see	if	the	user	query	expects	generated	keys	to	be	returned,	consult	the		CommandContext.isReturnAutoGeneratedKeys()	
method.	If	you	wish	to	return	generated	keys,	you	must	first	create	a		GeneratedKeys		instance	to	hold	the	keys	with	the
	returnGeneratedKeys		method	passing	the	column	names	and	types	of	the	key	columns.	Only	one		GeneratedKeys		may	be
associated	with	the		CommandContext		at	any	given	time.

Source	Hints

Implementing	the	Framework

246

The	Teiid	source	meta-hint	is	used	to	provide	hints	directly	to	source	executions	via	user	or	transformation	queries.	See	the
reference	for	more	on	source	hints.	If	specified	and	applicable,	the	general	and	source	specific	hint	will	be	supplied	via	the
ExecutionContext	methods		getGeneralHint		and		getSourceHint	.	See	the	source	for	the		OracleExecutionFactory		for	an
example	of	how	this	source	hint	information	can	be	utilized.

ResultSetExecution

Typically	most	commands	executed	against	translators	are	QueryExpression.	While	the	command	is	being	executed,	the	translator
provides	results	via	the	ResultSetExecution’s	"next"	method.	The	"next"	method	should	return	null	to	indicate	the	end	of	results.
Note:	the	expected	batch	size	can	be	obtained	from	the		ExecutionContext.getBatchSize()		method	and	used	as	a	hint	in	fetching
results	from	the	EIS.

Update	Execution

Each	execution	returns	the	update	count(s)	expected	by	the	update	command.	If	possible	BatchedUpdates	should	be	executed
atomically.	The		ExecutionContext.isTransactional()		method	can	be	used	to	determine	if	the	execution	is	already	under	a
transaction.

Procedure	Execution

Procedure	commands	correspond	to	the	execution	of	a	stored	procedure	or	some	other	functional	construct.	A	procedure	takes
zero	or	more	input	values	and	can	return	a	result	set	and	zero	or	more	output	values.	Examples	of	procedure	execution	would	be	a
stored	procedure	in	a	relational	database	or	a	call	to	a	web	service.

If	a	result	set	is	expected	when	a	procedure	is	executed,	all	rows	from	it	will	be	retrieved	via	the	ResultSetExecution	interface
first.	Then,	if	any	output	values	are	expected,	they	will	be	retrieved	via	the	getOutputParameterValues()	method.

Asynchronous	Executions

In	some	scenarios,	a	translator	needs	to	execute	asynchronously	and	allow	the	executing	thread	to	perform	other	work.	To	allow
asynchronous	execution,	you	should	throw	a		DataNotAvailableExecption		during	a	retrieval	method,	rather	than	explicitly
waiting	or	sleeping	for	the	results.	The		DataNotAvailableException		may	take	a	delay	parameter	or	a		Date		in	its	constructor	to
indicate	when	to	poll	next	for	results.	Any	non-negative	delay	value	indicates	the	time	in	milliseconds	until	the	next	polling
should	be	performed.	The		DataNotAvailableException.NO_POLLING		exception	(or	any	DataNotAvailableException	with	a
negative	delay)	can	be	thrown	to	indicate	that	the	execution	will	call		ExecutionContext.dataAvailable()		to	indicate	processing
should	resume.

Note A		DataNotAvailableException		should	not	be	thrown	by	the	execute	method,	as	that	can	result	in	the	execute
method	being	called	multiple	times.

Note Since	the	execution	and	the	associated	connection	are	not	closed	until	the	work	has	completed,	care	should	be
taken	if	using	asynchronous	executions	that	hold	a	lot	of	state.

A	positive	retry	delay	is	not	a	guarantee	of	when	the	translator	will	be	polled	next.		If	the		DataNotAvailableException		is
consumed	while	the	engine	thinks	more	work	can	be	performed	or	there	are	other	shorter	delays	issued	from	other	translators,	then
the	plan	may	be	re-queued	earlier	than	expected.		You	should	simply	rethrow	a		DataNotAvailableException		if	your	execution	is
not	yet	ready.		Alternatively	the		DataNotAvailableException		may	be	marked	as	strict,	which	does	provide	a	guarantee	that	the
	Execution		will	not	be	called	until	the	delay	has	expired	or	the	given		Date		has	been	reached.	Using	the		Date		constructor

Implementing	the	Framework

247

makes	the		DataNotAvailableException		automatically	strict.	Due	to	engine	thread	pool	contention,	platform	time	resolution,	etc.
a	strict		DataNotAvailableException		is	not	a	real-time	guarantee	of	when	the	next	poll	for	results	will	occur,	only	that	it	will	not

occur	before	then.

Note
If	your		ExecutionFactory		returns	only	asynch	executions	that	perform	minimal	work,	then	consider	having
	ExecutionFactory.isForkable		return	false	so	that	the	engine	knows	not	to	spawn	a	separate	thread	for
accessing	your		Execution	.

Reusable	Executions

A	translator	may	return	instances	of		ReusableExecutions		for	the	expected	Execution	objects.	There	can	be	one
	ReusableExecution		per	query	executing	node	in	the	processing	plan.	The	lifecycle	of	a		ReusableExecution		is	different	that	a
normal		Execution	.	After	a	normal	creation/execute/close	cycle	the		ReusableExecution.reset		is	called	for	the	next	execution
cycle.	This	may	occur	indefinitely	depending	on	how	many	times	a	processing	node	executes	its	query.	The	behavior	of	the
	close		method	is	no	different	than	a	regular		Execution	,	it	may	not	be	called	until	the	end	of	the	statement	if	lobs	are	detected
and	any	connection	associated	with	the		Execution		will	also	be	closed.	When	the	user	command	is	finished,	the
	ReusableExecution.dispose()		method	will	be	called.

In	general		ReusableExecutions		are	most	useful	for	continuous	query	execution	and	will	also	make	use	of	the
	ExecutionCotext.dataAvailable()		method	for	Asynchronous	Executions.	See	the	Client	Developer’s	Guide	for	executing
continuous	statements.	In	continuous	mode	the	user	query	will	be	continuously	re-executed.	A		ReusableExecution		allows	the
same		Execution		object	to	be	associated	with	the	processing	plan	for	a	given	processing	node	for	the	lifetime	of	the	user	query.
This	can	simplify	asynch	resource	management,	such	as	establishing	queue	listeners.	Returning	a	null	result	from	the		next()	
method		ReusableExecution		just	as	with	normal		Executions		indicates	that	the	current	pushdown	command	results	have	ended.
Once	the		reset()		method	has	been	called,	the	next	set	of	results	should	be	returned	again	terminated	with	a	null	result.

Bulk	Execution
Non	batched		Insert,	Update,	Delete		commands	may	have	multi-valued		Parameter		objects	if	the	capabilities	shows	support
for	BulkUpdate.	Commands	with	multi-valued		Parameters		represent	multiple	executions	of	the	same	command	with	different
values.	As	with	BatchedUpdates,	bulk	operations	should	be	executed	atomically	if	possible.

Command	Completion
All	normal	command	executions	end	with	the	calling	of		close()		on	the	Execution	object.		Your	implementation	of	this	method
should	do	the	appropriate	clean-up	work	for	all	state	created	in	the	Execution	object.

Command	Cancellation
Commands	submitted	to	Teiid	may	be	aborted	in	several	scenarios:

Client	cancellation	via	the	JDBC	API	(or	other	client	APIs)

Administrative	cancellation

Clean-up	during	session	termination

Clean-up	if	a	query	fails	during	processing	Unlike	the	other	execution	methods,	which	are	handled	in	a	single-threaded
manner,	calls	to	cancel	happen	asynchronously	with	respect	to	the	execution	thread.

Implementing	the	Framework

248

Your	connector	implementation	may	choose	to	do	nothing	in	response	to	this	cancellation	message.	In	this	instance,	Teiid	will	call
close()	on	the	execution	object	after	current	processing	has	completed.	Implementing	the	cancel()	method	allows	for	faster
termination	of	queries	being	processed	and	may	allow	the	underlying	data	source	to	terminate	its	operations	faster	as	well.

Implementing	the	Framework

249

Extending	the	ExecutionFactory	Class
The	main	class	in	the	translator	implementation	is	ExecutionFactory.	A	base	class	is	provided	in	the	Teiid	API,	so	a	custom
translator	must	extend		org.teiid.translator.ExecutionFactory		to	connect	and	query	an	enterprise	data	source.	This	extended
class	must	provide	a	no-arg	constructor	that	can	be	constructed	using	Java	reflection.	This	Execution	Factory	will	look	similar	to
the	following:

package	org.teiid.translator.custom;

@Translator(name="custom",	description="Connect	to	My	EIS")

public	class	CustomExecutionFactory	extends	ExecutionFactory<MyConnectionFactory,	MyConnection>	{

				public	CustomExecutionFactory()	{

				}

}

Define	the	annotation		@Translator		on	extended	"ExecutionFactory"	class.	This	annotation	defines	the	name,	which	is	used	as
the	identifier	during	deployment,	and	the	description	of	your	translator.	This	name	is	what	you	will	be	using	in	the	VDB	and	else
where	in	the	configuration	to	refer	to	this	translator.

ConnectionFactory
Defines	the	"ConnectionFactory"	interface	that	is	defined	in	resource	adapter.	This	is	defined	as	part	of	class	definition	of
extended	"ExecutionFactory"	class.	Refer	to	"MyConnectionFactory"	sample	in	the	Developing	JEE	Connectors	chapter.

Connection
Defines	the	"Connection"	interface	that	is	defined	in	the	resource	adapter.	This	is	defined	as	part	of	class	definition	of	extended
"ExecutionFactory"	class.	Refer	to	"MyConnection"	class	sample	invthe	Developing	JEE	Connectors	chapter.

Configuration	Properties
If	the	translator	requires	external	configuration,	that	defines	ways	for	the	user	to	alter	the	behavior	of	a	program,	then	define	an
attribute	variable	in	the	class	and	define	"get"	and	"set"	methods	for	that	attribute.	Also,	annotate	each	"get"	method	with
	@TranslatorProperty		annotation	and	provide	the	metadata	about	the	property.

For	example,	if	you	need	a	property	called	"foo",	by	providing	the	annotation	on	these	properties,	the	Teiid	tooling	can
automatically	interrogate	and	provide	a	graphical	way	to	configure	your	Translator	while	designing	your	VDB.

private	String	foo	=	"blah";

@TranslatorProperty(display="Foo	property",	description="description	about	Foo")

public	String	getFoo()

{

			return	foo;

}

public	void	setFoo(String	value)

{

			return	this.foo	=	value;

}

Implementing	the	Framework

250

The		@TranslatorProperty		defines	the	following	metadata	that	you	can	define	about	your	property

display:	Display	name	of	the	property

description:	Description	about	the	property

required:	The	property	is	a	required	property

advanced:	This	is	advanced	property;	A	default	value	must	be	provided.	A	property	can	not	be	"advanced"	and	"required"	at
same	time.

masked:	The	tools	need	to	mask	the	property;	Do	not	show	in	plain	text;	used	for	passwords

Only	java	primitive	(int,	boolean),	primitive	object	wrapper	(java.lang.Integer),	or	Enum	types	are	supported	as	Translator
properties.	Complex	objects	are	not	supported.	The	default	value	will	be	derived	from	calling	the	getter	method,	if	available,	on	a
newly	constructed	instance.	All	properties	should	have	a	default	value.	If	there	is	no	applicable	default,	then	the	property	should
be	marked	in	the	annotation	as		required	.	Initialization	will	fail	if	a	required	property	value	is	not	provided.

Initializing	the	Translator

Override	and	implement	the		start		method	(be	sure	to	call	"super.start()")	if	your	translator	needs	to	do	any	initializing	before	it
is	used	by	the	Teiid	engine.	This	method	will	be	called	by	Teiid,	once	after	all	the	configuration	properties	set	above	are	injected
into	the	class.

Extended	Translator	Capabilities

These	are	various	methods	that	typically	begin	with	method	signature	"supports"	on	the	"ExecutionFactory"	class.	These	methods
need	to	be	overridden	to	describe	the	execution	capabilities	of	the	Translator.	Refer	to	Translator	Capabilities	for	more	on	these
methods.

Execution	(and	sub-interfaces)

Based	on	types	of	executions	you	are	supporting,	the	following	methods	need	to	be	overridden	to	provide	implementations	for
their	respective	return	interfaces.

	createResultSetExecution	-	Override	if	you	are	doing	read	based	operation	that	is	returning	a	rows	of	results.	For	ex:	select

	createUpdateExecution	-	Override	if	you	are	doing	write	based	operations.	For	ex:insert,	update,	delete

	createProcedureExecution	-	Overide	if	you	are	doing	procedure	based	operations.	For	ex;	stored	procedures.	This	works
well	for	non-relational	sources.	You	can	choose	to	implement	all	the	execution	modes	or	just	what	you	need.	See	more	details
on	this	below.

Metadata
Override	and	implement	the	method		getMetadataProcessor()	,	if	you	want	to	expose	the	metadata	about	the	source	for	use	in
VDBs.	This	defines	the	tables,	column	names,	procedures,	parameters,	etc.	for	use	in	the	query	engine.	A	sample
MetadataProcessor	may	look	like

public	class	MyMetadataProcessor	implements	MetadataProcessor<Connection>	{

					public	void	process(MetadataFactory	mf,	Connection	conn)	{

												Object	somedata	=	connection.getSomeMetadata();

Implementing	the	Framework

251

												Table	table	=	mf.addTable(tableName);

												Column	col1	=	mf.addColumn("col1",	TypeFacility.RUNTIME_NAMES.STRING,	table);

												column	col2	=	mf.addColumn("col2",	TypeFacility.RUNTIME_NAMES.STRING,	table);

												//add	a	pushdown	function	that	can	also	be	evaluated	in	the	engine

												Method	method	=	...

												Function	f	=	mf.addFunction("func",	method);

												//add	a	pushdown	aggregate	function	that	can	also	be	evaluated	in	the	engine

												Method	aggMethod	=	...

												Function	af	=	mf.addFunction("agg",	aggMethod);

												af.setAggregateAttributes(new	AggregateAttributes());

												...

					}

}

If	your	MetadataProcessor	needs	external	properties	that	are	needed	during	the	import	process,	you	can	define	them	on
MetadataProcessor.	For	example,	to	define	a	import	property	called	"Column	Name	Pattern",	which	can	be	used	to	filter	which
columns	are	defined	on	the	table,	can	be	defined	in	the	code	like	the	following

				@TranslatorProperty(display="Column	Name	Pattern",	category=PropertyType.IMPORT,	description="Pattern	to	de

rive	column	names")

				public	String	getColumnNamePattern()	{

								return	columnNamePattern;

				}

				public	void	setColumnNamePattern(String	columnNamePattern)	{

								this.columnNamePattern	=	columnNamePattern;

				}

Note	the	category	type.	The	configuration	property	defined	in	the	previous	section	is	different	from	this	one.	Configuration
properties	define	the	runtime	behavior	of	translator,	where	as	"IMPORT"	properties	define	the	metadata	import	behavior,	and	aid
in	controlling	what	metadata	is	exposed	by	your	translator.

These	properties	can	be	automatically	injected	through	"import"	properties	that	can	be	defined	under	the	<model>	construct	in	the
vdb.xml	file,	like

		<vdb	name="myvdb"	version="1">

					<model	name="legacydata"	type="PHYSICAL">

								<property	name="importer.ColumnNamePattern"	value="col*"/>

							

								<source	name	=	.../>

					</model>

		</vdb>

Extension	Metadata	Properties
There	may	be	times	when	implementing	a	custom	translator,	the	built	in	metadata	about	your	schema	is	not	enough	to	process	the
incoming	query	due	to	variance	of	semantics	with	your	source	query.	To	aid	this	issue,	Teiid	provides	a	mechanism	called
"Extension	Metadata",	which	is	a	mechanism	to	define	custom	properties	and	then	add	those	properties	on	metadata	object	(table,
procedure,	function,	column,	index	etc.).	For	example,	in	my	custom	translator	a	table	represents	a	file	on	disk.	I	could	define	a
extension	metadata	property	as

public	class	MyMetadataProcessor	implements	MetadataProcessor<Connection>	{

					public	static	final	String	NAMESPACE	=	"{http://my.company.corp}";

						@ExtensionMetadataProperty(applicable={Table.class},	datatype=String.class,	display="File	name",	descript

ion="File	Name",	required=true)

					public	static	final	String	FILE_PROP	=	NAMESAPCE+"FILE";

Implementing	the	Framework

252

					public	void	process(MetadataFactory	mf,	Connection	conn)	{

												Object	somedata	=	connection.getSomeMetadata();

												Table	table	=	mf.addTable(tableName);

												table.setProperty(FILE_PROP,	somedata.getFileName());

												Column	col1	=	mf.addColumn("col1",	TypeFacility.RUNTIME_NAMES.STRING,	table);

												column	col2	=	mf.addColumn("col2",	TypeFacility.RUNTIME_NAMES.STRING,	table);

					}

}

The		@ExtensionMetadataProperty		defines	the	following	metadata	that	you	can	define	about	your	property

applicable:	Metadata	object	this	is	applicable	on.	This	is	array	of	metadata	classes	like	Table.class,	Column.class.

datatype:	The	java	class	indicating	the	data	type

display:	Display	name	of	the	property

description:	Description	about	the	property

required:	Indicates	if	the	property	is	a	required	property

How	this	is	used?

When	you	define	an	extension	metadata	property	like	above,	during	the	runtime	you	can	obtain	the	value	of	that	property.	If	you
get	the	query	object	which	contains	`SELECT	*	FROM	MyTable',	MyTable	will	be	represented	by	an	object	called
"NamedTable".	So	you	can	do	the	following

for	(TableReference	tr:query.getFrom())	{

				NamedTable	t	=	(NameTable)	tr;

				Table	table	=	t.getMetadataObject();

				String	file	=	table.getProperty(FILE_PROP);

				..

}

Now	you	have	accessed	the	file	name	you	set	during	the	construction	of	the	Table	schema	object,	and	you	can	use	this	value
however	you	seem	feasible	to	execute	your	query.	With	the	combination	of	built	in	metadata	properties	and	extension	metadata
properties	you	can	design	and	execute	queries	for	a	variety	of	sources.

Logging

Teiid	provides		org.teiid.logging.LogManager		class	for	logging	purposes.	Create	a	logging	context	and	use	the	LogManager	to
log	your	messages.	These	will	be	automatically	sent	to	the	main	Teiid	logs.	You	can	edit	the	"jboss-log4j.xml"	inside	"conf"
directory	of	the	WildFly’s	profile	to	add	the	custom	context.	Teiid	uses	Log4J	as	its	underlying	logging	system.

Exceptions

If	you	need	to	bubble	up	any	exception	use		org.teiid.translator.TranslatorException		class.

Implementing	the	Framework

253

Implementing	the	Framework

254

Large	Objects
This	section	examines	how	to	use	facilities	provided	by	the	Teiid	API	to	use	large	objects	such	as	blobs,	clobs,	and	xml	in	your
Translator.

Data	Types

Teiid	supports	three	large	object	runtime	data	types:		blob,	clob,	and	xml.	A	blob	is	a	"binary	large	object",	a	clob	is	a	"character
larg	object",	and	"xml"	is	a	"xml	document".	Columns	modeled	as	a	blob,	clob,	or	xml	are	treated	similarly	by	the	translator
framework	to	support	memory-safe	streaming.

Why	Use	Large	Object	Support?

Teiid	allows	a	Translator	to	return	a	large	object	through	the	Teiid	translator	API	by	just	returning	a	reference	to	the	actual	large
object.	Access	to	that	LOB	will	be	streamed	as	appropriate	rather	than	retrieved	all	at	once.		This	is	useful	for	several	reasons:

1.	 Reduces	memory	usage	when	returning	the	result	set	to	the	user.

2.	 Improves	performance	by	passing	less	data	in	the	result	set.

3.	 Allows	access	to	large	objects	when	needed	rather	than	assuming	that	users	will	always	use	the	large	object	data.

4.	 Allows	the	passing	of	arbitrarily	large	data	values.	However,	these	benefits	can	only	truly	be	gained	if	the	Translator	itself
does	not	materialize	an	entire	large	object	all	at	once.		For	example,	the	Java	JDBC	API	supports	a	streaming	interface	for
blob	and	clob	data.

Handling	Large	Objects
The	Translator	API	automatically	handles	large	objects	(Blob/Clob/SQLXML/Geometry/JSON)	through	the	creation	of	special
purpose	wrapper	objects	when	it	retrieves	results.

Once	the	wrapped	object	is	returned,	the	streaming	of	LOB	is	automatically	supported.	These	LOB	objects	then	can	for	example
appear	in	client	results,	in	user	defined	functions,	or	sent	to	other	translators.

A	Execution	is	usually	closed	and	the	underlying	connection	is	either	closed/released	as	soon	as	all	rows	for	that	execution	have
been	retrieved.	However,	LOB	objects	may	need	to	be	read	after	their	initial	retrieval	of	results.		When	LOBs	are	detected	the
default	closing	behavior	is	prevented	by	setting	a	flag	via	the		ExecutionContext.keepAlive		method.

When	the	"keepAlive"	alive	flag	is	set,	then	the	execution	object	is	only	closed	when	user’s	Statement	is	closed.

executionContext.keepExecutionAlive(true);

Inserting	or	Updating	Large	Objects

LOBs	will	be	passed	to	the	Translator	in	the	language	objects	as	Literal	containing	a	java.sql.Blob,	java.sql.Clob,	or
java.sql.SQLXML.		You	can	use	these	interfaces	to	retrieve	the	data	in	the	large	object	and	use	it	for	insert	or	update.

Implementing	the	Framework

255

Implementing	the	Framework

256

Translator	Capabilities
The		ExecutionFactory		class	defines	all	the	methods	that	describe	the	capabilities	of	a	Translator.	These	are	used	by	the
Connector	Manager	to	determine	what	kinds	of	commands	the	translator	is	capable	of	executing.	A	base		ExecutionFactory		class
implements	all	the	basic	capabilities	methods,	which	says	your	translator	does	not	support	any	capabilities.	Your	extended
	ExecutionFactory		class	must	override	the	the	necessary	methods	to	specify	which	capabilities	your	translator	supports.		You
should	consult	the	debug	log	of	query	planning	(set	showplan	debug)	to	see	if	desired	pushdown	requires	additional	capabilities.

Capability	Scope

Note	capabilities	are	determined	and	cached	for	the	lifetime	of	the	translator.	Capabilities	based	on	connection/user	are	not
supported.

Capabilities

The	following	table	lists	the	capabilities	that	can	be	specified	in	the		ExecutionFactory		class.

Table	1.	Available	Capabilities

Capability Requires Description

SelectDistinct Translator	can	support	SELECT	DISTINCT	in
queries.

SelectExpression Translator	can	support	SELECT	of	more	than
just	column	references.

SelectExpressionArrayType SelectExpression,
ArrayType

Translator	can	support	SELECT	of	array
expressions.

SelectWithoutFrom Translator	can	support	a	SELECT	of	scalar
values	without	a	FROM	clause

AliasedTable Translator	can	support	Tables	in	the	FROM
clause	that	have	an	alias.

InnerJoins Translator	can	support	inner	and	cross	joins

SelfJoins
AliasedGroups	and	at	least
one	of	the	join	type
supports.

Translator	can	support	a	self	join	between	two
aliased	versions	of	the	same	Table.

OuterJoins Translator	can	support	LEFT	and	RIGHT
OUTER	JOIN.

FullOuterJoins Translator	can	support	FULL	OUTER	JOIN.

DependentJoins Base	join	and	criteria
support

Translator	supports	key	set	dependent	join
pushdown.	See	Dependent	Join	Pushdown.
When	set	the	MaxDependentInPredicates	and
MaxInCriteriaSize	values	are	not	used	by	the
engine,	rather	all	independent	values	are	made
available	to	the	pushdown	command.

Implementing	the	Framework

257

FullDependentJoins Base	join	and	criteria
support

Translator	supports	full	dependent	join
pushdown.	See	Dependent	Join	Pushdown.
When	set	the	MaxDependentInPredicates	and
MaxInCriteriaSize	values	are	not	used	by	the
engine,	rather	the	entire	independent	dataset	is
made	available	to	the	pushdown	command.

LateralJoin Translator	supports	lateral	join	pushdown	with
sideways	correlation.

LateralJoinCondition LateralJoin Translator	supports	lateral	join	pushdown	with
a	join	condition.

OnlyLateralJoinProcedure LateralJoin Translator	supports	only	lateral	join	to	a
procedure	or	table	valued	function.

SubqueryInOn
Join	and	base	subquery
support,	such	as
ExistsCriteria

Translator	can	support	subqueries	in	the	ON
clause.	Defaults	to	true.

InlineViews AliasedTable Translator	can	support	a	named	subquery	in
the	FROM	clause.

ProcedureTable Translator	can	support	a	table	that	returns	a
table	in	the	FROM	clause.

ProcedureParameterExpression Translator	can	support	an	expression,	not	just	a
literal,	as	a	procedure	parameter.

BetweenCriteria Not	currently	used	-	between	criteria	is
rewriten	as	compound	comparisions.

CompareCriteriaEquals Translator	can	support	comparison	criteria
with	the	operator		=	.

CompareCriteriaOrdered Translator	can	support	comparison	criteria
with	the	operator		⇒		or		⇐	.

CompareCriteriaOrderedExclusive
Translator	can	support	comparison	criteria
with	the	operator		>		or		<	.	Defaults	to
CompareCriteriaOrdered

LikeCriteria Translator	can	support	LIKE	criteria.

LikeCriteriaEscapeCharacter LikeCriteria Translator	can	support	LIKE	criteria	with	an
ESCAPE	character	clause.

SimilarTo Translator	can	support	SIMILAR	TO	criteria.

LikeRegexCriteria Translator	can	support	LIKE_REGEX	criteria.

InCriteria MaxInCriteria Translator	can	support	IN	predicate	criteria.

InCriteriaSubquery Translator	can	support	IN	predicate	criteria
where	values	are	supplied	by	a	subquery.

Implementing	the	Framework

258

IsNullCriteria Translator	can	support	IS	NULL	predicate
criteria.

OrCriteria Translator	can	support	the	OR	logical	criteria.

NotCriteria

Translator	can	support	the	NOT	logical
criteria.	IMPORTANT:	This	capability	also
applies	to	negation	of	predicates,	such	as
specifying	IS	NOT	NULL,		<		(not		⇒),		>	
(not		⇐),	etc.

ExistsCriteria Translator	can	support	EXISTS	predicate
criteria.

QuantifiedCompareCriteriaAll Translator	can	support	a	quantified	comparison
criteria	using	the	ALL	quantifier.

QuantifiedCompareCriteriaSome Translator	can	support	a	quantified	comparison
criteria	using	the	SOME	or	ANY	quantifier.

OnlyLiteralComparison
If	only	Literal	comparisons	(equality,	ordered,
like,	etc.)	are	supported	for	non-join
conditions.

Convert(int	fromType,	int	toType)

Used	for	fine	grained	control	of	convert/cast
pushdown.	The
	ExecutionFactory.getSupportedFunctions()	

should	contain
	SourceSystemFunctions.CONVERT	.		This
method	can	then	return	false	to	indicate	a	lack
of	specific	support.	See
	TypeFacility.RUNTIME_CODES		for	the
possible	type	codes.	The	engine	will	does	not
care	about	an	unnecessary	conversion	where
fromType	==	toType.		By	default	lob
conversion	is	disabled.

OrderBy Translator	can	support	the	ORDER	BY	clause
in	queries.

OrderByUnrelated OrderBy Translator	can	support	ORDER	BY	items	that
are	not	directly	specified	in	the	select	clause.

OrderByNullOrdering OrderBy Translator	can	support	ORDER	BY	items	with
NULLS	FIRST/LAST.

OrderByWithExtendedGrouping OrderBy
Translator	can	support	ORDER	BY	directly
over	a	GROUP	BY	with	an	extended	grouping
element	such	as	a	ROLLUP.

GroupBy Translator	can	support	an	explicit	GROUP	BY
clause.

GroupByRollup GroupBy Translator	can	support	GROUP	BY	(currently
a	single)	ROLLUP.

GroupByMultipleDistinctAggregates GroupBy
Translator	can	support	GROUP	BY	to	create
multiple	distinct	aggregates	(See	IMPALA-
110).

Implementing	the	Framework

259

Having GroupBy Translator	can	support	the	HAVING	clause.

AggregatesAvg Translator	can	support	the	AVG	aggregate
function.

AggregatesCount Translator	can	support	the	COUNT	aggregate
function.

AggregatesCountBig AggregatesCount,
AggregatesCountStar

Translator	supports	a	separate	COUNT
function	that	returns	a	long	value.	If	false
COUNT	will	be	pushed	instead.

AggregatesCountStar Translator	can	support	the	COUNT(*)
aggregate	function.

AggregatesDistinct At	least	one	of	the	aggregate
functions.

Translator	can	support	the	keyword
DISTINCT	inside	an	aggregate	function.		This
keyword	indicates	that	duplicate	values	within
a	group	of	rows	will	be	ignored.

AggregatesMax Translator	can	support	the	MAX	aggregate
function.

AggregatesMin Translator	can	support	the	MIN	aggregate
function.

AggregatesSum Translator	can	support	the	SUM	aggregate
function.

AggregatesEnhancedNumeric
Translator	can	support	the	VAR_SAMP,
VAR_POP,	STDDEV_SAMP,	STDDEV_POP
aggregate	functions.

StringAgg Translator	can	support	the	string_agg
aggregate	function.

ListAgg
Translator	can	support	a	restricted	form
(matching	Oracle’s	listagg)	of	the	string_agg
aggregate	function.

ScalarSubqueries
Translator	can	support	the	use	of	a	subquery	in
a	scalar	context	(wherever	an	expression	is
valid).

ScalarSubqueryProjection ScalarSubqueries Translator	can	support	the	use	of	a	projected
scalar	subquery.

CorrelatedSubqueries At	least	one	of	the	subquery
pushdown	capabilities.

Translator	can	support	a	correlated	subquery
that	refers	to	an	elementin	the	outer	query.

CorrelatedSubqueryLimit CorrelatedSubqueries
Defaults	to	CorrelatedSubqueries	support.
Translator	can	support	a	correlated	subquery
with	a	limit	clause.

CaseExpressions Not	currently	used	-	simple	case	is	rewriten	as
searched	case.

Implementing	the	Framework

260

SearchedCaseExpressions Translator	can	support		searched		CASE
expressions	anywhere	that	expressions	are
accepted.

Unions Translator	support	UNION	and	UNION	ALL

Intersect Translator	supports	INTERSECT

Except Translator	supports	Except

SetQueryOrderBy Unions,	Intersect,	or	Except Translator	supports	set	queries	with	an
ORDER	BY

SetQueryLimitOffset
(Unions,	Intersect,	or
Except)	and	(RowLimit	or
RowOffset)

Translator	supports	set	queries	with	a	LIMIT
and/or	OFFSET	which	is	determined	by	the
respective	RowLimit	and	RowOffset
capability.	Defaults	to	true	if	RowLimit	or
RowOffset	is	supported.

RowLimit Translator	can	support	the	limit	portion	of	the
limit	clause

RowOffset Translator	can	support	the	offset	portion	of	the
limit	clause

FunctionsInGroupBy GroupBy Translator	can	support	non-column	reference
grouping	expressions.

InsertWithQueryExpression Translator	supports	INSERT	statements	with
values	specified	by	an	QueryExpression.

BatchedUpdates
Translator	supports	a	batch	of	INSERT,
UPDATE	and	DELETE	commands	to	be
executed	together.

BulkUpdate Translator	supports	updates	with	multiple
value	sets

CommonTableExpressions Translator	supports	the	WITH	clause.

SubqueryCommonTableExpressions CommonTableExpressions Translator	supports	a	WITH	clause	in
subqueries.

RecursiveCommonTableExpressions CommonTableExpressions Translator	supports	recursive	common	table
expressions

ElementaryOlapOperations
Translator	supports	window	functions	and
analytic	functions	RANK,	DENSE_RANK,
and	ROW_NUMBER.

WindowFrameClause ElementaryOlapOperations
Translator	supports	window	frame
RANGE/ROWS	clause.	Defaults	to
ElementaryOlapOperations	support	value.

WindowOrderByWithAggregates ElementaryOlapOperations Translator	supports	windowed	aggregates	with
a	window	order	by	clause.

Implementing	the	Framework

261

WindowDistinctAggregates ElementaryOlapOperations,
AggregatesDistinct

Translator	supports	windowed	distinct
aggregates.

AdvancedOlapOperations ElementaryOlapOperations Translator	supports	aggregate	conditions.

WindowFunctionCumeDist
Translator	supports	CUME_DIST	window
function.	Defaults	to	the	support	value	for
ElementaryOlapOperations

WindowFunctionPercentDist
Translator	supports	PERCENT_DIST	window
function.	Defaults	to	the	support	value	for
ElementaryOlapOperations

WindowFunctionNtile
Translator	supports	NTILE	window	function.
Defaults	to	the	support	value	for
ElementaryOlapOperations

WindowFunctionNthValue
Translator	supports	NTH_VALUE	window
function.	Defaults	to	the	support	value	for
ElementaryOlapOperations

OnlyFormatLiterals

function	support	for	a
parse/format	function	and	an
implementation	of	the
supportsFormatLiteral
method.

Translator	supports	only	literal	format	patterns
that	must	be	validated	by	the
supportsFormatLiteral	method.

FormatLiteral(String	literal,	Format
type) OnlyFormatLiterals Translator	supports	the	given	literal	format

string.

ArrayType Translator	supports	the	push	down	of	array
values.

OnlyCorrelatedSubqueries CorrelatedSubqueries

Translator	ONLY	supports	correlated
subqueries.		Uncorrelated	scalar	and	exists
subqueries	will	be	pre-evaluated	prior	to	push-
down.

SelectWithoutFrom SelectExpressions Translator	supports	selecting	values	without	a
FROM	clause,	e.g.	SELECT	1.

Upsert Translator	supports	an	upsert	style	insert.

OnlyTimestampAddLiteral function	support	for	a
timestampadd	function.

Translator	supports	only	a	literal	interval
value.

MultipleOpenExecutions

Translator	supports	multiple	open	executions
against	a	single	connection.	If	false,	in
transactional	scenarios	the	execution	will	be
thread	bound.

GeographyType Translator	supports	the	geograpy	type
variations	of	ST_	geospatial	functions.

Note	that	any	pushdown	subquery	must	itself	be	compliant	with	the	Translator	capabilities.

Command	Form

Implementing	the	Framework

262

The	method		ExecutionFactory.useAnsiJoin()		should	return	true	if	the	Translator	prefers	the	use	of	ANSI	style	join	structure
for	join	trees	that	contain	only	INNER	and	CROSS	joins.

The	method		ExecutionFactory.requiresCriteria()		should	return	true	if	the	Translator	requires	criteria	for	any	Query,	Update,
or	Delete.	This	is	a	replacement	for	the	model	support	property		Where	All	.

Scalar	Functions

The	method		ExecutionFactory.getSupportedFunctions()		can	be	used	to	specify	which	system/user	defined	scalar	and	user
defined	aggregate	functions	the	Translator	supports.	The	constants	interface		org.teiid.translator.SourceSystemFunctions	
contains	the	string	names	of	all	possible	built-in	pushdown	functions,	which	includes	the	four	standard	math	operators:	+,	-,	*,	and
/.

Not	all	system	functions	appear	in	SourceSystemFunctions,	since	some	system	functions	will	always	be	evaluated	in	Teiid,	are
simple	aliases	to	other	functions,	or	are	rewritten	to	a	more	standard	expression.

This	documentation	for	system	functions	can	be	found	at	Scalar	Functions.	If	the	Translator	states	that	it	supports	a	function,	it
must	support	all	type	combinations	and	overloaded	forms	of	that	function.

A	translator	may	also	indicate	support	for	scalar	functions	that	are	intended	for	pushdown	evaluation	by	that	translator,	but	are	not
registered	as	user	defined	functions	via	a	model/schema.		These	pushdown	functions	are	reported	to	the	engine	via	the
	ExecutionFactory.getPushDownFunctions()		list	as		FunctionMethod		metadata	objects.	The		FuncitonMethod		representation
allow	the	translator	to	control	all	of	the	metadata	related	to	the	function,	including	type	signature,	determinism,	varargs,	etc.	The
simplest	way	to	add	a	pushdown	function	is	with	a	call	to		ExecutionFactory.addPushDownFunction	:

FunctionMethod	addPushDownFunction(String	qualifier,	String	name,	String	returnType,	String...paramTypes)

This	resulting	function	will	be	known	as	sys.qualifier.name,	but	can	be	called	with	just	name	as	long	as	the	function	name	is
unique.	The	returned		FunctionMethod		object	may	be	further	manipulated	depending	upon	the	needs	of	the	source.	An	example
of	adding	a	custom	concat	vararg	function	in	an		ExecutionFactory		subclass:

public	void	start()	throws	TranslatorException	{

		super.start();

		FunctionMethod	func	=	addPushDownFunction("oracle",	"concat",	"string",	"string",	"string");

		func.setVarArgs(true);

		...

}

Physical	Limits

The	method		ExecutionFactory.getMaxInCriteriaSize()		can	be	used	to	specify	the	maximum	number	of	values	that	can	be
passed	in	an	IN	criteria.		This	is	an	important	constraint	as	an	IN	criteria	is	frequently	used	to	pass	criteria	between	one	source	and
another	using	a	dependent	join.

The	method		ExecutionFactory.getMaxDependentInPredicates()		is	used	to	specify	the	maximum	number	of	IN	predicates	(of	at
most	MaxInCriteriaSize)	that	can	be	passed	as	part	of	a	dependent	join.	For	example	if	there	are	10000	values	to	pass	as	part	of
the	dependent	join	and	a	MaxInCriteriaSize	of	1000	and	a	MaxDependentInPredicates	setting	of	5,	then	the	dependent	join	logic
will	form	two	source	queries	each	with	5	IN	predicates	of	1000	values	each	combined	by	OR.

The	method		ExecutionFactory.getMaxFromGroups()		can	be	used	to	specify	the	maximum	number	of	FROM	Clause	groups	that
can	used	in	a	join.	-1	indicates	there	is	no	limit.

The	method		ExecutionFactory.getMaxProjectedColumns()		can	be	used	to	specify	the	maximum	number	of	columns	or
expressions	in	the	select	clause.	-1	indicates	there	is	no	limit.

Implementing	the	Framework

263

Update	Execution	Modes

The	method		ExecutionFactory.supportsBatchedUpdates()		can	be	used	to	indicate	that	the	Translator	supports	executing	the
	BatchedUpdates		command.

The	method		ExecutionFactory.supportsBulkUpdate()		can	be	used	to	indicate	that	the	Translator	accepts	update	commands
containg	multi	valued	Literals.

Note	that	if	the	translator	does	not	support	either	of	these	update	modes,	the	query	engine	will	compensate	by	issuing	the	updates
individually.

Default	Behavior

The	method		ExecutionFactory.getDefaultNullOrder()		specifies	the	default	null	order.	Can	be	one	of	UNKNOWN,	LOW,
HIGH,	FIRST,	LAST.	This	is	only	used	if	ORDER	BY	is	supported,	but	null	ordering	is	not.

The	method		ExecutionFactory.getCollation()		specifies	the	default	collation.	If	set	to	a	value	that	does	not	match	the	collation
locale	defined	by	org.teiid.collationLocale,	then	some	ordering	may	not	be	pushed	down.

The	method		ExecutionFactory.getRequiredLikeEscape()		specifies	the	required	like	escape	character.	Used	only	when	a	source
supports	a	specific	escape.

Use	of	Connections

Method Description Default

is/setSourceRequired
True	indicates	a	source	connection	is
required	for	fetching	the	metadata	of
the	source	or	executing	queries.

true

is/setSourceRequiredForMetadata
True	indicates	a	source	connection	is
required	for	fetching	the	metadata	of
the	source.

SourceRequired

Transaction	Behavior

ExecutionFactory.get/setTransactionSupport	specifies	the	highest	level	of	transaction	supported	by	connections	to	the	source.	This
is	used	as	a	hint	to	the	engine	for	deciding	when	to	start	a	transaction	in	the	autoCommitTxn=DETECT	mode.	Defaults	to	XA.

Implementing	the	Framework

264

Translator	Properties
During	translator	development,	a	translator	developer	can	define	three	(3)	different	types	of	property	sets	that	can	help	customize
the	behavior	of	the	translator.	The	sections	below	describes	each	one.

Translator	Override	Properties

On	the	"ExecutionFactory"	class	a	translator	developer	can	define	any	number	of	"getter/setter"	methods	with	the
@TranslatorProperty	annotation.	These	properties	(also	referred	to	a	execution	properties)	can	be	used	for	extending	the
capabilities	of	the	translator.	It	is	important	to	define	default	values	for	all	these	properties,	as	these	properties	are	being	defined	to
change	the	default	behavior	of	the	translator.	If	needed,	the	values	for	these	properties	are	supplied	in	the	vdb	during	the	deploy
time	when	the	translator	is	used	to	represent	vdb’s	model.	A	sample	example	is	given	below:

@TranslatorProperty(display="Copy	LOBs",description="If	true,	returned	LOBs	will	be	copied,	rather	than	streame

d	from	the	source",advanced=true)

public	boolean	isCopyLobs()	{

				return	copyLobs;

}

public	void	setCopyLobs(boolean	copyLobs)	{

				this.copyLobs	=	copyLobs;

at	runtime	these	properties	can	be	defined	in	the	vdb	as

CREATE	DATABASE	vdb;

USE	DATABASE	vdb;

CREATE	FOREIGN	DATA	WRAPPER	"my-translator-override"	TYPE	"my-translator"	OPTIONS	(CopyLobs	'true');

CREATE	SERVER	connector	FOREIGN	DATA	WRAPPER	"my-translator-override";

CREATE	SCHEMA	PM1	SERVER	connector;

SET	SCHEMA	PM1;

IMPORT	FROM	SERVER	connector	INTO	PM1;

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="vdb"	version="1">

				<model	name="PM1">

								<source	name="connector"	translator-name="my-translator-override"	/>

				</model>

				<translator	name="my-translator-override"	type="my-translator">

								<property	name="CopyLobs"	value="true"	/>

				</translator>

</vdb>

Metadata	Import	Properties

If	a	translator	is	defining	schema	information	based	on	the	physical	source	(i.e.	implementing	getMetadata	method	on
ExecutionFactory)	it	is	connected	to,	then	import	properties	provide	a	way	to	customize	the	behavior	of	the	import	process.	For
example,	in	the	JDBC	translator	users	can	exclude	certain	tables	that	match	a	regular	expression	etc.	To	define	a	import	property,
the	@TranslatorPropery	annotation	is	used	on	any	getter/setter	method	on	the	"ExecutionFactory"	class	or	any	class	that
implements	the	"MetadataProcessor"	interface,	with	category	property	defined	as	"PropertyType.IMPORT".	For	example.

@Translator(name	=	"my-translator",	description	=	"My	Translator")

public	class	MyExecutionFactory	extends	ExecutionFactory<ConnectionFactory,	MyConnection>	{

...

Implementing	the	Framework

265

				public	MetadataProcessor<C>	getMetadataProcessor()	{

								return	MyMetadataProcessor();

				}

}

public	MyMetadataProcessor	implements	MetadataProcessor<MyConnection>	{

				public	void	process(MetadataFactory	metadataFactory,	MyConnection	connection)	throws	TranslatorException{

								//	schema	generation	code	here

				}

				@TranslatorProperty(display="Header	Row	Number",	category=PropertyType.IMPORT,	description="Row	number	that

	contains	the	header	information")

				public	int	getHeaderRowNumber()	{

								return	headerRowNumber;

				}

				public	void	setHeaderRowNumber(int	headerRowNumber)	{

								this.headerRowNumber	=	headerRowNumber;

				}

}

Below	is	an	example	showing	how	to	use	import	properties	with	a	vdb	file

CREATE	DATABASE	vdb;

USE	DATABASE	vdb;

CREATE	SERVER	connector	FOREIGN	DATA	WRAPPER	"my-translator";

CREATE	SCHEMA	PM1	SERVER	connector	OPTIONS	("importer.HeaderRowNumber"	'12');

SET	SCHEMA	PM1;

IMPORT	FROM	SERVER	connector	INTO	PM1	OPTIONS	("importer.HeaderRowNumber"	'12');

Note	that	the	import	properties	in	DDL	may	be	on	either	the	SERVER	or	the	IMPORT	statement.

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="vdb"	version="1">

				<model	name="PM1">

								<property	name="importer.HeaderRowNumber"	value="12"/>

								<source	name="connector"	translator-name="my-translator"	/>

				</model>

</vdb>

Extension	Metadata	Properties

During	the	execution	of	the	command	in	translator,	a	translator	is	responsible	to	convert	Teiid	supplied	SQL	command	into	data
source	specific	query.	Most	of	times	this	conversion	is	not	a	trivial	task	can	be	converted	from	one	form	to	another.	There	are
many	cases	built-in	metadata	is	not	sufficient	and	additional	metadata	about	source	is	useful	to	form	a	request	to	the	underlying
physical	source	system.	Extension	Metadata	Properties	one	such	mechanism	to	fill	the	gap	in	the	metadata.	These	can	be	defined
specific	for	a	given	translator.

A	translator	is	a	plugin,	that	is	communicating	with	Teiid	engine	about	it’s	source	with	it’s	metadata.	Metadata	in	this	context	is
definitions	of	Tables,	Columns,	Procedures,	Keys	etc.	This	metadata	can	be	decorated	with	additional	custom	metadata	and	fed	to
Teiid	query	engine.	Teiid	query	engine	keeps	this	extended	metadata	intact	along	with	its	schema	objects,	and	when	a	user	query
is	submitted	to	the	the	translator	for	execution,	this	extended	metadata	can	be	retrieved	for	making	decisions	in	the	translator	code.

Extended	properties	are	defined	using	annotation	class	called	@ExtensionMetadataProperty	on	the	fields	in	your
"MetadataProcessor"	or	"ExcutionFactory"	classes.

For	example,	say	translator	requires	a	"encoding"	property	on	Table,	to	do	the	correct	un-marshaling	of	data,	this	property	can	be
defined	as

Implementing	the	Framework

266

public	class	MyMetadataProcessor	implements	MetadataProcessor<MyConnection>	{

				public	static	final	String	URI	=	"{http://www.teiid.org/translator/mytranslator/2014}";

				@ExtensionMetadataProperty(applicable=Table.class,	datatype=String.class,	display="Encoding",	description="

Encoding",	required=true)

				public	static	final	String	ENCODING	=	URI+"encode";

				public	void	process(MetadataFactory	mf,	FileConnection	conn)	throws	TranslatorException	{

								..

								Table	t	=	mf.addTable(tableName);

								t.setProperty(ENCODING,	"UTF-16");

								//	add	columns	etc.

								..

				}

}

Now	during	the	execution,	on	the	COMMAND	object	supplied	to	the	"Execution"	class,	user	can

				Select	select	=	(Select)command;

				NamedTable	tableReferece	=	select.getFrom().get(0);

				Table	t	=	tableReference.getMetadataObject();

				String	encoding	=	t.getProperty(MyMetadataProcessor.ENCODING,	false);

				//	use	the	encoding	value	as	needed	to	marshal	or	unmarshal	data

Implementing	the	Framework

267

Extending	The	JDBC	Translator
The	JDBC	Translator	can	be	extended	to	handle	new	JDBC	drivers	and	database	versions.	This	is	one	of	the	most	common	needs
of	custom	Translator	development.	This	chapter	outlines	the	process	by	which	a	user	can	modify	the	behavior	of	the	JDBC
Translator	for	a	new	source,	rather	than	starting	from	scratch.

To	design	a	JDBC	Translator	for	any	RDMS	that	is	not	already	provided	by	the	Teiid,	extend	the
	org.teiid.translator.jdbc.JDBCExecutionFactory		class	in	the	"translator-jdbc"	module.	There	are	three	types	of	methods	that
you	can	override	from	the	base	class	to	define	the	behavior	of	the	Translator.

Extension Purpose

Capabilities Specify	the	SQL	syntax	and	functions	the	source	supports.

SQL	Translation Customize	what	SQL	syntax	is	used,	how	source-specific
functions	are	supported,	how	procedures	are	executed.

Results	Translation Customize	how	results	are	retrieved	from	JDBC	and
translated.

Table	of	Contents
Capabilities	Extension
SQL	Translation	Extension
Results	Translation	Extension
Adding	Function	Support
Using	FunctionModifiers
Installing	Extensions

Capabilities	Extension

This	extension	must	override	the	methods	that	begin	with	"supports"	that	describe	translator	capabilities.	Refer	to	Command
Language#Translator	Capabilities	for	all	the	available	translator	capabilities.

The	most	common	example	is	adding	support	for	a	scalar	function	–	this	requires	both	declaring	that	the	translator	has	the
capability	to	execute	the	function	and	often	modifying	the	SQL	Translator	to	translate	the	function	appropriately	for	the	source.

Another	common	example	is	turning	off	unsupported	SQL	capabilities	(such	as	outer	joins	or	subqueries)	for	less	sophisticated
JDBC	sources.

SQL	Translation	Extension

The	JDBCExcecutionFactory	provides	several	methods	to	modify	the	command	and	the	string	form	of	the	resulting	syntax	before
it	is	sent	to	the	JDBC	driver,	including:

Change	basic	SQL	syntax	options.	See	the	useXXX	methods,	e.g.	useSelectLimit	returns	true	for	SQLServer	to	indicate	that
limits	are	applied	in	the	SELECT	clause.

Register	one	or	more	FunctionModifiers	that	define	how	a	scalar	function	should	be	modified	or	transformed.

Modify	a	LanguageObject.	-	see	the	translate,	translateXXX,	and	FunctionModifiers.translate	methods.	Modify	the	passed	in
object	and	return	null	to	indicate	that	the	standard	syntax	output	should	be	used.

Extending	The	JDBC	Translator

268

Change	the	way	SQL	strings	are	formed	for	a	LanguageObject.	-	-	see	the	translate,	translateXXX,	and
FunctionModifiers.translate	methods.	Return	a	list	of	parts,	which	can	contain	strings	and	LanguageObjects,	that	will	be
appended	in	order	to	the	SQL	string.	If	the	in	coming	LanguageObject	appears	in	the	returned	list	it	will	not	be	translated
again.	Refer	to	Using	FunctionModifiers.

Results	Translation	Extension

The	JDBCExecutionFactory	provides	several	methods	to	modify	the	java.sql.Statement	and	java.sql.ResultSet	interactions,
including:

1.	 Overriding	the	createXXXExecution	to	subclass	the	corresponding	JDBCXXXExecution.	The	JDBCBaseExecution	has
protected	methods	to	get	the	appropriate	statement	(getStatement,	getPreparedStatement,	getCallableStatement)	and	to	bind
prepared	statement	values	bindPreparedStatementValues.

2.	 Retrieve	values	from	the	JDBC	ResultSet	or	CallableStatement	-	see	the	retrieveValue	methods.

Adding	Function	Support
Refer	to	User	Defined	Functions	for	adding	new	functions	to	Teiid.	This	example	will	show	you	how	to	declare	support	for	the
function	and	modify	how	the	function	is	passed	to	the	data	source.

Following	is	a	summary	of	all	coding	steps	in	supporting	a	new	scalar	function:

1.	 Override	the	capabilities	method	to	declare	support	for	the	function	(REQUIRED)

2.	 Implement	a	FunctionModifier	to	change	how	a	function	is	translated	and	register	it	for	use	(OPTIONAL)	There	is	a
capabilities	method	getSupportedFunctions()	that	declares	all	supported	scalar	functions.

An	example	of	an	extended	capabilities	class	to	add	support	for	the	"abs"	absolute	value	function:

package	my.connector;

import	java.util.ArrayList;

import	java.util.List;

public	class	ExtendedJDBCExecutionFactory	extends	JDBCExecutionFactory

{

			@Override

			public	List	getSupportedFunctions()

			{

						List	supportedFunctions	=	new	ArrayList();

						supportedFunctions.addAll(super.getSupportedFunctions());

						supportedFunctions.add("ABS");

						return	supportedFunctions;

			}

}

In	general,	it	is	a	good	idea	to	call	super.getSupportedFunctions()	to	ensure	that	you	retain	any	function	support	provided	by	the
translator	you	are	extending.

This	may	be	all	that	is	needed	to	support	a	Teiid	function	if	the	JDBC	data	source	supports	the	same	syntax	as	Teiid.	The	built-in
SQL	translation	will	translate	most	functions	as:	"function(arg1,	arg2,…)".

Using	FunctionModifiers

Extending	The	JDBC	Translator

269

In	some	cases	you	may	need	to	translate	the	function	differently	or	even	insert	additional	function	calls	above	or	below	the
function	being	translated.	The	JDBC	translator	provides	an	abstract	class		FunctionModifier		for	this	purpose.

During	the	start	method	a	modifier	instance	can	be	registered	against	a	given	function	name	via	a	call	to
	JDBCExecutionFactory.registerFunctionModifier	.

The	FunctionModifier	has	a	method	called		translate	.	Use	the	translate	method	to	change	the	way	the	function	is	represented.

An	example	of	overriding	the	translate	method	to	change	the	MOD(a,	b)	function	into	an	infix	operator	for	Sybase	(a	%	b).	The
translate	method	returns	a	list	of	strings	and	language	objects	that	will	be	assembled	by	the	translator	into	a	final	string.	The
strings	will	be	used	as	is	and	the	language	objects	will	be	further	processed	by	the	translator.

public	class	ModFunctionModifier	extends	FunctionModifier

{

			public	List	translate(Function	function)

			{

						List	parts	=	new	ArrayList();

						parts.add("(");

						Expression[]	args	=	function.getParameters();

						parts.add(args[0]);

						parts.add("	%	");

						parts.add(args[1]);

						parts.add(")");

						return	parts;

			}

}

In	addition	to	building	your	own	FunctionModifiers,	there	are	a	number	of	pre-built	generic	function	modifiers	that	are	provided
with	the	translator.

Modifier Description

AliasModifier Handles	simply	renaming	a	function	("ucase"	to	"upper"
for	example)

EscapeSyntaxModifier Wraps	a	function	in	the	standard	JDBC	escape	syntax	for
functions:	{fn	xxxx()}

To	register	the	function	modifiers	for	your	supported	functions,	you	must	call	the
	ExecutionFactory.registerFunctionModifier(String	name,	FunctionModifier	modifier)		method.

public	class	ExtendedJDBCExecutionFactory	extends	JDBCExecutionFactory

{

			@Override

			public	void	start()

			{

						super.start();

						//	register	functions.

						registerFunctionModifier("abs",	new	MyAbsModifier());

						registerFunctionModifier("concat",	new	AliasModifier("concat2"));

			}

}

Support	for	the	two	functions	being	registered	("abs"	and	"concat")	must	be	declared	in	the	capabilities	as	well.	Functions	that	do
not	have	modifiers	registered	will	be	translated	as	usual.

Installing	Extensions

Extending	The	JDBC	Translator

270

Once	you	have	developed	an	extension	to	the	JDBC	translator,	you	must	install	it	into	the	Teiid	Server.	The	process	of	packaging
or	deploying	the	extended	JDBC	translators	is	exactly	as	any	other	other	translator.	Since	the	RDMS	is	accessible	already	through
its	JDBC	driver,	there	is	no	need	to	develop	a	resource	adapter	for	this	source	as	WildFly	provides	a	wrapper	JCA	connector
(DataSource)	for	any	JDBC	driver.

Refer	to	Packaging	and	Deployment	for	more	details.

Extending	The	JDBC	Translator

271

Delegating	Translator
In	some	instances	you	may	wish	to	extend	several	different	kinds	of	translators	with	the	same	functionality.	Rather	than	create
separate	subclasses	for	each	extension,	you	can	use	the	delegating	translator	framework	which	provides	you	with	a	proxying
mechanism	to	override	translator	behavior.	It	implement	a	delegating	translator,	your	common	translator	logic	should	be	added	to
a	subclass	of	BaseDelegatingExecutionFactory	where	you	can	override	any	of	the	delegation	methods	to	perform	whatever	logic
you	want.

Example	BaseDelegatingExecutionFactory	Subclass

@Translator(name="custom-delegator")

public	class	MyTranslator	extends	BaseDelegatingExecutionFactory<Object,	Object>	{

				@Override

				public	Execution	createExecution(Command	command,

												ExecutionContext	executionContext,	RuntimeMetadata	metadata,

												Object	connection)	throws	TranslatorException	{

								if	(command	instanceof	Select)	{

												//modify	the	command	or	return	a	different	execution

												...

								}

								//the	super	call	will	be	to	the	delegate	instance

								return	super.createExecution(command,	executionContext,	metadata,	connection);

				}

				...

}

You	will	bundle	and	deploy	your	custom	delegating	translator	is	just	like	any	other	custom	translator	development.	To	you	use
your	delegating	translator	in	a	vdb,	you	define	a	translator	override	that	wires	in	the	delegate.

Example	Translator	Override

<translator	type="custom-delegator"	name="my-translator">

					<property	value="delegateName"	name="name	of	the	delegate	instance"/>

					<!--	any	custom	properties	you	may	have	on	your	custom	translator	-->

</translator>

From	the	previous	example	the	translator	type	is	custom-delegator.	Now	my-translator	can	be	used	as	a	translator-name	on	a
source	and	will	proxy	all	calls	to	whatever	delegate	instance	you	assign.

Note Note	that	the	delegate	instance	can	be	any	translator	instance,	whether	configured	by	it’s	own	translator	entry	or
just	the	name	of	a	standard	translator	type.

Delegating	Translator

272

Packaging
Once	the	"ExecutionFactory"	class	is	implemented,	package	it	in	a	JAR	file.	Then	add	the	following	named	file	in	"META-
INF/services/org.teiid.translator.ExecutionFactory"	with	contents	specifying	the	name	of	your	main	Translator	file.	Note	that,	the
name	must	exactly	match	to	above.	This	is	java’s	standard	service	loader	pattern.	This	will	register	the	Translator	for	deployment
when	the	jar	is	deployed	into	WildFly.

org.teiid.translator.custom.CustomExecutionFactory

Packaging

273

Adding	Dependent	Modules
Add	a	MANIFEST.MF	file	in	the	META-INF	directory,	and	the	core	Teiid	API	dependencies	for	resource	adapter	with	the
following	line.

Dependencies:	org.jboss.teiid.common-core,org.jboss.teiid.api,javax.api

If	your	translator	depends	upon	any	other	third	party	jar	files,	ensure	a	module	exists	and	add	the	module	name	to	the	above
MANIFEST.MF	file.

Packaging

274

Deployment
A	translator	JAR	file	can	be	deployed	into	Teiid	Server	in	two	different	ways

As	WildFly	module

Create	a	module	under	"jboss-as/modules"	directory	and	define	the	translator	name	and	module	name	in	the	teiid	subsystem	in
standalone-teiid.xml	file	or	domain-teiid.xml	file	and	restart	the	server.	The	dependent	Teiid	or	any	other	java	class	libraries	must
be	defined	in	module.xml	file	of	the	module.	For	production	profiles	this	is	recommended.

As	JAR	deployment

For	development	time	or	quick	deployment	you	can	deploy	the	translator	JAR	using	the	CLI	or	AdminAPI	or	admin	console
programs.	When	you	deploy	in	JAR	form	the	dependencies	to	Teiid	java	libraries	and	any	other	third	party	libraries	must	be
defined	under	META-INF/MANIFEST.MF	file.

Deployment

275

User	Defined	Functions
If	you	need	to	extend	Teiid’s	scalar	or	aggregate	function	library,	then	Teiid	provides	a	means	to	define	custom	or	User	Defined
Functions(UDF).

The	following	are	used	to	define	a	UDF.

Function	Name	When	you	create	the	function	name,	keep	these	requirements	in	mind:

You	cannot	overload	existing	Teiid	System	functions.

The	function	name	must	be	unique	among	user-defined	functions	in	its	model	for	the	number	of	arguments.	You	can	use
the	same	function	name	for	different	numbers	of	types	of	arguments.	Hence,	you	can	overload	your	user-defined
functions.

The	function	name	cannot	contain	the	`.'	character.

The	function	name	cannot	exceed	255	characters.

Input	Parameters-	defines	a	type	specific	signature	list.	All	arguments	are	considered	required.

Return	Type-	the	expected	type	of	the	returned	scalar	value.

Pushdown-	can	be	one	of	REQUIRED,	NEVER,	ALLOWED.	Indicates	the	expected	pushdown	behavior.	If	NEVER	or
ALLOWED	are	specified	then	a	Java	implementation	of	the	function	should	be	supplied.	If	REQUIRED	is	used,	then	user
must	extend	the	Translator	for	the	source	and	add	this	function	to	its	pushdown	function	library.

invocationClass/invocationMethod-	optional	properties	indicating	the	method	to	invoke	when	the	UDF	is	not	pushed	down.

Deterministic-	if	the	method	will	always	return	the	same	result	for	the	same	input	parameters.	Defaults	to	false.	It	is
important	to	mark	the	function	as	deterministic	if	it	returns	the	same	value	for	the	same	inputs	as	this	will	lead	to	better
performance.	See	also	the	Relational	extension	boolean	metadata	property	"deterministic"	and	the	DDL	OPTION	property
"determinism".	Defaults	to	false.	It	is	important	to	mark	the	function	as	deterministic	if	it	returns	the	same	value	for	the	same
inputs	as	this	will	lead	to	better	performance.	See	also	the	Relational	extension	boolean	metadata	property	"deterministic"
and	the	DDL	OPTION	property	"determinism".

Even	Pushdown	required	functions	need	to	be	added	as	a	UDF	to	allow	Teiid	to	properly	parse	and	resolve	the	function.
Pushdown	scalar	functions	differ	from	normal	user-defined	functions	in	that	no	code	is	provided	for	evaluation	in	the	engine.	An
exception	will	be	raised	if	a	pushdown	required	function	cannot	be	evaluated	by	the	appropriate	source.

User	Defined	Functions

276

Source	Supported	Functions
While	Teiid	provides	an	extensive	scalar	function	library,	it	contains	only	those	functions	that	can	be	evaluated	within	the	query
engine.	In	many	circumstances,	especially	for	performance,	a	source	function	allows	for	calling	a	source	specific	function.	The
semantics	of	defining	the	source	function	as	similar	or	same	to	one	of	defining	the	UDF.

For	example,	suppose	you	want	to	use	the	Oracle-specific	functions	score	and	contains	like:

SELECT	score(1),	ID,	FREEDATA	FROM	Docs	WHERE	contains(freedata,	'nick',	1)	>	0

The	score	and	contains	functions	are	not	part	of	built-in	scalar	function	library.	While	you	could	write	your	own	custom	scalar
function	to	mimic	their	behavior,	it’s	more	likely	that	you	would	want	to	use	the	actual	Oracle	functions	that	are	provided	by
Oracle	when	using	the	Oracle	Free	Text	functionality.

In	order	to	configure	Teiid	to	push	the	above	function	evaluation	to	Oracle,	Teiid	provides	a	few	different	ways	one	can	configure
their	instance.

Extending	the	Translator

The	ExecutionFactory.getPushdownFunctions	method	can	be	used	to	describe	functions	that	are	valid	against	all	instances	of	a
given	translator	type.	The	function	names	are	expected	to	be	prefixed	by	the	translator	type,	or	some	other	logical	grouping,	e.g.
salesforce.includes.	The	full	name	of	the	function	once	imported	into	the	system	will	qualified	by	the	SYS	schema,	e.g.
SYS.salesforce.includes.

Any	functions	added	via	these	mechanisms	do	not	need	to	be	declared	in	ExecutionFactory.getSupportedFunctions.	Any	of	the
additional	handling,	such	as	adding	a	FunctionModifier,	covered	above	is	also	applicable	here.	All	pushdown	functions	will	have
function	name	set	to	only	the	simple	name.	Schema	or	other	qualification	will	be	removed.	Handling,	such	as	function	modifiers,
can	check	the	function	metadata	if	there	is	the	potential	for	an	ambiguity.

For	example,	to	extend	the	Oracle	Connector

Required-	extend	the	OracleExecutionFactory	and	add	SCORE	and	CONTAINS	as	supported	pushdown	functions	by	either
overriding	or	adding	additional	functions	in	"getPushDownFunctions"	method.	For	this	example,	we’ll	call	the	class
	MyOracleExecutionFactory	.	Add	the		org.teiid.translator.Translator		annotation	to	the	class,	e.g.
	@Translator(name="myoracle")	

Optionally	register	new	FunctionModifiers	on	the	start	of	the	ExecutionFactory	to	handle	translation	of	these	functions.
Given	that	the	syntax	of	these	functions	is	same	as	other	typical	functions,	this	probably	isn’t	needed	-	the	default	translation
should	work.

Create	a	new	translator	JAR	containing	your	custom	ExecutionFactory.	Refer	to	Packaging	and	Deployment	for	instructions
on	using	the	JAR	file.	Once	this	is	extended	translator	is	deployed	in	the	Teiid	Server,	use	"myoracle"	as	translator	name
instead	of	the	"oracle"	in	your	VDB’s	Oracle	source	configuration.

If	you	source	handing	of	the	function	can	be	described	by	simple	parameter	substitution	into	a	string,	then	you	may	not	need	to
extend	the	translator	for	a	source	specific	function.	You	can	use	the	extension	property	teiid_rel:native-query	to	define	the	syntax
handling	-	see	also	DDL	Metadata	for	functions.

See	defining	the	metadata	using	DDL,	you	can	define	your	source	function	in	the	VDB	as

CREATE	DATABASE	"{vdb-name}";

USE	DATABASE	"{vdb-name}";

CREATE	SERVER	AccountsDB	FOREIGN	DATA	WRAPPER	oracle	OPTIONS	("resource-name"	'java:/oracleDS');

CREATE	SCHEMA	"{model-name}"	SERVER	AccountsDB;

Source	Supported	Functions

277

SET	SCHEMA	"{model-name}";

CREATE	FOREIGN	FUNCTION	SCORE	(val	integer)	RETURNS	integer;

In	an	XML	VDB:

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="DDL"><![CDATA[

											CREATE	FOREIGN	FUNCTION	SCORE	(val	integer)	RETURNS	integer;

											(other	tables,	procedures	etc)

]]>

								</metadata>

				</model>

</vdb>

By	default	when	a	source	can	provide	metadata,	the	Source	model’s	metadata	is	automatically	retrieved	from	the	source	if	they
were	JDBC,	File,	WebService.	The	File	and	WebService	sources	are	static,	so	one	can	not	add	additional	metadata	on	them.
However	on	the	JDBC	sources	you	can	retrieve	the	metadata	from	source	and	then	user	can	append	additional	metadata	on	top	of
them.	For	example

CREATE	DATABASE	"{vdb-name}";

USE	DATABASE	"{vdb-name}";

CREATE	SERVER	AccountsDB	FOREIGN	DATA	WRAPPER	oracle	OPTIONS	("resource-name"	

'java:/oracleDS');

CREATE	SCHEMA	"{model-name}"	SERVER	AccountsDB;

SET	SCHEMA	"{model-name}";

IMPORT	FROM	AccountsDB	INTO	"{model-name}";

CREATE	FOREIGN	FUNCTION	SCORE	(val	integer)	RETURNS	integer;

In	an	XML	VDB:

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="NATIVE"/>

								<metadata	type="DDL"><![CDATA[

											CREATE	FOREIGN	FUNCTION	SCORE	(val	integer)	RETURNS	integer;

]]>

								</metadata>

				</model>

</vdb>

The	above	example	uses	NATIVE	metadata	type	(NATIVE	is	the	default	for	source/physical	models)	first	to	retrieve	schema
information	from	source,	then	uses	DDL	metadata	type	to	add	additional	metadata.	Only	metadata	not	available	via	the	NATIVE
translator	logic	would	need	to	be	specified	via	DDL.

Alternatively,	if	you	are	using	custom	MetadataRepository	with	your	VDB,	then	provide	the	"function"	metadata	directly	from
your	implementation.	ex.

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="{metadata-repo-module}"></metadata>

				</model>

</vdb>

Source	Supported	Functions

278

In	the	above	example,	user	can	implement	MetadataRepository	interface	and	package	the	implementation	class	along	with	its
dependencies	in	a	WildFly	module	and	supply	the	module	name	in	the	above	XML.	For	more	information	on	how	to	write	a
Metadata	Repository	refer	to	Custom	Metadata	Repository.

Source	Supported	Functions

279

Support	for	User-Defined	Functions	(Non-Pushdown)
To	define	a	non-pushdown	function,	a	Java	function	must	be	provided	that	matches	the	VDB	defined	metadata.		User	Defined
Function	(or	UDF)	and	User	Defined	Aggregate	Function	(or	UDAF)	may	be	called	at	runtime	just	like	any	other	function	or
aggregate	function	respectively.

Function	Metadata

See	User	Defined	Functions.	Make	sure	you	provide	the	JAVA	code	implementation	details	in	the	properties	dialog	for	the	UDF.
You	can	define	a	UDF	or	UDAF	(User	Defined	Aggregate	Function)	as	shown	below.

CREATE	DATABASE	"{vdb-name}";

USE	DATABASE	"{vdb-name}";

CREATE	VIRTUAL	SCHEMA	"{model-name}";

SET	SCHEMA	"{model-name}";

CREATE	VIRTUAL	FUNCTION	celsiusToFahrenheit(celsius	decimal)	RETURNS	decimal	OPTIONS	(JAVA_CLASS	'org.something

.TempConv',		JAVA_METHOD	'celsiusToFahrenheit');

CREATE	VIRTUAL	FUNCTION	sumAll(arg	integer)	RETURNS	integer	OPTIONS	(JAVA_CLASS	'org.something.SumAll',		JAVA_M

ETHOD	'addInput',	AGGREGATE	'true',	VARARGS	'true',	"NULL-ON-NULL"	'true');

As	an	XML	VDB:

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="VIRTUAL">

									<metadata	type="DDL"><![CDATA[

													CREATE	VIRTUAL	FUNCTION	celsiusToFahrenheit(celsius	decimal)	RETURNS	decimal	OPTIONS	(JAVA_CLASS	'

org.something.TempConv',		JAVA_METHOD	'celsiusToFahrenheit');

													CREATE	VIRTUAL	FUNCTION	sumAll(arg	integer)	RETURNS	integer	OPTIONS	(JAVA_CLASS	'org.something.Sum

All',		JAVA_METHOD	'addInput',	AGGREGATE	'true',	VARARGS	'true',	"NULL-ON-NULL"	'true');]]>	</metadata>

				</model>

</vdb>

You	must	create	a	Java	method	that	contains	the	function’s	logic.	This	Java	method	should	accept	the	necessary	arguments,	which
the	Teiid	System	will	pass	to	it	at	runtime,	and	function	should	return	the	calculated	or	altered	value.

See	DDL	Metadata	for	all	possible	options	related	to	functions	defined	via	DDL.

Writing	the	Java	Code	required	by	the	UDF

The	number	of	input	arguments	and	types	must	match	the	function	metadata	defined	in	the	VDB	metadata.

Code	Requirements	For	UDFs

The	java	class	containing	the	function	method	must	be	defined	public.

Note One	implementation	class	can	contain	more	than	one	UDF	implementation	methods.

The	function	method	must	be	public	and	static.

Code	Requirements	For	UDAFs

The	java	class	containing	the	function	method	must	be	defined	public	and	extend	org.teiid.UserDefinedAggregate

The	function	method	must	be	public.

Other	Considerations

Support	for	User-Defined	Functions(Non-Pushdown)

280

Any	exception	can	be	thrown,	but	Teiid	will	rethrow	the	exception	as	a		FunctionExecutionException		.

You	may	optionally	add	an	additional		org.teiid.CommandContext		argument	as	the	first	parameter.	The		CommandContext	
interface	provides	access	to	information	about	the	current	command,	such	as	the	executing	user,	Subject,	the	vdb,	the	session
id,	etc.	This		CommandContext		parameter	should	not	be	declared	in	the	function	metadata.

Sample	UDF	code

package	org.something;

public	class	TempConv

{

			/**

			*	Converts	the	given	Celsius	temperature	to	Fahrenheit,	and	returns	the

			*	value.

			*	@param	doubleCelsiusTemp

			*	@return	Fahrenheit

			*/

			public	static	Double	celsiusToFahrenheit(Double	doubleCelsiusTemp)

			{

						if	(doubleCelsiusTemp	==	null)

						{

									return	null;

						}

						return	(doubleCelsiusTemp)*9/5	+	32;

			}

}

Sample	UDAF	code

package	org.something;

public	static	class	SumAll	implements	UserDefinedAggregate<Integer>	{

				private	boolean	isNull	=	true;

				private	int	result;

				public	void	addInput(Integer...	vals)	{

								isNull	=	false;

								for	(int	i	:	vals)	{

												result	+=	i;

								}

				}

				@Override

				public	Integer	getResult(org.teiid.CommandContext	commandContext)	{

								if	(isNull)	{

												return	null;

								}

								return	result;

				}

				@Override

				public	void	reset()	{

								isNull	=	true;

								result	=	0;

				}

}

Sample	CommandContext	Usage

package	org.something;

public	class	SessionInfo

{

Support	for	User-Defined	Functions(Non-Pushdown)

281

			/**

			*	@param	context

			*	@return	the	created	Timestamp

			*/

			public	static	Timestamp	sessionCreated(CommandContext	context)

			{

						return	new	Timestamp(context.getSession().getCreatedTime());

			}

}

The	corresponding	UDF	would	be	declared	as	Timestamp	sessionCreated().

Post	Code	Activities

After	coding	the	functions	you	should	compile	the	Java	code	into	a	Java	Archive	(JAR)	file.

Zip	Deployment

The	JAR	file	may	be	placed	in	your	VDB	under	the	"/lib"	directory.	It	will	automatically	be	used	for	the	VDB	classloader
classpath	when	deployed.

AS	Module

Create	a	WildFly	module	with	the	JAR	file	under	<jboss-as>/modules	directory	and	define	the	module	on	the	-vdb.xml	file	as
shown	below	example

<vdb	name="{vdb-name}"	version="1">

				<property	name	="lib"	value	="{module-name}"></property>

					...

</vdb>

The	lib	property	value	may	contain	a	space	delimited	list	of	module	names	if	more	than	one	dependency	is	needed.

Support	for	User-Defined	Functions(Non-Pushdown)

282

Archetype	Template	UDF	Project
One	way	to	start	developing	a	custom	user	defined	function	(UDF)	is	to	create	a	project	using	the	Teiid	UDF	archetype	template.
When	the	project	is	created	from	the	template,	it	will	create	a	maven	project	that	contains	an	example	java	class	and	the	assembly
resources	for	packaging	as	a	module	or	a	CLI	script	for	configuring	via	jboss-cli.

Note The	project	will	be	created	as	an	independent	project	and	has	no	parent	maven	dependencies.	It’s	designed	to	be
built	independent	of	building	Teiid.

You	have	2	options	for	creating	a	UDF	project;	in	Eclipse	by	creating	a	new	maven	project	from	the	arche	type	or	by	using	the
command	line	to	generate	the	project.

Create	Project	in	Eclipse
To	create	a	Java	project	in	Eclipse	from	an	arche	type,	perform	the	following:

Open	the	JAVA	perspective

From	the	menu	select	File	–>	New	—>	Other

In	the	tree,	expand	Maven	and	select	Maven	Project,	press	Next

On	the	"Select	project	name	and	Location"	window,	you	can	accept	the	defaults,	press	Next

On	the	"Select	an	Archetype"	window,	select	Configure	button

Add	the	remote	catalog:	link:http://central.maven.org/maven2/	then	click	OK	to	return

Enter	"teiid"	in	the	filter	to	see	the	Teiid	arche	types.

Select	the	udf-archetype	v12.0.0,	then	press	Next

Enter	all	the	information	(i.e.,	Group	ID,	Artifact	ID,	method-name,	method-args,	return-type	etc.)	needed	to	generate	the
project,	then	click	Finish

The	project	will	be	created	and	name	according	to	the	*ArtifactID*.

Create	Project	using	Command	Line

Note make	sure	the	link:http://central.maven.org/maven2/	repository	is	accessible	via	your	maven	settings.

To	create	a	custom	translator	project	from	the	command	line,	you	can	use	the	following	template	command:

TEMPLATE

mvn	archetype:generate																									\

		-DarchetypeGroupId=org.teiid.arche-types															\

		-DarchetypeArtifactId=udf-archetype										\

		-DarchetypeVersion=${archetypeVersion}					\

		-DgroupId=${groupId}																		\

		-DartifactId=${udf-artifact-id}			\

		-Dpackage=${package}				\

		-Dversion=0.0.1-SNAPSHOT						\

		-Dudf-name=${functionName}		\

		-Dmethod-name=${methodName}						\

		-Dmethod-args=${methodArguments}			\

		-Dreturn-type=${returnType}						\

Support	for	User-Defined	Functions(Non-Pushdown)

283

		-Dteiid-version=${teiid-version}

where:

		-DarchetypeGroupId				-		is	the	group	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeArtifactId	-		is	the	artifact	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeVersion				-		is	the	version	for	the	arche	type	to	use	to	generate

		-DgroupId					-		(user	defined)	group	ID	for	the	new	udf	project	pom.xml

		-DartifactId						-		(user	defined)	artifact	ID	for	the	new	udf	project	pom.xml

		-Dpackage					-		(user	defined)	the	package	structure	where	the	java,	module	and	resource	files	will	be	creat

ed

		-Dversion					-		(user	defined)	the	version	that	the	new	connector	project	pom.xml	will	be

		-Dudf-name								-		(user	defined)	the	name	to	give	the	new	user	defined	function,	will	become	the	Class	Nam

e

		-Dmethod-name									-		(user	defined)	the	name	of	the	method	that	will	be	configured	in	the	model	procedure

		-Dmethod-args									-		(user	defined)	the	arguments	the	method	will	accept.		'Type	name[,	Type	name[,...]]	

	Example:		'String	arg0'	or	'String	arg0,	integer	arg1'

		-Dreturn-type									-		(user	defined)	the	data	type	of	the	value	returned	by	the	method

		-Dteiid-version			-		the	Teiid	version	the	connector	will	depend	upon

EXAMPLE

this	is	an	example	of	the	template	that	can	be	run:

mvn	archetype:generate																											\

		-DarchetypeGroupId=org.teiid.arche-types															\

		-DarchetypeArtifactId=udf-archetype										\

		-DarchetypeVersion=					\

		-DgroupId=org.example			\

		-DartifactId=udf-function				\

		-Dpackage=org.example.function				\

		-Dversion=0.0.1-SNAPSHOT						\

		-Dudf-name=Function	\

		-Dmethod-name=function						\

		-Dmethod-args='String	arg1'			\

		-Dreturn-type=String				\

		-Dteiid-version=${teiid-version}

When	executed,	you	will	be	asked	to	confirm	the	package	property

[INFO]	Archetype	repository	not	defined.	Using	the	one	from	[org.teiid.arche-types:udf-archetype:9.0.1]	found	in	catalog	local
[INFO]	Using	property:	groupId	=	org.example	[INFO]	Using	property:	artifactId	=	udf-function	[INFO]	Using	property:	version
=	0.0.1-SNAPSHOT	[INFO]	Using	property:	package	=	org.example.function	[INFO]	Using	property:	method-args	=	String	arg1
[INFO]	Using	property:	method-name	=	function	[INFO]	Using	property:	return-type	=	String	[INFO]	Using	property:	udf-name
=	Function	Confirm	properties	configuration:	groupId:	org.example	artifactId:	udf-function	version:	0.0.1-SNAPSHOT	package:
org.example.function	method-args:	String	arg1	method-name:	function	return-type:	String	udf-name:	Function	Y:	:	y

type	Y	(yes)	and	press	enter,	and	the	creation	of	the	udf	project	will	be	done

Upon	creation,	a	directory	based	on	the	_*artifactId*_	will	be	created,	that	will	

contain	the	project.	'cd'	into	that	directory	and	execute	a	test	build	to	confirm	

the	project	was	created	correctly:

[source,java]

mvn	clean	install

Support	for	User-Defined	Functions(Non-Pushdown)

284

This	should	build	successfully,	and	now	you	are	ready	to	start	adding	your	custom	

code.

Support	for	User-Defined	Functions(Non-Pushdown)

285

AdminAPI
In	most	circumstances	the	admin	operations	will	be	performed	through	the	admin	console,	but	it	is	also	possible	to	invoke	admin
functionality	directly	in	Java	(or	a	Java	scripting	language)	through	the	AdminAPI.

All	classes	for	the	AdminAPI	are	in	the	client	jar	under	the		org.teiid.adminapi		package.

Connecting

An	AdminAPI	connection,	which	is	represented	by	the		org.teiid.adminapi.Admin		interface,	is	obtained	through	the
	org.teiid.adminapi.AdminFactory.createAdmin		methods.		AdminFactory		is	a	singleton	in	the	teiid-jboss-admin	jar,	see
	AdminFactory.getInstance()	.	The		Admin		instance	automatically	tests	its	connection	and	reconnects	to	a	server	in	the	event	of
a	failure.	The		close		method	should	be	called	to	terminate	the	connection.

See	your	JBoss	installation	for	the	appropriate	admin	port	-	the	default	port	is	9999.

Admin	Methods
Admin	methods	exist	for	monitoring,	server	administration,	and	configuration	purposes.	Note	that	the	objects	returned	by	the
monitoring	methods,	such	as	getRequests,	are	read-only	and	cannot	be	used	to	change	server	state.	See	the	JavaDocs	for	all	of	the
details

AdminAPI

286

Custom	Logging
The	Teiid	system	provides	a	wealth	of	information	using	logging.	To	control	logging	level,	contexts,	and	log	locations,	you	should
be	familiar	with	container’s		standalone.xml		or		domain.xml		configuration	file	and	check	out	"logging"	subsystem.	Refer	to	the
Administrator’s	Guide	for	more	details	about	different	Teiid	contexts	available.

If	you	want	a	custom	log	handler,	follow	the	directions	to	write	a	custom	java.util.logging.Handler.	If	you	develop	a	custom
logging	Handler,	the	implementation	class	along	should	be	placed	as	a	jar	in	"org.jboss.teiid"	module	and	define	its	name	in	the
module.xml	file	as	part	of	the	module	along	with	any	dependencies	it	may	need.	See	below.

Command	Logging	API

If	you	want	to	build	a	custom	handler	for	command	logging	that	will	have	access	to	java.util.logging	LogRecords	to	the
"COMMAND_LOG"	context,	the	handler	will	receive	a	instance	of	LogRecord	message,	this	object	will	contain	a	parameter	of
type		org.teiid.logging.CommandLogMessage	.	The	relevant	Teiid	classes	are	defined	in	the	teiid-api-15.0.0.jar.	The
CommmdLogMessage	includes	information	about	vdb,	session,	command	sql,	etc.	CommandLogMessages	are	logged	at	the
DEBUG	(user	queries	and	source	queries	on	the	.SOURCE	child	context),	and	TRACE	(query	plan)	levels.

Sample	CommandLogMessage	Usage

package	org.something;

import	java.util.logging.Handler;

import	java.util.logging.LogRecord;

public	class	CommandHandler	extends	Handler	{

				@Override

				public	void	publish(LogRecord	record)	{

				CommandLogMessage	msg	=	(CommandLogMessage)record.getParameters()[0];

								//log	to	a	database,	trigger	an	email,	etc.

				}

				@Override

				public	void	flush()	{

				}

				@Override

				public	void	close()	throws	SecurityException	{

				}

}

Audit	Logging	API

If	you	want	to	build	a	custom	handler	for	command	logging	that	will	have	access	to	java.util.logging	LogRecords	to	the
"AUDIT_LOG"	context,	the	handler	will	receive	a	instance	of	LogRecord	message,	this	object	will	contain	a	parameter	of	type
	org.teiid.logging.AuditMessage	.	The		AuditMessage		includes	information	about	user,	the	action,	and	the	target(s)	of	the
action.	The	relevant	Teiid	classes	are	defined	in	the	teiid-api-15.0.0.jar.	AuditMessages	are	logged	at	the	DEBUG	level.
AuditMessages	are	used	for	both	data	role	validation	and	for	logon/logoff	events.	Only	logon	events	will	contain		LogonInfo	.

Sample	AuditMessage	Usage

package	org.something;

import	java.util.logging.Handler;

import	java.util.logging.LogRecord;

public	class	AuditHandler	extends	Handler	{

				@Override

Custom	Logging

287

http://docs.oracle.com/javase/6/docs/api/java/util/logging/Handler.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/LogRecord.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/LogRecord.html

				public	void	publish(LogRecord	record)	{

				AuditMessage	msg	=	(AuditMessage)record.getParameters()[0];

								//log	to	a	database,	trigger	an	email,	etc.

				}

				@Override

				public	void	flush()	{

				}

				@Override

				public	void	close()	throws	SecurityException	{

				}

}

Configuration
Now	that	you	have	developed	a	custom	handler	class,	now	package	implementation	in	Jar	file,	then	copy	this	Jar	file	into		<jboss-
as7>/modules/org/jboss/teiid/main		folder,	and	edit		module.xml		file	in	the	same	directory	and	add

			<resource-root	path="{your-jar-name}.jar"	/>

then	use	the	cli	to	update	the	logging	configuration,	such	as	shown	with	the	auditcommand	scripts	in	the	bin/scripts	directory	or
edit		standalone-teiid.xml		or		domain.xml		file	by	locating	the	"logging"	subsystem	and	add	the	following	entries:

			<custom-handler	name="COMMAND"	class="org.teiid.logging.CommandHandler"

					module="org.jboss.teiid">

			</custom-handler>

			..other	entries

			<logger	category="org.teiid.COMMAND_LOG">

							<level	name="DEBUG"/>

							<handlers>

											<handler	name="COMMAND"/>

							</handlers>

			</logger>

Change	the	above	configuration	accordingly	for	AuditHandler,	if	you	are	working	with	Audit	Messages.

Custom	Logging

288

Runtime	Updates
Teiid	supports	several	mechanisms	for	updating	the	runtime	system.

Data	Updates

Data	change	events	are	used	by	Teiid	to	invalidate	result	set	cache	entries.	Result	set	cache	entries	are	tracked	by	the	tables	that
contributed	to	their	results.	By	default	Teiid	will	capture	internal	data	events	against	physical	sources	and	distribute	them	across
the	cluster.	This	approach	has	several	limitations.	First	updates	are	scoped	only	to	their	originating	VDB/version.	Second	updates
made	out	side	of	Teiid	are	not	captured.	To	increase	data	consistency	external	change	data	capture	tools	can	be	used	to	send	events
to	Teiid.	From	within	a	Teiid	cluster	the		org.teiid.events.EventDistributorFactory		and
	org.teiid.events.EventDistributor		can	be	used	to	distribute	change	events.	The		EventDistributorFactory		can	be	looked	up
by	its	name	"teiid/event-distributor-factory".	See	Programmatic	Control	for	a	dataModification	example.

When	externally	capturing	all	update	events,	"detect-change-events"	property	in	the	teiid	subsystem	in	can	be	set	to	false,	to	not
duplicate	change	events.	By	default,	this	property	is	set	to	true.

Note Using	the		org.teiid.events.EventDistributor		interface	you	can	also	update	runtime	metadata.	Please	check
the	API.

The	use	of	the	other		EventDistributor		methods	to	manually	distribute	other	events	is	not	always	necessary.	Check	the	System
Procedures	for	SQL	based	updates.

Runtime	Metadata	Updates

Runtime	updates	via	system	procedures	and	DDL	statements	are	by	default	ephemeral.	They	are	effective	across	the	cluster	only
for	the	currently	running	vdbs.	With	the	next	vdb	start	the	values	will	revert	to	whatever	is	stored	in	the	vdb.	Updates	may	be
made	persistent	though	by	configuring	a		org.teiid.metadata.MetadataRepository	.	An	instance	of	a		MetadataRepository		can
be	installed	via	the	vdb.xml	file	in	the	META-INF	directory	or	use	a	VDB	file	as	below.

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="VIRTUAL">

									<metadata	type="{jboss-as-module-name}"></metadata>

				</model>

</vdb>

In	the	above	code	fragment,	replace	the	{jboss-as-module-name}	with	a	WildFly	module	name	that	has	library	that	implements
the		org.teiid.metadata.MetadataRepository		interface	and	defines	file	"META-
INF/services/org.teiid.metadata.MetadataRepository"	with	name	of	the	implementation	file.

The		MetadataRepository		repository	instance	may	fully	implement	as	many	of	the	methods	as	needed	and	return	null	from	any
unneeded	getter.

It	is	not	recommended	to	directly	manipulate		org.teiid.metadata.AbstractMetadataRecord		instances.	System	procedures	and
DDL	statements	should	be	used	instead	since	the	effects	will	be	distributed	through	the	cluster	and	will	not	introduce
inconsistencies.

	org.teiid.metadata.AbstractMetadataRecord		objects	passed	to	the		MetadataRepository		have	not	yet	been	modified.	If	the
	MetadataRepository		cannot	persist	the	update,	then	a		RuntimeException		should	be	thrown	to	prevent	the	update	from	being
applied	by	the	runtime	engine.

Runtime	Updates

289

The	MetadataRepository	can	be	accessed	by	multiple	threads	both	during	load	or	at	runtime	with	through	DDL	statements.	Your
implementation	should	handle	any	needed	synchronization.

Costing	Updates

See	the	Reference	for	the	system	procedures		SYSADMIN.setColumnStats		and		SYSADMIN.setTableStats	.	To	make	costing
updates	persistent		MetadataRepository		implementations	should	be	provided	for:

TableStats	getTableStats(String	vdbName,	String	vdbVersion,	Table	table);

void	setTableStats(String	vdbName,	String	vdbVersion,	Table	table,	TableStats	tableStats);

ColumnStats	getColumnStats(String	vdbName,	String	vdbVersion,	Column	column);

void	setColumnStats(String	vdbName,	String	vdbVersion,	Column	column,	ColumnStats	columnStats);

Schema	Updates

See	the	Reference	for	supported	DDL	statements.	To	make	schema	updates	persistent	implementations	should	be	provided	for:

String	getViewDefinition(String	vdbName,	String	vdbVersion,	Table	table);

void	setViewDefinition(String	vdbName,	String	vdbVersion,	Table	table,	String	viewDefinition);

String	getInsteadOfTriggerDefinition(String	vdbName,	String	vdbVersion,	Table	table,	Table.TriggerEvent	trigger

Operation);

void	setInsteadOfTriggerDefinition(String	vdbName,	String	vdbVersion,	Table	table,	Table.TriggerEvent	triggerOp

eration,	String	triggerDefinition);

boolean	isInsteadOfTriggerEnabled(String	vdbName,	String	vdbVersion,	Table	table,	Table.TriggerEvent	triggerOpe

ration);

void	setInsteadOfTriggerEnabled(String	vdbName,	String	vdbVersion,	Table	table,	Table.TriggerEvent	triggerOpera

tion,	boolean	enabled);

String	getProcedureDefinition(String	vdbName,	String	vdbVersion,	Procedure	procedure);

void	setProcedureDefinition(String	vdbName,	String	vdbVersion,	Procedure	procedure,	String	procedureDefinition)

;

LinkedHashMap<String,	String>	getProperties(String	vdbName,	String	vdbVersion,	AbstractMetadataRecord	record);

void	setProperty(String	vdbName,	String	vdbVersion,	AbstractMetadataRecord	record,	String	name,	String	value);

Runtime	Updates

290

Custom	Metadata	Repository
If	the	provided	metadata	facilities	are	not	sufficient	then	a	developer	can	extend	the	MetadataRepository	class	provided	in	the
org.teiid.api	jar	to	plug-in	their	own	metadata	facilities	into	the	Teiid	engine.	For	example,	a	user	can	write	a	metadata	facility	that
is	based	on	reading	data	from	a	database	or	a	JCR	repository.

See	the	arche-type	for	creating	a	custom	metadata	repository.

Or	see	setting	up	the	build	environment	to	start	development.	For	Example:

Sample	Java	Code

import	org.teiid.metadata.MetadataRepository;

...

package	com.something;

public	class	CustomMetadataRepository	implements	MetadataRepository	{

				@Override

				public	void	loadMetadata(MetadataFactory	factory,	ExecutionFactory	executionFactory,	Object	connectionFacto

ry)

								throws	TranslatorException	{

								/*	Provide	implementation	and	fill	the	details	in	factory	*/

								...

				}

}

Then	build	a	JAR	archive	with	above	implementation	class	and	create	file	a	named	org.teiid.metadata.MetadataRepository	in	the
META-INF/services	directory	with	contents:

com.something.CustomMetadataRepository

Once	the	JAR	file	has	been	built,	it	needs	to	be	deployed	in	the	WildFly	as	a	module	under	<jboss-as>/modules	directory.	Follow
the	below	steps	to	create	a	module.

Create	a	directory	<jboss-as>/modules/com/something/main

Under	this	directory	create	a	"module.xml"	file	that	looks	like

Sample	module.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<module	xmlns="urn:jboss:module:1.0"	name="com.something">

				<resources>

								<resource-root	path="something.jar"	/>

				</resources>

				<dependencies>

								<module	name="javax.api"/>

								<module	name="org.teiid.common-core"/>

								<module	name="org.teiid.teiid-api"	/>

				</dependencies>

</module>

Copy	the	jar	file	under	this	same	directory.	Make	sure	you	add	any	additional	dependencies	if	required	by	your
implementation	class	under	dependencies.

Restart	the	server

The	below	XML	fragment	shows	how	to	configure	the	VDB	with	the	custom	metadata	repository	created

Custom	Metadata	Repository

291

https://github.com/teiid/teiid-tools/tree/master/arche-types/metadatarepository-archetype

Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="{metadata-repo-module}"></metadata>

				</model>

</vdb>

Now	when	this	VDB	gets	deployed,	it	will	call	the	CustomMetadataRepository	instance	for	metadata	of	the	model.	Using	this	you
can	define	metadata	for	single	model	or	for	the	whole	VDB	pragmatically.	Be	careful	about	holding	state	and	synchronization	in
your	repository	instance.

Development	Considerations

	MetadataRepository		instances	are	created	on	a	per	vdb	basis	and	may	be	called	concurrently	for	the	load	of	multiple
models.

See	the		MetadataFactory		and	the		org.teiid.metadata		package	javadocs	for	metadata	construction	methods	and	objects.
For	example	if	you	use	your	own	DDL,	then	call	the		MetadataFactory.parse(Reader)		method.	If	you	need	access	to	files	in
a	VDB	zip	deployment,	then	use	the		MetadataFactory.getVDBResources		method.

Use	the		MetadataFactory.addPermission		and	add		MetadataFactory.addColumnPermission		method	to	grant	permissions
on	the	given	metadata	objects	to	the	named	roles.	The	roles	should	be	declared	in	your	vdb.xml,	which	is	also	where	they	are
typically	tied	to	container	roles.

Custom	Metadata	Repository

292

PreParser
If	it	is	desirable	to	manipulate	incoming	queries	prior	to	being	handled	by	Teiid	logic,	then	a	custom	pre-parser	can	be	installed.

A	PreParser	may	be	set	at	a	global	level	for	all	VDBs,	or	at	a	per	VDB	level.	If	both	are	specified	the	global	PreParser	will	be
called	first,	then	the	per	VDB	PreParser.

Use	the	PreParser	interface	provided	in	the	org.teiid.api	jar	to	plug-in	a	pre-parser	for	the	Teiid	engine.	See	Setting	up	the	build
environment	to	start	development.	For	Example:

Sample	Java	Code

import	org.teiid.PreParser;

...

package	com.something;

public	class	CustomPreParser	implements	PreParser	{

				@Override

				public	String	preParse(String	command,	CommandContext	context)	{

								//manipulate	the	command

				}

}

If	this	is	intended	to	be	a	global	PreParser,	then	create	a	file	named	org.teiid.PreParser	in	META-INF/services	directory	with
contents:

com.something.CustomPreParser

After	the	jar	has	been	built,	it	needs	to	be	deployed	in	the	WildFly	as	a	module	under	<jboss-as>/modules	directory.	Follow	the
below	steps	to	create	a	module.

Create	a	directory	<jboss-as>/modules/com/something/main

Under	this	directory	create	a		module.xml		file	that	looks	like

Sample	module.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<module	xmlns="urn:jboss:module:1.0"	name="com.something">

				<resources>

								<resource-root	path="something.jar"	/>

				</resources>

				<dependencies>

								<module	name="javax.api"/>

								<module	name="javax.resource.api"/>

								<module	name="org.teiid.common-core"/>

								<module	name="org.teiid.teiid.api"	/>

				</dependencies>

</module>

Copy	the	jar	file	under	this	same	directory.	Make	sure	you	add	any	additional	dependencies	if	required	by	your
implementation	class	under	dependencies.

If	this	is	a	global	PreParser,	then	use	the	cli	or	modify	the	configuration	to	set	the	preparser-module	in	the	Teiid	subsystem
configuration	to	the	appropriate	module	name.

PreParser

293

If	this	is	a	per	VDB	PreParser,	then	update	the	vdb	property	"preparser-class"	to	be	the	class	name	of	your	PreParser.	The
VDB	class	path	also	needs	to	be	updated	to	include	the	PreParser	module,	which	can	be	done	by	adding	the	module	name	to
the	"lib"	property.

Sample	vdb.xml	properties

<vdb	name="..."	version="...">

			<property	name="lib"	value="preparser-module-name"/>

			<property	name="preparser-class"	value="com.something.CustomPreParser"/>

			...

</vdb>

Restart	the	server	for	the	module	to	become	available.

Development	Considerations
Changing	the	incoming	query	to	a	different	type	of	statement	is	not	recommended	as	are	any	modifications	to	the	number	or
types	of	projected	symbols.

When	using	Teiid	Embedded	you	just	need	to	include	the	jar	with	the	PreParser	in	the	application	class	path	-	as	modules	are
not	used.

PreParser

294

Archetype	Template	PreParser	Project
One	way	to	start	developing	a	custom	preparser	is	to	create	a	project	using	the	Teiid	archetype	template.	When	the	project	is
created	from	the	template,	it	will	contain	an	example	class	and	resources	for	you	to	begin	adding	your	custom	logic.	Additionally,
the	maven	dependencies	are	defined	in	the	pom.xml	so	that	you	can	begin	compiling	the	classes.

Note The	project	will	be	created	as	an	independent	project	and	has	no	parent	maven	dependencies.	It’s	designed	to	be
built	independent	of	building	Teiid.

You	have	2	options	for	creating	a	translator	project;	in	Eclipse	by	creating	a	new	maven	project	from	the	arche	type	or	by	using
the	command	line	to	generate	the	project.

Create	Project	in	Eclipse
To	create	a	Java	project	in	Eclipse	from	an	arche	type,	perform	the	following:

Open	the	JAVA	perspective

From	the	menu	select	File	–>	New	—>	Other

In	the	tree,	expand	Maven	and	select	Maven	Project,	press	Next

On	the	"Select	project	name	and	Location"	window,	you	can	accept	the	defaults,	press	Next

On	the	"Select	an	Archetype"	window,	select	Configure	button

Add	the	remote	catalog:	link:http://central.maven.org/maven2/	then	click	OK	to	return

Enter	"teiid"	in	the	filter	to	see	the	Teiid	arche	types.

Select	the	preparser-archetype,	then	press	Next

Enter	all	the	information	(i.e.,	Group	ID,	Artifact	ID,	etc.)	needed	to	generate	the	project,	then	click	Finish

The	project	will	be	created	and	name	according	to	the	*ArtifactID*.

Create	Project	using	Command	Line

Note make	sure	the	link:http://central.maven.org/maven2/	repository	is	accessible	via	your	maven	settings.

To	create	a	custom	preparser	project	from	the	command	line,	you	can	use	the	following	template	command:

TEMPLATE

mvn	archetype:generate											\

		-DarchetypeGroupId=org.teiid.arche-types															\

		-DarchetypeArtifactId=preparser-archetype										\

		-DarchetypeVersion=${archetypeVersion}					\

		-DgroupId=${groupId}																		\

		-DartifactId=${preparser-artifact-id}	\

		-Dpackage=${package}				\

		-Dversion=0.0.1-SNAPSHOT						\

		-Dclass-name=${className}					\

		-Dteiid-version=${teiidVersion}

where:

Archetype	Template	PreParser	Project

295

		-DarchetypeGroupId				-		is	the	group	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeArtifactId	-		is	the	artifact	ID	for	the	arche	type	to	use	to	generate

		-DarchetypeVersion				-		is	the	version	for	the	arche	type	to	use	to	generate

		-DgroupId					-		(user	defined)	group	ID	for	the	new	preparser	project	pom.xml

		-DartifactId						-		(user	defined)	artifact	ID	for	the	new	example	project	pom.xml

		-Dpackage					-		(user	defined)	the	package	structure	where	the	java,	module	and	resource	files	will	be	creat

ed

		-Dversion					-		(user	defined)	the	version	that	the	new	connector	project	pom.xml	will	be

		-Dclass-name						-		(user	defined)	the	class	name	to	give	the	new	user	preparser,	will	become	the	Class	Name

		-Dteiid-version			-		the	Teiid	version	the	connector	will	depend	upon

EXAMPLE

this	is	an	example	of	the	template	that	can	be	run:

mvn	archetype:generate													\

		-DarchetypeGroupId=org.teiid.arche-types															\

		-DarchetypeArtifactId=preparser-archetype										\

		-DarchetypeVersion=12.0.0				\

		-DgroupId=org.example			\

		-DartifactId=preparser-mypreparser				\

		-Dpackage=org.example.mypreparser				\

		-Dversion=0.0.1-SNAPSHOT						\

		-Dclass-name=MyPreParser						\

		-Dteiid-version=15.0.0

When	executed,	you	will	be	asked	to	confirm	the	package	property

[INFO]	Using	property:	groupId	=	org.example

[INFO]	Using	property:	artifactId	=	preparser-mypreparser

[INFO]	Using	property:	version	=	0.0.1-SNAPSHOT

[INFO]	Using	property:	package	=	org.example.mypreparser

[INFO]	Using	property:	class-name	=	MyPreParser

[INFO]	Using	property:	teiid-version	=	15.0.0

Confirm	properties	configuration:

groupId:	org.teiid.preparser

artifactId:	preparser-myParser

version:	0.0.1-SNAPSHOT

package:	org.example.mypreparser

class-name:	MyPreParser

teiid-version:	15.0.0

	Y:	:	y

type	Y	(yes)	and	press	enter,	and	the	creation	of	the	preparser	project	will	be	done

Upon	creation,	a	directory	based	on	the	*artifactId*	will	be	created,	that	will	contain	the	project.	'cd'	into	that	directory	and
execute	a	test	build	to	confirm	the	project	was	created	correctly:

	mvn	clean	install

This	should	build	successfully,	and	now	you	are	ready	to	start	adding	your	custom	code.

Archetype	Template	PreParser	Project

296

Embedded	Guide
Embedded	is	a	light-weight	version	of	Teiid	for	use	in	any	Java	8+	JRE.	WildFly	nor	any	application	server	is	not	required.	This
feature/kit	are	still	evolving.	Please	consult	the	source	examples	and	even	unit	tests	utilizing	the	EmbeddedServer	for	a	more
complete	guide	as	to	its	use.

Table	of	Contents
Configuration
The	Classpath

Embedded	Using	Maven
VDB	Deployment
Access	from	client	applications
Security

Example
Transactions
AdminApi
Logging
Other	Differences	Between	Teiid	Embedded	and	an	AS	Deployment

Configuration

The	primary	way	to	configure	Teiid	Embedded	is	with	the		EmbeddedConfiguration		class.	It	is	provided	to	the		EmbeddedServer	
at	start-up	and	dictates	much	of	the	behavior	of	the	embedded	instance.	From	there	the	running	server	instance	may	have
translators	and	VDBs	deployed	as	needed.	Additional	modifications	to	the		EmbeddedConfiguration		after	the	server	is	started	will
not	have	an	effect.

In	many	cases	an		EmbeddedConfiguration		instance	can	just	be	instantiated	and	passed	to	the		EmbeddedServer		without	the	need
to	set	additional	properties.	Many	properties,	including	those	used	to	configure	the	BufferManager,	will	be	given	a	similar	name	to
their	server	side	counter	part	-	for	example	setProcessorBatchSize.

Important
Most	of	the	default	configuration	values	for	memory	and	threads	assume	that	there	is	only	one	Teiid	instance
in	the	vm.	If	you	are	using	multiple	Teiid	Embedded	instances	in	the	same	vm,	then	memory	and	thread
resources	should	be	configured	manually.

The	Classpath

Embedded	Using	Maven

Your	application	is	responsible	for	having	the	appropriate	classpath	to	utilize	Teiid	embedded.	Typically	you	will	want	all
transitive	dependencies	from	referenced	Teiid	artifacts	to	be	included.	Optional	dependencies,	such	as	Hibernate	core,	will	be
needed	for	specific	features	-	such	as	utilizing	the	JDBC	translator	support	for	dependent	joins	using	temp	tables.

Note With	Teiid	10+	the	maven	coordinate	group	for	most	Teiid	artifacts	changed	from	org.jboss.teiid	to	just	org.teiid.
Please	update	your	pom	files	accordingly.

Some	of	the	Teiid	transitive	dependencies	have	known	vulnerabilities.	WildFly/Teiid	addresses	this	by	introducing	managed
dependency	overrides.	It	is	recommended	that	you	include	these	overrides	in	your	usage	of	Teiid	Embedded	by	importing	the
Teiid	parent	pom	in	your	dependency	management	section:

<dependencyManagement>

Embedded	Guide

297

		<dependencies>

				<dependency>

						<groupId>org.teiid</groupId>

						<artifactId>teiid-parent</artifactId>

						<version>${version.teiid}</version>

						<type>pom</type>

						<scope>import</scope>

				</dependency>

Dependencies

If	you	are	trying	run	Teiid	Embedded	as	a	Maven	based	project,	the		runtime	,		admin	,		connector	,		translator		dependencies
necessary	are

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-runtime</artifactId>

</dependency>

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-admin</artifactId>

</dependency>

<dependency>

				<groupId>org.teiid.connectors</groupId>

				<artifactId>translator-SOURCE</artifactId>

</dependency>

<dependency>

				<groupId>org.teiid.wildfly.connectors</groupId>

				<artifactId>connector-SOURCE</artifactId>

</dependency>

You	would	include	all	translator/connectors	needed	by	your	project.

Optional	Libraries

If	you	include	a	dependency	to	org.teiid:teiid-data-quality,	the	osdq	data	quality	functions	will	be	available	for	use	with
Embedded.

If	you	include	a	dependency	to	org.teiid:cache-infinispan,	Infinispan	will	be	used	for	caching.

If	you	do	not	need	XML	type	support	including	XPath	and	SQL/XML	functions	like	XMLTABLE,	then	you	may	also	choose	to
exclude	saxon,	xom,	and	nux	from	usage	by	the	runtime	by	using	excludes:

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-runtime</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-optional-xml</artifactId>

								</exclusion>

				</exclusions>

</dependency>

Some	geospatial	support	requires	additional	dependencies.	If	you	need	no	or	minimal	support	(no	geojson	nor	projection),	then
you	may	also	choose	to	exclude	this	from	the	runtime	by	using	excludes:

<dependency>

Embedded	Guide

298

				<groupId>org.teiid</groupId>

				<artifactId>teiid-runtime</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-optional-geo</artifactId>

								</exclusion>

				</exclusions>

</dependency>

Some	json	support	requires	additional	dependencies.	If	you	need	no	or	minimal	support	(no	jsonpath	support),	then	you	may	also
choose	to	exclude	this	from	the	runtime	by	using	excludes:

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-runtime</artifactId>

				<exclusions>

								<exclusion>

												<groupId>org.teiid</groupId>

												<artifactId>teiid-optional-json</artifactId>

								</exclusion>

				</exclusions>

</dependency>

VDB	Deployment

VDBs	may	be	deployed	in	several	ways	in	Embedded.

VDB	Metadata	API

VDB	deployment	can	be	done	directly	through	VDB	metadata	objects	that	are	the	underpinning	of	vdb.xml	deployment.	Models
(schemas)	are	deployed	as	a	set	to	form	a	named	vdb	-	see	the		EmbeddedServer.deployVDB		method.

XML	Deployment

Similar	to	a	server	based	-vdb.xml	deployment	an		InputStream		may	be	given	to	a	vdb.xml	file	-	see	the
	EmbeddedServer.deployVDB(InputStream)		method.

Zip	Deployment

Similar	to	a	server	based	.vdb	deployment	a		URL		may	be	given	to	a	zip	file	-	see	the		EmbeddedServer.deployVDBZip		method.
The	use	of	the	zip	lib	for	dependency	loading	is	not	enabled	in	Embedded.

See	VDB	Guide	and	Metadata	Repositories	for	more	on	a	typical	vdb	file	and	zip	structures.

Support	Teiid	Designer	7	and	later	VDBs	is	deprecated	and	are	subject	to	all	of	the	limitations/differences	highlighted	in	this
guide.	To	use	a	Teiid	Designer	VDB	requires	including	the	teiid-metadata	dependency:

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-metadata</artifactId>

</dependency>

Translators

Translators	instances	can	be	scoped	to	a	VDB	in	AS	using	declarations	in	a	vdb.xml	file,	however	named	instances	in	embedded
are	scoped	to	the	entire		EmbeddedServer		and	must	be	registered	via	the		EmbeddedServer.addTranslator		methods.	Note	that
there	are	three		addTranslator		methods:

Embedded	Guide

299

	addTranslator(Class<?	extends	ExecutionFactory>	clazz)		-	Adds	a	default	instance	of	the	ExecutionFactory,	using	the
default	name	either	from	the	Translator	annotation	or	the	class	name.

	addTranslator(String	name,	ExecutionFactory<?,	?>	ef)		-	Adds	a	pre-initialized	(ExecutionFactory.start()	must	have
already	been	called)	instance	of	the	ExecutionFactory,	using	the	given	translator	name.	The	instance	will	be	shared	for	all
usage.

	addTranslator(String	name,	String	type,	Map<String,	String>	properties)		-	Adds	a	definition	of	an	override
translator	-	this	is	functionally	equivalent	to	using	a	vdb.xml	translator	override.

A	new	server	instance	does	not	assume	any	translators	are	deployed	and	does	not	perform	any	sort	of	library	scanning	to	find
translators.

Sources

The	Embedded	Server	will	still	attempt	to	lookup	the	given	JNDI	connection	factory	names	via	JNDI.	In	most	non-container
environments	it	is	likely	that	no	such	bindings	exist.	In	this	case	the	Embedded	Server	instance	must	have
	ConnectionFactoryProvider		instances	manually	registered,	either	using	the		EmbeddedServer.addConnectionFactory		method,
or	the			EmbeddedServer.addConnectionFactoryProvider		method	to	implement		ConnectionFactoryProvider		registering.	Note
that	the	Embedded	Server	does	not	have	built-in	pooling	logic,	so	to	make	better	use	of	a	standard		java.sql.DataSource		or	to
enable	proper	use	of		javax.sql.XADataSource		you	must	first	configure	the	instance	via	a	third-party	connection	pool.

Example	-	Deployment

EmbeddedServer	es	=	new	EmbeddedServer();

EmbeddedConfiguration	ec	=	new	EmbeddedConfiguration();

//set	any	configuration	properties

ec.setUseDisk(false);

es.start(ec);

//example	of	adding	a	translator	by	pre-initialized	ExecutionFactory	and	given	translator	name

H2ExecutionFactory	ef	=	new	H2ExecutionFactory()

ef.setSupportsDirectQueryProcedure(true);

ef.start();

es.addTranslator("translator-h2",	ef);

//add	a	Connection	Factory	with	a	third-party	connection	pool

DataSource	ds	=	EmbeddedHelper.newDataSource("org.h2.Driver",	"jdbc:h2:mem://localhost/~/account",	"sa",	"sa");

es.addConnectionFactory("java:/accounts-ds",	ds);

//add	a	vdb

//physical	model

ModelMetaData	mmd	=	new	ModelMetaData();

mmd.setName("my-schema");

mmd.addSourceMapping("my-schema",	"translator-h2",	"java:/accounts-ds");

//virtual	model

ModelMetaData	mmd1	=	new	ModelMetaData();

mmd1.setName("virt");

mmd1.setModelType(Type.VIRTUAL);

mmd1.setSchemaSourceType("ddl");

mmd1.setSchemaText("create	view	\"my-view\"	OPTIONS	(UPDATABLE	'true')	as	select	*	from	\"my-table\"");

es.deployVDB("test",	mmd,	mmd1);

Secured	Data	Sources

If	Source	related	security	authentication,	for	example,	if	you	want	connect/federate/integrate	Twitter	supplied	rest	source,	a
security	authentication	is	a	necessary,	the	following	steps	can	use	to	execute	security	authentication:

1.	 refer	to	Secure	Embedded	with	PicketBox	start	section	to	develop	a	SubjectFactory,

Embedded	Guide

300

2.	 initialize	a	ConnectionManager	with	ironjacamar	libaries,	set	SubjectFactory	to	ConnectionManager

3.	 use	the	following	method	to	create	ConnectionFactory

Example	-	Secured	Data	Sources

WSManagedConnectionFactory	mcf	=	new	WSManagedConnectionFactory();

NoTxConnectionManagerImpl	cm	=	new	NoTxConnectionManagerImpl();

cm.setSecurityDomain(securityDomain);

cm.setSubjectFactory(new	EmbeddedSecuritySubjectFactory(authConf))

Object	connectionFactory	=	mcf.createConnectionFactory(cm);

server.addConnectionFactory("java:/twitterDS",	connectionFactory);

twitter-as-a-datasource	is	a	completed	example.

Access	from	client	applications

Typically	when	Teiid	is	deployed	as	Embedded	Server,	and	if	your	end	user	application	is	also	deployed	in	the	same	virtual
machine	as	the	Teiid	Embedded,	you	can	use	Local	JDBC	Connection,	to	access	to	your	virtual	database.	For	example:

Example	-	Local	JDBC	Connection

EmbeddedServer	es	=	...

Driver	driver	=	es.getDriver();

Connection	conn	=	driver.connect("jdbc:teiid:<vdb-name>",	null);

//	do	work	with	conn;	create	statement	and	execute	it

conn.close();

This	is	the	most	efficient	method	as	it	does	not	impose	any	serialization	of	objects.

If	your	client	application	is	deployed	in	remote	VM,	or	your	client	application	is	not	a	JAVA	based	application	then	accesses	to	the
Teiid	Embedded	is	not	possible	through	above	mechanism.	In	those	situations,	you	need	to	open	a	socket	based	connection	from
remote	client	application	to	the	Embedded	Teiid	Server.	By	default,	when	you	start	the	Embedded	Teiid	Sever	it	does	not	add	any
capabilities	to	accept	remote	JDBC/ODBC	based	connections.	If	you	would	like	to	expose	the	functionality	to	accept	remote
JDBC/ODBC	connection	requests,	then	configure	necessary	transports	during	the	initialization	of	the	Teiid	Embedded	Server.
The	example	below	shows	a	sample	code	to	enable	a	ODBC	transport

Example	-	Remote	ODBC	transport

EmbeddedServer	es	=	new	EmbeddedServer()

SocketConfiguration	s	=	new	SocketConfiguration();

s.setBindAddress("<host-name>");

s.setPortNumber(35432);

s.setProtocol(WireProtocol.pg);

EmbeddedConfiguration	config	=	new	EmbeddedConfiguration();

config.addTransport(s);

es.start(config);

Example	-	SSL	transport

EmbeddedServer	server	=	new	EmbeddedServer();

...

EmbeddedConfiguration	config	=	new	EmbeddedConfiguration();

SocketConfiguration	socketConfiguration	=	new	SocketConfiguration();

SSLConfiguration	sslConfiguration	=	new	SSLConfiguration();

//Settings	shown	with	their	default	values

//sslConfiguration.setMode(SSLConfiguration.ENABLED);

//sslConfiguration.setAuthenticationMode(SSLConfiguration.ONEWAY);

//sslConfiguration.setSslProtocol(SocketUtil.DEFAULT_PROTOCOL);

//sslConfiguration.setKeymanagementAlgorithm(KeyManagerFactory.getDefaultAlgorithm());

Embedded	Guide

301

http://ironjacamar.org/
https://github.com/teiid/teiid-embedded-examples/tree/master/socialmedia-integration/twitter-as-a-datasource

//optionally	restrict	the	cipher	suites

//sslConfiguration.setEnabledCipherSuites("SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA");

//for	the	server	key

sslConfiguration.setKeystoreFilename("ssl-example.keystore");

sslConfiguration.setKeystorePassword("redhat");

sslConfiguration.setKeystoreType("JKS");

sslConfiguration.setKeystoreKeyAlias("teiid");

sslConfiguration.setKeystoreKeyPassword("redhat");

//for	two	way	ssl	set	a	truststore	for	client	certs

//sslConfiguration.setTruststoreFilename("ssl-example.truststore");

//sslConfiguration.setTruststorePassword("redhat");

socketConfiguration.setSSLConfiguration(sslConfiguration);

config.addTransport(socketConfiguration);

server.start(config);

if	you	want	to	add	a	JDBC	transport,	follow	the	instructions	above,	however	set	the	protocol	to		WireProtocol.teiid		and	choose
a	different	port	number.	Once	the	above	server	is	running,	you	can	use	same	instructions	as	Teiid	Server	to	access	Embedded	Teiid
Server	from	remote	client	application.	Note	that	you	can	add	multiple	transports	to	single	Embedded	Server	instance,	to	expose
different	transports.

Security

The	primary	interface	for	Teiid	embedded’s	security	is	the		org.teiid.security.SecurityHelper		in	the	engine	jar.	The
SecurityHelper	instance	is	associated	with	with	the	EmbeddedServer	via		EmbeddedConfiguration.setSecurityHelper	.	If	no
SecurityHelper	is	set,	then	no	authentication	will	be	performed.	A	SecurityHelper	controls	authentication	and	associates	a	security
context	with	a	thread.	How	a	security	context	is	obtained	can	depend	upon	the	security	domain	name.	The	default	security	domain
name	is		teiid-security		and	can	be	changed	via		EmbeddedConfiguration.setSecurityDomain	.	The	effective	security	domain
may	also	be	configured	via	a	transport	of	the	VDB.

See	the	JBoss	Security	Helper	source	for	an	example	of	expected	mechanics.

You	can	just	return	null	from	negotiateGssLogin	unless	you	want	to	all	GSS	authentications	from	JDBC/ODBC.

Example

embedded-portfolio-security	demonstrates	how	to	implement	security	authentication	in	Teiid	Embedded:

EmbeddedSecurityHelper	is	the	implementation	of		org.teiid.security.SecurityHelper	

users.properties	and	roles.properties	in	class	path	user	to	pre	define	users	and	roles

application-policy’s	name	in	authentication.conf	should	match	to	security
domain(EmbeddedConfiguration.setSecurityDomain)

Transactions

Transaction	processing	requires	setting	the		TransactionManager		in	the		EmbeddedConfiguration		used	to	start	the
	EmbeddedServer	.	A	client	facing		javax.sql.DataSource		is	not	provided	for	embedded.	However	the	usage	of	provided
	java.sql.Driver		should	be	sufficient	as	the	embedded	server	is	by	default	able	to	detect	thread	bound	transactions	and
appropriately	propagate	the	transaction	to	threads	launched	as	part	of	request	processing.	The	usage	of	local	connections	is	also
permitted.

Embedded	Guide

302

https://github.com/teiid/teiid/blob/master/jboss-integration/src/main/java/org/teiid/jboss/JBossSecurityHelper.java
https://github.com/teiid/teiid-embedded-examples/tree/master/embedded-portfolio-security
https://github.com/teiid/teiid-embedded-examples/blob/master/common/src/main/java/org/teiid/example/EmbeddedSecurityHelper.java
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/users.properties
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/roles.properties
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/common/src/main/resources/picketbox/authentication.conf

AdminApi

Embedded	provides	a	the		Admin		interface	via	the		EmbeddedServer.getAdmin		method.	Not	all	methods	are	implemented	for
embedded	-	for	example	those	that	deal	with	data	sources.	Also	the	deploy	method	may	only	deploy	VDB	xml	artifacts.

Logging

Teiid	by	default	use	JBoss	Logging,	which	will	utilize	JUL	(Java	Util	Logging)	or	other	common	logging	frameworks	depending
upon	their	presence	in	the	classpath.	Refer	to	Logging	in	Teiid	Embedded	for	details.

The	internal	interface	for	Teiid	embedded’s	logging	is		org.teiid.logging.Logger		in	teiid-api	jar.	The	Logger	instance	is
associated	with	the		org.teiid.logging.LogManager		via	static	method		LogManager.setLogListener()	.	You	may	alternatively
choose	to	directly	set	a		Logger		of	your	choice.

Other	Differences	Between	Teiid	Embedded	and	an	AS
Deployment

There	is	no	default	JDBC/ODBC	socket	transport	in	embedded.	You	are	expected	to	obtain	a		Driver		connection	via	the
	EmbeddedServer.getDriver		method.	If	you	want	remote	JDBC/ODBC	transport	see	above	on	how	to	add	a	transport.

A		MetadataRepository		is	scoped	to	a	VDB	in	AS,	but	is	scoped	to	the	entire		EmbeddedServer		instance	and	must	be
registered	via	the		EmbeddedServer.addMetadataRepository		method.

MDC	logging	values	are	not	available	as	Java	logging	lacks	the	concept	of	a	mapped	diagnostic	context.

Translator	overrides	in	vdb.xml	files	is	not	supported,	but	you	may	add	overridden	translators	using	the	addTranslator
methods	that	accept	an	ExecutionFactory	instance	or	a	property	set.

The	default	for	the	maximum	disk	space	used	by	the	buffer	manager	is	5	GB,	rather	than	50	GB.

VDB	imports	are	processed	only	at	deployment	time.	A	missing	vdb	import	results	in	a	failed	deployment.	If	the	imported
vdb	is	redployed	after	the	importing	vdb	is	deployed,	the	importing	vdb	is	not	redeployed.

Embedded	Guide

303

Logging	in	Teiid	Embedded
Teiid’s	LogManager	is	an	interface	to	a	single	logging	framework	that	is	easily	accessible	by	any	component.	Using	the
LogManager,	a	component	can	quickly	submit	a	log	message,	and	can	rely	upon	the	LogManager	to	determine

whether	that	message	is	to	be	recorded	or	discarded

where	to	send	any	recorded	messages

JBoss	Logging
JBoss	Logging	is	used	by	default.	The	JBoss	Logging	jar	is	already	in	the	kit	and	you	just	need	to	ensure	the	jboss-logging	library
is	in	your	class	path.	If	you	use	Maven,	add	the	dependency	as	shown	below:

<dependency>

				<groupId>org.jboss.logging</groupId>

				<artifactId>jboss-loggging</artifactId>

</dependency>

Bridging	with	JBoss	Logging
JBoss	LogManager	is	a	replacement	for	the	JDK	logging	system	LogManager	that	fixes	or	works	around	many	serious	problems
in	the	default	implementation.	To	use	JBoss	LogManager	with	JBoss	Logging,	the	only	need	to	do	is	add	jboss-logmanager	library
to	class	path.	If	use	Maven	to	pull	dependencies,	add	the	dependency	as	shown	below:

<dependency>

				<groupId>org.jboss.logging</groupId>

				<artifactId>jboss-logmanager</artifactId>

</dependency>

TeiidEmbeddedLogging	is	a	example	for	Logging	with	JBoss	LogManager.

A	sample	logging.properties	for	Teiid	Embedded:

loggers=sun.rmi,com.arjuna

logger.level=TRACE

logger.handlers=FILE,CONSOLE

logger.sun.rmi.level=WARN

logger.sun.rmi.useParentHandlers=true

logger.com.arjuna.level=WARN

logger.com.arjuna.useParentHandlers=true

handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler

handler.CONSOLE.level=INFO

handler.CONSOLE.formatter=COLOR-PATTERN

handler.CONSOLE.properties=autoFlush,target,enabled

handler.CONSOLE.autoFlush=true

Logging	in	Teiid	Embedded

304

https://github.com/teiid/teiid-embedded-examples/blob/master/embedded-portfolio-logging/src/main/java/org/teiid/example/TeiidEmbeddedLogging.java

handler.CONSOLE.target=SYSTEM_OUT

handler.CONSOLE.enabled=true

handler.FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler

handler.FILE.formatter=PATTERN

handler.FILE.properties=append,autoFlush,enabled,suffix,fileName

handler.FILE.constructorProperties=fileName,append

handler.FILE.append=true

handler.FILE.autoFlush=true

handler.FILE.enabled=true

handler.FILE.suffix=.yyyy-MM-dd

handler.FILE.fileName=target/teiid-embedded.log

formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter

formatter.PATTERN.properties=pattern

formatter.PATTERN.pattern=%d{yyyy-MM-dd	HH\:mm\:ss,SSS}	%-5p	\[%c\]	(%t)	%s%e%n

formatter.COLOR-PATTERN=org.jboss.logmanager.formatters.PatternFormatter

formatter.COLOR-PATTERN.properties=pattern

formatter.COLOR-PATTERN.pattern=%K{level}%d{HH\:mm\:ss,SSS}	%-5p	\[%c\]	(%t)	%s%e%n

Bridging	with	Log4j
To	bridge	JBoss	Logging	with	Log4j,	the	only	need	to	do	is	have	a	1.x	log4j	jar	in	your	class	path.

If	your	system	use	Log4j	as	logging	framework,	with	above	JBoss	LogManager	bridge	Log4j	functionality	and	steps	in	Bridging
with	JBoss	Logging,	it’s	easy	to	set	up	logging	framework	consistent	between	Teiid	Embedded	and	your	system.

Logging	in	Teiid	Embedded

305

Secure	Embedded	with	PicketBox
Secure	Embedded	with	PicketBox.

Table	of	Contents
Steps	of	implement	a	JAAS	authentication
How	to	develop	a	SecurityHelper
Embedded	Security	with	UsersRolesLoginModule
Embedded	Security	with	LdapExtLoginModule

Steps	of	implement	a	JAAS	authentication

PicketBox	is	a	Java	Security	Framework	that	build	on	top	of	JAAS.	PicketBox	is	configured	via	a	schema	formatted	Security
Configuration	File(security-config_5_0.xsd)	and	provides	various	LoginModule	Implementations	(UsersRolesLoginModule,
LdapExtLoginModule,	DatabaseServerLoginModule,	etc).	The	following	are	5	key	steps	to	execute	a	authentication:

//1.	establish	the	JAAS	Configuration	with	picketbox	authentication	xml	file

SecurityFactory.prepare();

//2.	load	picketbox	authentication	xml	file

PicketBoxConfiguration	config	=	new	PicketBoxConfiguration();

config.load(SampleMain.class.getClassLoader().getResourceAsStream("picketbox/authentication.conf"));

//3.	get	AuthenticationManager

AuthenticationManager	authManager	=	SecurityFactory.getAuthenticationManager(securityDomain);

//4.	execute	authentication

authManager.isValid(userPrincipal,	credString,	subject);

//5.	release	resource

SecurityFactory.release();

Teiid	Embedded	exposes	2	methods	for	security	authentication:

EmbeddedConfiguration.setSecurityHelper()	-	associated	with	a	org.teiid.security.SecurityHelper	in	the	engine	jar.	If	no
SecurityHelper	is	set,	then	no	authentication	will	be	performed.

EmbeddedConfiguration.setSecurityDomain()	-	associated	with	a	application-policy’s	name	in	Security	Configuration	file.	If
no	SecurityDomain	is	set,	then	a	default		teiid-security		will	be	used.

EmbeddedSecurityHelper	is	a	sample	implementation	of	SecurityHelper,	authentication.conf	is	a	sample	Security	Configuration
file.

How	to	develop	a	SecurityHelper

Add	’teiid-engine-VERSION.jar’to	classpath	is	necessary.	If	you	are	using	the	maven	to	pull	artifacts,	the	engine	dependency	can
added	as	below,

<dependency>

				<groupId>org.teiid</groupId>

				<artifactId>teiid-engine</artifactId>

</dependency>

Secure	Embedded	with	PicketBox

306

https://raw.githubusercontent.com/picketbox/picketbox/master/security-jboss-sx/jbosssx/src/main/resources/schema/security-config_5_0.xsd
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/java/org/teiid/example/EmbeddedSecurityHelper.java
https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/picketbox/authentication.conf

The	key	to	develop	a	SecurityHelper	is	implement	the	authenticate()	method.	PicketBox’s	5	key	steps	to	execute	an	authentication
which	depicted	in	Steps	of	implement	a	JAAS	authentication	is	shown	in	the	example	below:

@Override

public	SecurityContext	authenticate(String	securityDomain,	String	baseUserName,	Credentials	credentials,	String

	applicationName)	throws	LoginException	{

				SecurityFactory.prepare();

				try	{

								PicketBoxConfiguration	config	=	new	PicketBoxConfiguration();

								config.load(this.getClass().getClassLoader().getResourceAsStream("picketbox/authentication.conf"));

								AuthenticationManager	authManager	=	SecurityFactory.getAuthenticationManager(securityDomain);

								if	(authManager	!=	null){

												final	Principal	userPrincipal	=	new	SimplePrincipal(baseUserName);

												final	Subject	subject	=	new	Subject();

												final	String	credString	=	credentials==null?null:new	String(credentials.getCredentialsAsCharArray()

);

												final	String	domain	=	securityDomain;

												boolean	isValid	=	authManager.isValid(userPrincipal,	credString,	subject);

												if	(isValid)	{

																SecurityContext	securityContext	=	AccessController.doPrivileged(new	PrivilegedAction<SecurityCo

ntext>(){

																				@Override

																				public	SecurityContext	run()	{

																								SecurityContext	sc;

																								try	{

																												sc	=	SecurityContextFactory.createSecurityContext(userPrincipal,	credString,	subjec

t,	domain);

																								}	catch	(Exception	e)	{

																												throw	new	RuntimeException(e);

																								}

																								return	sc;

																				}});

																return	securityContext;

												}

								}

				}	finally	{

								SecurityFactory.release();

				}

				throw	new	LoginException("The	username	"	+		baseUserName	+	"	and/or	password	could	not	be	authenticated	by	

security	domain	"	+	securityDomain	+	".");

}

You	can	just	return	null	from	negotiateGssLogin	unless	you	want	to	all	GSS	authentications	from	JDBC/ODBC.

Embedded	Security	with	UsersRolesLoginModule
Add	the	following	content	to	PicketBox	Security	Configuration	file:

<application-policy	name	=	"teiid-security">

				<authentication>

								<login-module	code	=	"org.jboss.security.auth.spi.UsersRolesLoginModule"	flag	=	"required"></login-modu

le>

				</authentication>

</application-policy>

To	prepare	users/roles	by	add	users.properties	and	roles.properties	to	class	path.	A	sample	of	users.properties

testUser=password

Secure	Embedded	with	PicketBox

307

A	sample	of	roles.properties

testUser=user

To	start	Embedded	Server	with	UsersRolesLoginModule	based	security	authentication	via:

EmbeddedServer	server	=

...

EmbeddedConfiguration	config	=	new	EmbeddedConfiguration();

config.setSecurityDomain("teiid-security-file");

config.setSecurityHelper(new	EmbeddedSecurityHelper());

server.start(config);

Embedded	Security	with	LdapExtLoginModule
Add	the	following	content	to	the	PicketBox	Security	Configuration	File:

<application-policy	name	=	"teiid-security-ldap">

				<authentication>

								<login-module	code	=	"org.jboss.security.auth.spi.LdapExtLoginModule"	flag	=	"required">

												<module-option	name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</module-option>

												<module-option	name="java.naming.provider.url">ldap://HOST:389</module-option>

												<module-option	name="java.naming.security.authentication">simple</module-option>

												<module-option	name="bindDN">cn=Manager,dc=example,dc=com</module-option>

												<module-option	name="bindCredential">redhat</module-option>

												<module-option	name="baseCtxDN">ou=Customers,dc=example,dc=com</module-option>

												<module-option	name="baseFilter">(uid={0})</module-option>

												<module-option	name="rolesCtxDN">ou=Roles,dc=example,dc=com</module-option>

												<module-option	name="roleFilter">(uniqueMember={1})</module-option>

												<module-option	name="roleAttributeID">cn</module-option>

								</login-module>

				</authentication>

</application-policy>

To	define	security	users/roles	refer	to	your	LDAP	Vendors	documentation.	For	example,	if	you	use	OpenLDAP,	then	with	the	ldif
file	customer-security.ldif,	execute

ldapadd	-x	-D	"cn=Manager,dc=example,dc=com"	-w	redhat	-f	customer-security.ldif

to	setup	users/roles.

Tip module-options	setting	like	url,	bindDN,	bindCredential,	baseCtxDN,	rolesCtxDN	should	match	to	your	LDAP
server	setting.

To	start	Embedded	Server	with	LdapExtLoginModule	based	security	authentication	via:

EmbeddedServer	server	=

...

EmbeddedConfiguration	config	=	new	EmbeddedConfiguration();

config.setSecurityDomain("teiid-security-ldap");

config.setSecurityHelper(new	EmbeddedSecurityHelper());

server.start(config);

Secure	Embedded	with	PicketBox

308

https://raw.githubusercontent.com/teiid/teiid-embedded-examples/master/embedded-portfolio-security/src/main/resources/customer-security.ldif

Secure	Embedded	with	PicketBox

309

Teiid	reference
Teiid	offers	a	highly	scalable	and	high	performance	solution	to	information	integration.	By	allowing	integrated	and	enriched	data
to	be	consumed	relationally,	as	JSON,	XML,	and	other	formats	over	multiple	protocols.	Teiid	simplifies	data	access	for	developers
and	consuming	applications.

Commercial	development	support,	production	support,	and	training	for	Teiid	is	available	through	Red	Hat.	Teiid	is	a	professional
open	source	project	and	a	critical	component	of	Red	Hat	data	Integration.

Before	one	can	delve	into	Teiid	it	is	very	important	to	learn	few	basic	constructs	of	Teiid.	For	example,	what	is	a	virtual	database?
What	is	a	model?	and	so	forth.	For	more	information,	see	the	Teiid	Basics.

If	not	otherwise	specified,	versions	referenced	in	this	document	refer	to	Teiid	project	versions.	Teiid	or	Teiid	running	on	various
platforms	will	have	both	platform	and	product-specific	versioning.

Reference	Guide

310

http://teiid.io/about/basics/

Teiid	15.0.0	Release	Notes
Teiid	15.0.0	adds	performance	features,	microservice	enablement,	and	fixes.

Release	Notes
Highlights
Compatibility	Issues

from	14.0
from	13.1
from	13.0
from	12.3
from	12.2
from	12.0
from	11.2
from	11.1
from	11.0
from	10.3
from	10.2
from	10.1
from	10.0
from	9.x
from	8.x

Configuration	Issues
from	14.0
from	12.0
from	11.2
from	10.3
from	10.2
from	10.1
from	9.x
from	8.x

Other	Issues
Thirdparty	Library	Updates

From	14.0
From	12.3
From	12.1
From	12.0
From	11.0
From	10.1
From	10.0
Detailed	Release	Notes
Documentation	and	Help

Licenses
About	Red	Hat

Highlights

TEIID-5040	The	google	spreadsheet	source	can	specify	more	than	one	spreadsheet	with	the	new	SpreadsheetMap	property.

Release	Notes

311

https://issues.redhat.com/browse/TEIID-5040

TEIID-3647	Added	a	HDFS	file	source	utilizing	the	hadoop	client	jars.

TEIID-5950	Added	an	Amazon	Athena	Translator.

TEIID-5936	Added	an	S3	source,	which	can	be	used	with	the	Excel	translator,	for	all	S3	sources.

TEIID-5928	Added	properties	for	the	partitioned	load	of	materialized	views.

TEIID-5977	Added	support	for	pushing	virtual	functions	via	a	source	function	option	teiid_rel:virtual-function

TEIID-6005	Better	support	for	Teiid	in	DBeaver	as	a	postgres	source

TEIID-5780	Added	SSL	authentication	support

Compatibility	Issues

Support	for	named	parameter	syntax	using	param=value	has	been	deprecated,	since	it	is	ambiguous	with	a	comparison
predicate	boolean	value	expression.	param⇒value	should	be	used	instead.

decodeinteger/decodestring	have	been	deprecated.	A	CASE	expression	should	be	used	instead.

TEIID-3159	The	SAP	Netweaver	Gateway	translator	(sap-nw-gateway)	has	been	renamed	to	just	SAP	Gateway	(sap-
gateway).	Usage	of	sap-nw-gateway	is	deprecated.

TEIID-4205	By	default,	the	wrapping	begin/commit	of	a	UseDeclareFetch	cursor	will	be	ignored	as	Teiid	does	not	require	a
transaction.	Set	the	org.teiid.honorDeclareFetchTxn	system	property	to	false	to	revert	to	the	old	behavior	which	honored	the
transaction.

TEIID-4240	The	usage	of	;	delimited	statements	for	materialization	scripts	has	been	deprecated.	An	anonymous	procedure
block	should	be	used	instead	if	multiple	statements	are	needed.

TEIID-4228	Precision	and	scale	values	greater	than	32767	are	deprecated.

TEIID-4228	Not	using	a	semicolon	delimiter	between	statements	is	deprecated	and	should	only	be	relied	on	for	backwards
compatibility.

TEIID-4731	The	default	authentication	scheme	for	MongoDB	resource	adapter	has	been	changed	to	SCRAM_SHA_1	to
match	with	latest	versions	of	MongoDB.	If	using	MongoDB	version	less	than	3.0,	to	restore	previous	functionality
change/add	SecurityType	to	'None'	in	the	resource	adapter	configuration.

TEIID-5511	The	AdminShell	kit	has	been	removed.	No	further	releases	are	planned.

TEIID-5833	The	use	of	SET	NAMESPACE	to	define	a	custom	prefix	or	namespace	is	no	longer	allowed.	Please	remove	this
statement	from	your	DDL	and	simply	use	a	consistent	property	key.

from	14.0

TEIID-5967	CREATE	FOREIGN	DATA	WRAPPER	will	no	longer	allow	the	usage	of	HANDLER.	Use	TYPE	instead.

TEIID-5936	The	amazon-s3	translator	is	deprecated.	Use	the	s3	source	with	an	appropriate	translator,	such	as	file	or	excel
instead.

from	13.1

TEIID-5948	The	mysql5	translator	name	has	been	deprecated.	You	should	use	just	mysql	instead	-	the	version	will	be
detected	from	the	source,	or	you	may	manually	set	the	database	version	property.

from	13.0

Release	Notes

312

https://issues.redhat.com/browse/TEIID-3647
https://issues.redhat.com/browse/TEIID-5950
https://issues.redhat.com/browse/TEIID-5936
https://issues.redhat.com/browse/TEIID-5928
https://issues.redhat.com/browse/TEIID-5977
https://issues.redhat.com/browse/TEIID-6005
https://issues.redhat.com/browse/TEIID-5780
https://issues.redhat.com/browse/TEIID-3159
https://issues.redhat.com/browse/TEIID-4205
https://issues.redhat.com/browse/TEIID-4240
https://issues.redhat.com/browse/TEIID-4228
https://issues.redhat.com/browse/TEIID-4228
https://issues.redhat.com/browse/TEIID-4731
https://issues.redhat.com/browse/TEIID-5511
https://issues.redhat.com/browse/TEIID-5833
https://issues.redhat.com/browse/TEIID-5967
https://issues.redhat.com/browse/TEIID-5936
https://issues.redhat.com/browse/TEIID-5948

TEIID-5798	specifying	a	condition	on	a	table	permission	is	now	deprecated.	Use	CREATE	POLICY	instead.

from	12.3

TEIID-5819	References	to	any	Teiid	*-swagger	artifact	should	use	openapi	in	both	the	artifact	name	and	group	instead.

TEIID-1323	The	protected	method	SQLConverstion.generateSqlForStoredProcedure	is	now	expected	to	append	directly	to
the	working	buffer.

TEIID-5565	The	Teiid	Java	client	now	requires	Java	8	and	above.

TEIID-5557	The	default	for	the	JDBC	importer	useFullSchemaName	is	now	false.	It	is	generally	expected	to	import	from
only	a	single	foreign	schema.	Set	useFullSchemaName	to	true	to	preserve	the	legacy	behavior.	There	is	also	an	env/system
property	org.teiid.translator.jdbc.useFullSchemaNameDefault	that	can	be	used	to	preserve	the	legacy	behavior.

TEIID-5840	TEIID-5841	Grant	/	revoke	targets	are	now	resolved	at	deployment	time	and	will	be	checked	in	a	more	strict
manner.	See	the	migration	guide	and/or	the	issues	for	more.	The	PolicyDecider	was	changed	to	reference	the	metadata
objects	rather	than	just	strings.

TEIID-5849	The	admin	and	api	modules/jars	have	been	merged.	Only	teiid-api	should	be	used	moving	forward.

TEIID-5857	The	salesforce	translators	no	longer	support	the	ModelAuditFields	execution	property	-	the	import	property
should	be	used	instead.

from	12.2

TEIID-5742	The	SecurityHelper	interface	has	been	simplified,	instead	of	getSecurityContext()	and
getSubjectInContext(String),	there	is	now	just	getSecurityContext(String)

TEIID-5759	GRANT	CONDITION	syntax	behavior	did	not	match	with	XML	VDBs	and	was	updated	to	match	-	you	must
now	explicitly	use	NOT	CONSTRAINT	to	declare	that	the	condition	is	not	a	constraint.	If	you	still	want	the	older	behavior
set	the	property	org.teiid.conditionConstraintDefault	to	false.

TEIID-5759	The	odata4	openapi.json	metadata	url	now	returns	v2	metadata	by	default.	Please	use	/openapi.json?version=3
to	get	the	v3	metadata.

TEIID-5757	The	teiid-security	security	domain	is	configured	by	default	to	provide	the	odata	role,	so	that	it	does	not	have	to
be	explicitly	granted	for	odata	access.	If	you	wish	to	keep	that	requirement,	then	remove	the	Identity	login	module	from	the
teiid-security	security	domain.

TEIID-5729	The	mapping	of	some	procedures	to	OData	functions	will	require	explicitly	setting	the	UPDATECOUNT	option
-	CREATE	VIRTUAL	PROCEDURE	…	OPTIONS	(UPDATECOUNT	0)	AS	BEGIN	…

from	12.0

TEIID-5640	Access	to	system	schema	over	OData	has	been	disabled.	If	you	need	access	to	SYS,	SYSADMIN,	or
pg_catalog,	consider	adding	an	appropriate	view	or	procedure.

TEIID-5647	The	information_schema	schema	name	is	now	reserved	for	future	internal	use.	If	you	do	need	to	use	this	name
for	now,	you	can	set	the	property	org.teiid.allow_information_schema=true

from	11.2

TEIID-5476	JGroups	was	removed	as	a	direct	dependency	of	the	runtime	and	the	associated	property	removed	from	the
EmbeddedConfiguration.	If	you	need	clustering	support	with	embedded,	please	raise	an	issue.

Release	Notes

313

https://issues.redhat.com/browse/TEIID-5798
https://issues.redhat.com/browse/TEIID-5819
https://issues.redhat.com/browse/TEIID-1323
https://issues.redhat.com/browse/TEIID-5565
https://issues.redhat.com/browse/TEIID-5557
https://issues.redhat.com/browse/TEIID-5840
https://issues.redhat.com/browse/TEIID-5841
https://issues.redhat.com/browse/TEIID-5849
https://issues.redhat.com/browse/TEIID-5857
https://issues.redhat.com/browse/TEIID-5742
https://issues.redhat.com/browse/TEIID-5759
https://issues.redhat.com/browse/TEIID-5759
https://issues.redhat.com/browse/TEIID-5757
https://issues.redhat.com/browse/TEIID-5729
https://issues.redhat.com/browse/TEIID-5640
https://issues.redhat.com/browse/TEIID-5647
https://issues.redhat.com/browse/TEIID-5476

TEIID-5563	All	wildfly	specific	maven	subprojects	-	including	the	resource	adapter	connector-x	artifacts	-	were	moved
under	the	org.teiid.wildfly	group	id.	See	the	Admin	Guide	for	more	migration	information.

TEIID-5596	The	usage	of	infinispan	caching	with	Teiid	Embedded	now	requires	a	dependency	to	org.teiid:cache-infinispan.

from	11.1

TEIID-5506	Removed	the	option	to	specify	domain	qualified	logins.

from	11.0

TEIID-5411	Pluggable	server	discovery	has	been	removed	as	a	client	feature.	The	client	will	focus	on	better	integration	with
existing	load-balancing	paradigms	instead.

TEIID-5415	The	JDBC	client	load-balancing	feature	has	been	removed.	The	client	will	no	longer	pool	instances	nor	issue	a
ping.	If	you	use	the	client	against	a	server	older	than	10.2,	ping	will	need	to	be	disabled	on	that	server.

TEIID-5427	Session/user	scoping	of	materialized	views	has	been	removed.	You	should	use	a	global	temporary	table	instead
and	load	it	as	needed	for	your	session.

from	10.3

TEIID-5365	Function	model	support	has	been	completely	removed	from	the	server.	VDBs	utilizing	function	models	should
be	migrated	to	having	those	functions	located	on	physical	or	virtual	models.

TEIID-5083	The	salesforce	translator	and	resource	adapter	now	provide	34.0	api	access	rather	than	22.0.

TEIID-5370	A	warning	rather	than	an	exception	will	be	generated	when	the	HEADER	option	is	specified	for	a
TEXTTABLE,	but	the	header/column	does	not	exist	in	the	file.

TEIID-5360	JDBC	DatabaseMetaData	will	no	longer	by	default	report	nullsAreSortedLow	as	true	since	that	behavior	in	not
guaranteed	and	can	be	adjusted	on	the	server	side.	If	you	need	a	particular	value	reported,	use	the	connection	property
nullsAreSorted=\{AtStart,AtEnd,High,Low}

from	10.2

TEIID-5294	The	name	escaping	performed	by	the	SQL/XML	logic	and	JSONTOXML	function	did	not	properly	escape
values.	Instead	of	uHHHH,	xHHHH	should	have	been	used.	That	correction	has	been	made.	If	you	want	the	old	behavior	set
the	system	property	org.teiid.useXMLxEscape	to	false.

from	10.1

TEIID-5286	The	Sybase	IQ	translator	has	been	renamed	sap-iq	and	the	usage	of	the	SybaseIQExecutionFactory	and	the
sybaseiq	translator	name	has	been	deprecated.

TEIID-5262	Removed	support	for	Teiid	7.x	clients/servers

TEIID-5220	The	pg_catalog	now	has	information_schema.tables,	views,	and	columns,	which	require	qualification	to
reference	the	tables,	views,	or	columns	system	tables.

from	10.0

TEIID-5177	Stricter	naming	is	now	enforced	in	DDL.	Only	unqualified	identifiers	are	expected	as	names.	Set	the	system
property	org.teiid.requireUnqualifiedNames=false	to	restore	the	older	behavior.

TEIID-5201	The	SYS.Keys	table	had	SchemaUID	and	RefSchemaUID	columns	added.

Release	Notes

314

https://issues.redhat.com/browse/TEIID-5563
https://issues.redhat.com/browse/TEIID-5563
https://issues.redhat.com/browse/TEIID-5506
https://issues.redhat.com/browse/TEIID-5411
https://issues.redhat.com/browse/TEIID-5415
https://issues.redhat.com/browse/TEIID-5427
https://issues.redhat.com/browse/TEIID-5365
https://issues.redhat.com/browse/TEIID-5083
https://issues.redhat.com/browse/TEIID-5370
https://issues.redhat.com/browse/TEIID-5360
https://issues.redhat.com/browse/TEIID-5294
https://issues.redhat.com/browse/TEIID-5286
https://issues.redhat.com/browse/TEIID-5262
https://issues.redhat.com/browse/TEIID-5220
https://issues.redhat.com/browse/TEIID-5177
https://issues.redhat.com/browse/TEIID-5201

from	9.x

TEIID-4894	The	XML	document	model	feature	has	been	removed.	You	must	use	OData	or	SQL/XML	to	create	XML
documents.

TEIID-4924	Maven	coordinates	for	Teiid	artifacts	have	changed.	They	will	now	be	pushed	directly	to	Maven	Central	and
will	use	the	org.teiid	group	instead	of	org.jboss.teiid.

TEIID-5026	The	FROM_UNIXTIME	function	now	returns	a	string	rather	than	a	timestamp	value	and	no	longer	is	rewritten
to	the	timestampadd	function.	The	functionality	now	matches	that	of	HIVE/IMPALA.	See	also	the	to_millis	and	from_millis
functions.

TEIID-5012	A	Description	column	was	added	to	SYS.VirtualDatabases.

TEIID-4943	Copy	criteria	created	from	a	join	will	typically	only	be	pushed	when	the	join	is	not	pushed.

TEIID-5112	Type	length	specified	in	DDL	or	SQL	must	be	greater	than	0.	Char	type	length	must	only	be	1.

TEIID-5130	Procedure	RESULT	parameters	must	appear	as	the	first	parameter	in	the	argument	list.	To	allow	the	old
behavior	of	appearing	anywhere,	set	the	system	property	org.teiid.resultAnyPosition=true.

TEIID-3624	The	introduction	of	domain	types	modified	several	of	the	system	tables.	The	isPhysical	column	was	removed
from	the	SYS.Datatypes	table.	SYS.Datatypes	added	Type,	TypeCode,	Literal_Prefix,	and	Literal_Suffix	columns.	The
SYS.Columns,	SYS.ProcedureParams,	and	SYS.FunctionParams	tables	added	TypeName,	TypeCode,	and	ColumnSize
columns.

TEIID-4827	Java	1.8	is	now	required	for	building	and	running	Teiid.

TEIID-4890	The	ProcedureParameters	system	table	will	report	return	parameters	as	position	0.

TEIID-4866	For	usability	with	SQLAlchemy	and	Superset	the	version()	function	over	ODBC	will	report	""PostgreSQL	8.2"
rather	than	"Teiid	version".	You	can	use	the	system	property	org.teiid.pgVersion	to	control	this	further.

TEIID-4574	Phoenix/Hbase	Translator	has	been	renamed	phoenix	and	the	usage	of	the	HBaseExecutionFactory	and	the
hbase	translator	name	has	been	deprecated.

TEIID-4501	The	salesforce-34	resource	adapter	defaults	to	the	version	34	api	rather	than	version	22	api.

TEIID-3754	OData	Version	2	support	is	removed.	Please	use	OData	V4.	Note	that	there	are	many	changes	in	specification
with	V4	vs	V2.

TEIID-4400	XML	Document	Models	have	been	deprecated.	OData	or	SQL/XML	should	be	used	instead.

TEIID-4317	ExecutionFactory.initCapabilities	will	always	be	called	-	either	during	start	if	isSourceRequiredForCapabilities
returns	false,	or	later	if	true.

TEIID-4346	The	excel-odbc	translator	has	been	removed.	Please	use	the	excel	translator	instead.

TEIID-4332	Due	to	costing	logic	changes	plans	may	be	different	that	in	previous	releases.	Please	raise	an	issue	is	you	feel	a
plan	is	not	appropriate.

TEIID-4421	Removed	the	deprecated	EmbeddedServer.addTranslator(ExecutionFactory)	method.

TEIID-4442	Removed	the	interpretation	of	the	security-domain	setting	for	the	session	service	as	a	comma	separated	list	of
domains.	Also	added	the	USER(boolean)	function	to	control	if	the	USER	function	returns	a	name	with	the	security	domain.
Finally	the	DatabaseMetaData	and	CommandContext	getUserName	will	both	return	the	simple	user	name	without	the
domain.

TEIID-4228	Precision/scale	will	now	be	set	consistently.	Values	reported	from	JDBC/OData/ODBC	metadata	may	be
different	if	your	current	metadata	declares	a	bigdecimal	type	with	default	precision.

Release	Notes

315

https://issues.redhat.com/browse/TEIID-4894
https://issues.redhat.com/browse/TEIID-4924
https://issues.redhat.com/browse/TEIID-5026
https://issues.redhat.com/browse/TEIID-5012
https://issues.redhat.com/browse/TEIID-4943
https://issues.redhat.com/browse/TEIID-5112
https://issues.redhat.com/browse/TEIID-5130
https://issues.redhat.com/browse/TEIID-3624
https://issues.redhat.com/browse/TEIID-4827
https://issues.redhat.com/browse/TEIID-4890
https://issues.redhat.com/browse/TEIID-4866
https://issues.redhat.com/browse/TEIID-4574
https://issues.redhat.com/browse/TEIID-4501
https://issues.redhat.com/browse/TEIID-3754
https://issues.redhat.com/browse/TEIID-4400
https://issues.redhat.com/browse/TEIID-4317
https://issues.redhat.com/browse/TEIID-4346
https://issues.redhat.com/browse/TEIID-4332
https://issues.redhat.com/browse/TEIID-4421
https://issues.redhat.com/browse/TEIID-4442
https://issues.redhat.com/browse/TEIID-4228

TEIID-4423	Uncorrelated	subqueries	will	be	treated	as	deterministic	regardless	of	functions	used	within	them.	Prior	releases
treated	most	uncorrelated	subqueries	as	non-deterministic	if	they	contained	a	non-deterministic	function.

from	8.x

TEIID-2694	In	the	autogenerated	web	service,	if	a	procedure	is	designed	for	POST	method,	and	one	of	its	IN/INOUT
parameters	is	either	a	LOB	or	VARBINARY	then	that	service	can	only	invoked	using	"multipart/form-data".	This	allows	user
to	send	large	binary	files	for	processing	in	Teiid

TEIID-3462	Semantic	versioning	requires	the	VDB	version	to	be	a	string,	rather	than	an	integer	field.	This	affects	several
public	classes	including	CommandLogMessage,	VDB,	Session,	EventListener,	VDBImport,	ExecutionContext,	and
MetadataRepository.	Any	custom	command	logging	or	materialization	status	tables	will	need	the	version	field	updated	as
well.

TEIID-4147	ODBC	type	handling	will	now	report	the	type	name	as	the	PostgreSQL	type	rather	than	the	Teiid	type.

TEIID-3601	changed	the	rowCount	field	on	CommandLogMessages	from	Integer	to	Long.

TEIID-3752	the	admin	assignToModel	method	was	removed

TEIID-3684	RoleBasedCredentialMapIdentityLoginModule	removed,	consider	using	alternative	login	modules	with	roles	to
restrict	access	to	VDB

TEIID-2476	The	AuthorizationValidator	and	PolicyDecider	interfaces	had	minor	changes	-	see	their	javadocs	for	new/altered
methods

TEIID-3503	To	better	isolate	dependencies	a	separate	teiid-jboss-admin	jar	was	created	from	classes	in	teiid-admin	-	most
notably	AdminFactory	was	moved	there.

TEIID-4206	TranslatorProperty	annotations	on	methods	without	setters	must	have	the	readOnly	attribute	as	true.

TEIID-3814	In	the	autogenerated	web	service,	the	model	name	in	the	path	is	now	case	sensitive.

TEIID-2267	The	custom	appenders	for	command	and	audit	logging	has	been	changed,	now	they	need	to	be	developed	for
java.util.logging	based	Handler.

TEIID-3553	Ambiguous	OData	v2	entity	set	and	function	names	will	throw	an	exception	rather	than	resolving	to	the	first
found.

TEIID-3515	MAKEIND	was	added	as	a	reserved	word.

TEIID-3576	the	waitForLoad	connection	property	has	been	deprecated.

TEIID-2813	a	source	end	event	will	be	sent	to	the	command	log	when	an	error	occurs	rather	than	being	omitted.

TEIID-3736	string	literals	values	matching	the	date	format	can	be	directly	resolved	as	timestamps.

TEIID-3727	The	version	22	salesforce	translator	and	resource	adapter	have	been	deprecated.

TEIID-3380/https://issues.redhat.com/browse/TEIID-3663[TEIID-3663]	The	SecurityHelper	interface	has	changed	to	allow
for	easier	control	over	GSS	authentication

TEIID-3372	DDL	and	DDL-FILE	metadata	repositories	have	deprecating	using	the	respective	ddl	and	ddl-file	model
properties.

TEIID-3390	temporary	lobs	are	now	cleaned	up	when	the	result	set	is	closed	-	even	for	local	connections.

TEIID-3210	Added	supportsCompareCriteriaOrderedExclusive,	which	defaults	to	supportsCompareCriteriaOrdered,	to
specifically	support	<	and	>	pushdown.

Release	Notes

316

https://issues.redhat.com/browse/TEIID-4423
https://issues.redhat.com/browse/TEIID-2694
https://issues.redhat.com/browse/TEIID-3462
https://issues.redhat.com/browse/TEIID-4147
https://issues.redhat.com/browse/TEIID-3601
https://issues.redhat.com/browse/TEIID-3752
https://issues.redhat.com/browse/TEIID-3684
https://issues.redhat.com/browse/TEIID-2476
https://issues.redhat.com/browse/TEIID-3503
https://issues.redhat.com/browse/TEIID-4206
https://issues.redhat.com/browse/TEIID-3814
https://issues.redhat.com/browse/TEIID-2267
https://issues.redhat.com/browse/TEIID-3553
https://issues.redhat.com/browse/TEIID-3515
https://issues.redhat.com/browse/TEIID-3576
https://issues.redhat.com/browse/TEIID-2813
https://issues.redhat.com/browse/TEIID-3736
https://issues.redhat.com/browse/TEIID-3727
https://issues.redhat.com/browse/TEIID-3380
https://issues.redhat.com/browse/TEIID-3372
https://issues.redhat.com/browse/TEIID-3390
https://issues.redhat.com/browse/TEIID-3210

TEIID-3282	Changed	the	WEEK	function	to	compute	the	ISO	8601	by	default	(org.teiid.iso8601Week=true)	and	ensured
pushdowns	do	the	same.	Changed	the	dayOfWeek	function	to	be	unaffected	by	the	iso8601Week	setting.

TEIID-2904	The	createMetadataProcessor	method	on	JDBCExcutionFactory	has	been	deprecated.	Use	getMetadataProcessor
instead.

TEIID-2793	Searchability	metadata	will	not	prevent	more	complicated	expressions	from	being	pushed	down.

TEIID-2794	Schema	scoped	functions	are	checked	for	ambiguity.	Schema	qualification	may	be	needed	to	resolve	properly.

TEIID-2840	Internal	materialized	view	ttl	refresh	is	now	blocking	by	default.	To	keep	the	old	behavior	of	lazy	invalidation,
use	the	vdb	property	lazy-invalidation=true

TEIID-2667	The	jdbc	importer	importKeys	parameter	is	now	correctly	defaulted	to	true.

TEIID-2737	The	'native'	procedure	exposed	by	translators	has	been	renames	as	the	direct	query	feature.	The	related
ExecutionFactory	methods	supportsNativeQueries	and	nativeQueryProcedure	name	have	been	deprecated	and	replaced	with
supportsDirectQueryProcedure	and	directQueryProcedureName.

TEIID-2580	Both	xpathValue	and	XMLTABLE	will	return	null	when	retrieving	the	value	for	a	single	element	marked	with
xis:nil="true".

TEIID-2590	Both	the	source	specific	and	the	general	hint	if	present	will	be	included	as	the	source	hint	for	Oracle.

TEIID-2603	TableStats	and	ColumnStats	numeric	values	are	held	as	Number,	rather	than	Integer.

TEIID-2613	The	rowcount	is	reset	to	0	after	a	non-update	command	statement	is	issued.

TEIID-2422	using	calendar	based	timestampdiff	by	default.	See	the	Admin	Guide	for	using	the
org.teiid.calendarTimestampDiff	to	control	backwards	compatibility.

TEIID-2477	Most	of	the	JDBC	translator	static	String	version	constants	were	replaced	by	org.teiid.translator.jdbc.Version
constants.	Use	the	.toString()	method	to	obtain	a	version	string	if	needed.

TEIID-2344	non-available	JDBC	sources	in	partial	results	mode	or	source	with	connection	factories	that	require	an
ExecutionContext	to	obtain	a	connection	will	require	manual	setting	of	the	database	version	metadata	property.	The	affected
sources	are:	db2,	derby,	oracle,	postgresql,	sqlserver,	sybase,	teiid

TEIID-2444	The	deployment	platform	for	Teiid	has	been	changed	to	EAP	6.1.Alpha1,	older	or	non-EAP	deployments	are	not
supported.

TEIID-2429	Sorts	over	data	sets	over	a	single	batch	are	not	guaranteed	to	be	sorted	in	a	stable	manor	to	improve
performance.	The	sort	will	still	be	correct	with	respect	to	the	sort	keys.

TEIID-1979	The	resource	adaptors	are	now	deployed	through	modules,	and	have	shorter	names	as	identifiers.	Connection
Factories	created	with	previous	versions	must	be	re-configured.

TEIID-2253	the	multi-source	implementation	logic	was	significantly	altered	the	following	changes	were	introduced.

If	not	auto-populated,	the	multi-source	column	acts	as	a	pseudo-column	and	will	not	be	selectable	via	a	wildcard
SELECT	*	nor	tbl.*

Multi-source	inserts	must	specify	a	single	source	as	their	target.

The	join	planning	behavior	in	multi-source	mode	was	not	consistent	and	did	not	work	in	all	situations.	To	ensure
consistency	multi-source	tables	being	joined	together	should	specify	a	join	predicate	on	the	source	name	column	-	i.e.
tbl1.source_name	=	tbl2.source_name.	For	backwards	compatibility	a	the	system	property
org.teiid.implicitMultiSourceJoin	was	introduced	to	control	whether	multi-source	joins	are	effectively	partitioned	by
source	without	a	source_name	predicate.	The	property	defaults	to	true,	the	pre	8.3	behavior	-	but	should	be	switched	to
false	for	later	versions	unless	the	issues	with	implicit	join	planning	are	addressed.

Release	Notes

317

https://issues.redhat.com/browse/TEIID-3282
https://issues.redhat.com/browse/TEIID-2904
https://issues.redhat.com/browse/TEIID-2793
https://issues.redhat.com/browse/TEIID-2794
https://issues.redhat.com/browse/TEIID-2840
https://issues.redhat.com/browse/TEIID-2667
https://issues.redhat.com/browse/TEIID-2737
https://issues.redhat.com/browse/TEIID-2580
https://issues.redhat.com/browse/TEIID-2590
https://issues.redhat.com/browse/TEIID-2603
https://issues.redhat.com/browse/TEIID-2613
https://issues.redhat.com/browse/TEIID-2422
https://issues.redhat.com/browse/TEIID-2477
https://issues.redhat.com/browse/TEIID-2344
https://issues.redhat.com/browse/TEIID-2444
https://issues.redhat.com/browse/TEIID-2429
https://issues.redhat.com/browse/TEIID-1979
https://issues.redhat.com/browse/TEIID-2253

TEIID-2317	byte[]	char[]	and	java.util.Date	instances	returned	as	object	values	will	be	left	in	tact	and	not	automatically
converted	to	BinaryType,	ClobType,	and	Timestamp	respectively.	The	values	may	still	be	cast	to	those	types.

TEIID-2149	the	subqueryUnnestDefault	property	no	longer	influences	cost	based	decisions	to	treat	subqueries	as	merge
joins.	In	nearly	all	circumstances	this	is	desirable,	but	may	require	the	use	of	nounnest	hint	to	prevent	forming	the	join	if
desired.

TEIID-2166	array_get	will	return	null	if	the	index	is	out	of	bounds	rather	than	raising	an	error.

TEIID-2175	for	8.0	and	8.1	clients	the	server	will	check	if	serialized	date/time	values	fall	outside	of	32-bit	value	ranges	(year
1900	-	9999	for	dates	and	times	between	years	1901	and	2038)	and	throw	an	exception.	The	previous	behavior	was	to
truncate.	The	exception	and	the	use	of	32	bit	serialization	can	be	avoided	by	setting	the	system	property
org.teiid.longDatesTimes	to	true.

TEIID-2184	to	be	consistent	with	the	rest	of	Teiid’s	logic	the	system	functions	dayName	and	monthName	will	return	values
from	the	default	locale,	rather	than	only	the	English	names.	Use	the	system	property	org.teiid.enDateNames	true	to	revert	to
the	pre-8.2	behavior.

TEIID-2187	the	CONSTRAINT	keyword	is	not	correctly	used	in	table	DDL.	It	should	be	replaced	with	a	comma	from
scripts	to	be	compatible	with	8.2.	If	desired,	8.2	now	supports	the	CONSTRAINT	keyword	to	provide	a	name	for	each
constraint.

TEIID-2181	system	tables	no	longer	contain	valid	OIDs.	That	responsibility	has	moved	to	the	pg_catalog.

TEIID-1386	the	SQLState	and	errorCode	reported	by	a	TeiidSQLException	will	typically	be	from	the	top	level	nested
SQLException.	If	there	is	also	a	nested	TeiidException,	the	TeiidSQLException.teiidCode	will	be	set	to	the
TeiidException.getCode	value	and	the	TeiidSQLException.errorCode	will	be	set	to	the	integer	suffix	of	the	teiidCode	if
possible.

TEIID-2226	All	statements	that	return	result	sets	that	are	executed	as	command	statements	in	a	procedure	are	validated
against	the	expected	resultset	columns	of	the	procedure.	If	the	statement	is	not	intended	to	be	returnable,	WITHOUT
RETURN	can	be	added	to	the	end	of	the	statement.

TEIID-2235	The	MetadataRepository.setNext	method	was	removed	and	MetadataRepository	was	converted	to	an	abstract
class	rather	than	an	interface.	Also	if	an	instance	of	a	DefaultMetadataRepository	is	used,	it	will	only	affect	metadata	already
loaded	in	the	repository	chain.

TEIID-2237	teiid_	is	a	reserved	DDL	namespace	prefix	and	the	MetadataFactory	class	no	longer	throws
TranslatorExceptions,	instead	the	unchecked	MetadataException	is	thrown.

TEIID-2243	by	default	Teiid	will	not	pushdown	the	default	null	sort	order	of	nulls	low	when	no	null	sort	order	is	specified.
Set	the	system	property	org.teiid.pushdownDefaultNullOrder	to	true	mimic	the	8.1	and	older	release	behavior.

org.teiid.metadata.Schema	holds	FunctionMethods	by	uuid	rather	than	name	to	accommodate	overridden	method	signatures.

MetadataFactory	no	longer	extends	Schema.	Use	the	MetadataFactory.getSchema	method	to	get	the	target	Schema.

DDL	created	VIRTUAL	pushdown	functions	should	be	referenced	in	the	ExecutionFactory.getSupportedFunctions	by	their
full	schema.function	name.

DDL	functions/procedures	defined	without	the	VIRTUAL	keyword	are	by	default	VIRTUAL.	Use	the	FOREIGN	keyword	to
indicate	that	they	are	source	specific.

FunctionMethod.getFullName	returns	the	proper	schema,	not	category	qualified	name.

VDB.getUrl	has	been	removed.

VDB.Status	now	has	four	states	-	LOADING,	ACTIVE,	FAILED,	REMOVED.	To	check	for	validity	use	the	isValid	method,
rather	than	checking	for	the	VALID	state.	FAILED	deployments	will	still	be	accessible	via	the	admin	getVDB	methods.

Release	Notes

318

https://issues.redhat.com/browse/TEIID-2317
https://issues.redhat.com/browse/TEIID-2149
https://issues.redhat.com/browse/TEIID-2166
https://issues.redhat.com/browse/TEIID-2175
https://issues.redhat.com/browse/TEIID-2184
https://issues.redhat.com/browse/TEIID-2187
https://issues.redhat.com/browse/TEIID-2181
https://issues.redhat.com/browse/TEIID-1386
https://issues.redhat.com/browse/TEIID-2226
https://issues.redhat.com/browse/TEIID-2235
https://issues.redhat.com/browse/TEIID-2237
https://issues.redhat.com/browse/TEIID-2243

The	standalone	and	cli	configuration	files	specify	a	setting	for	the	teiid	subsystem	policy-decider-module.	If	a	module	is	not
specified,	then	data	roles	will	not	be	checked.

local	connections	specifying	a	VDB	version	will	wait	for	their	VDB	to	finish	loading	before	allowing	a	connection,	see	the
waitForLoad	connection	property	for	more.

jsonToXml	document	elements	will	contain	xsi:type	attribute	values	of	decimal	and	boolean	respectively	for	number	and
boolean	json	values	to	allow	for	differentiation	from	string	values.

Result	set	cache	entries	can	now	have	updatable	set	to	false	to	indicate	that	updates	should	not	purge	the	entry.

Datatype	default	values	have	been	corrected	for	Teiid	built-in	types.	All	datatypes	are	now	nullable	by	default,	only	character
string	types	are	case	sensitive,	numeric	types	have	radix	10,	and	length/precision/scale	have	been	set	appropriately.

pg	catalog	and	dynamic	vdb	created	metadata	will	use	a	generated	Teiid	id	rather	than	a	random	UUID.

transport	ssl	config	no	longer	uses	the	enabled	attribute.	Use	mode=disabled	to	disable	the	usage	of	encryption.

TEIID-2105	If	a	MetadataRepository	throws	a	RuntimeException	during	load,	that	will	be	treated	as	a	non-recoverable	error
and	the	VDB	will	have	a	FAILED	status.

TEIID-2105	It	was	an	undocumented	behavior	that	is	a	source	did	not	specify	a	jndi	connection	that	"java:/name"	would	be
assumed.	That	is	no	longer	the	case.	It	the	source	needs	a	connection,	then	one	must	be	specified.

TEIID-2127	if	ExecutionFactory.isSourceRequired	returns	true	(the	default)	then	not	obtaining	a	connection	will	for	an
Execution	will	result	in	an	error.	If	an	ExecutionFactory	does	not	use	a	source,	then	no	connection-jndi-name	should	be
specified	and	isSourceRequired	should	return	false	(see	setSourceRequired).	If	isSourceRequired	returns	false	and	a
connection-jndi-name	is	specified,	then	Teiid	will	still	attempt	to	obtain	a	connection,	but	no	exception	will	be	thrown	if	a
connection	isn’t	available.

TEIID-2138	the	odbc	layer	will	report	standard_conforming_strings	as	on,	rather	than	off	to	better	reflect	the	string	literal
handling	of	Teiid.

Configuration	Issues

See	the	Admin	Guide	for	more	on	configuration	and	installation.

from	14.0

TEIID-6007	The	meaning	of	the	transport	authentication	mode	was	changed	to	specifically	be	the	client	authentication	mode,
1-way	has	been	replace	by	NONE,	2-way	has	been	replaced	by	NEED,	and	a	new	value	WANT	is	supported.

from	12.0

TEIID-5642	The	generic	sql	query	procedure	for	generated	REST	wars	will	not	be	exposed	by	default.	The	schema/model
must	have	the	property	\{http://teiid.org/rest}sqlquery	set	to	true.

from	11.2

TEIID-5584	org.teiid.enforceSingleMaxBufferSizeEstimate	now	defaults	to	false.	Rather	the	biggest	memory	consumers
among	sessions	will	be	killed	by	default	in	the	event	of	running	out	of	disk	space.

TEIID-5490	org.teiid.longRanks	now	defaults	to	true.	Analytical	functions	such	as	row_number	return	a	long	by	default.

TEIID-5574	the	cli	buffer-service	properties	have	been	deprecated	and	replaced	with	buffer-manager	properties	-	see	the
migration	guide	for	more

Release	Notes

319

https://issues.redhat.com/browse/TEIID-2105
https://issues.redhat.com/browse/TEIID-2105
https://issues.redhat.com/browse/TEIID-2127
https://issues.redhat.com/browse/TEIID-2138
https://issues.redhat.com/browse/TEIID-6007
https://issues.redhat.com/browse/TEIID-5642
https://issues.redhat.com/browse/TEIID-5584
https://issues.redhat.com/browse/TEIID-5490
https://issues.redhat.com/browse/TEIID-5574

from	10.3

TEIIDTOOLS-381	the	default	max	buffer	space	for	Teiid	embedded	and	derived	runtimes	(Thorntail/Spring	Boot)	is	5
gigabytes,	rather	than	50.	For	the	full	WildFly	environment	the	default	is	still	50	gigabytes	(51200	megabytes),	via	the
stanadlone-teiid	buffer-service	max-buffer-space	attribute.

from	10.2

TEIID-5323	User	query	command	log	entries	are	now	logged	at	the	DEBUG	level	on	the	org.teiid.COMMAND_LOG
context.	Source	events	are	logged	on	the	org.teiid.COMMAND_LOG.SOURCE	context	at	the	DEBUG	level.	This	allows
command	logging	of	just	the	user	query	events	by	setting	the	logging	level	to	DEBUG	for	the	overall	context,	but	INFO	or
higher	for	the	SOURCE	child	context.	The	level	will	default	to	WARN	in	the	standard	install	or	to	DEBUG	when	running	the
auditcommand	scripts.

from	10.1

TEIID-5248	v4	Api	Support	modified	the	properties	for	the	Google	Resource	Adapter.	The	Key	property	was	removed	-	use
SpreadsheetId	instead.	The	AuthMethod	property	was	removed	as	well.

TEIID-5268	Anonymous	authentication	requires	setting	the	LdapAuthType	property	to	none	on	the	LDAP	Resource	Adapter.

from	9.x

TEIID-4820	The	JDG	specific	connectivity	is	being	separated	from	the	main	community	project.	It	will	be	made	available
separately	and	as	part	of	the	product.

TEIID-4858	The	Hive	translator	now	has	order	by	support	turned	off	by	default.

TEIID-4533	The	default	for	the	max-staleness	of	the	resultset	cache	was	changed	from	60	seconds	to	0	seconds.	You	may	use
the	cli	to	alter	this	new	default	if	necessary.

TEIID-4707	The	PrestoDB	driver	is	no	longer	pre-installed.	This	allows	for	newer	client	versions	to	be	used	as	needed.	The
documentation	has	been	updated	to	reflect	this	as	well.

TEIID-4129	in	order	to	prevent	invalid	results	from	a	sort/merge	join,	the	sort	operation	will	undergo	additional	checks.	If
org.teiid.assumeMatchingCollation	is	false	(the	default)	and	a	translator	does	not	specify	a	collationLocale,	then	the	sort	for	a
sort/merge	join	will	not	be	pushed.	Teiid	defaults	to	the	Java	UCS-2	collation,	which	may	not	match	the	default	collation	for
sources,	particular	tables,	or	columns.	You	may	set	the	system	property	org.teiid.assumeMatchingCollation	true	to	restore	the
old	default	behavior	or	selectively	update	the	translators	to	report	a	collationLocale	matching	org.teiid.collationLocale	(UCS-
2	if	unset).

from	8.x

TEIID-2754	view	are	reported	as	VIEW	table	type	in	the	metadata.	Use	the	connection	property	reportAsViews=false	to
restore	the	old	behavior.

TEIID-3753	org.teiid.widenComparisonToString	now	defaults	to	false.

TEIID-3669	there	is	now	a	single	session	service.	Common	configuration	properties	need	to	be	consolidated.	With	TEIID-
3790	this	also	means	that	you	may	want	to	change	the	default	of	trust-all-local	to	false	to	restrict	local	pass-through
connections.	Also	the	VDB	REST	passthrough-auth	property	is	no	longer	used.

TEIID-3797	the	embedded	transport	is	now	known	as	the	local	transport.

TEIID-3859	the	"native"	9999	management	port	is	no	longer	used.	AdminShell	will	default	to	the	http	9990	management
port	instead.

Release	Notes

320

https://issues.redhat.com/browse/TEIIDTOOLS-381
https://issues.redhat.com/browse/TEIID-5323
https://issues.redhat.com/browse/TEIID-5248
https://issues.redhat.com/browse/TEIID-5268
https://issues.redhat.com/browse/TEIID-4820
https://issues.redhat.com/browse/TEIID-4858
https://issues.redhat.com/browse/TEIID-4533
https://issues.redhat.com/browse/TEIID-4707
https://issues.redhat.com/browse/TEIID-4129
https://issues.redhat.com/browse/TEIID-2754
https://issues.redhat.com/browse/TEIID-3753
https://issues.redhat.com/browse/TEIID-3669
https://issues.redhat.com/browse/TEIID-3790
https://issues.redhat.com/browse/TEIID-3797

TEIID-3594	User	query	command	log	entries	are	now	logged	at	the	INFO	level	on	the	org.teiid.COMMAND_LOG	context.
This	allows	command	logging	of	just	the	user	query	events	by	setting	the	logging	level	to	INFO.	The	level	will	default	to
WARN	in	the	standard	install	or	to	DEBUG	when	running	the	auditcommand	scripts.

TEIID-3192	The	CXF	config	is	no	longer	a	valid	option	for	the	Salesforce	resource	adapter.	Please	log	an	issue	if	there	is
feature	from	the	CXF	config	that	you	were	using	that	is	not	present	on	the	new	resource	adapter.

TEIID-3177	ODBC	connections	will	be	required	to	be	secure	based	upon	the	SSL	mode	setting.	If	the	mode	is	enabled,	then
the	client	must	request	an	SSL	connection.	If	the	mode	is	login,	then	the	client	must	use	GSS	authentication.	To	revert	to	the
prior	behavior,	the	system	property	org.teiid.ODBCRequireSecure	can	be	set	to	false.

TEIID-2512	the	usage	of	the	metadata	element	text	as	the	"raw	schema	text"	may	not	be	appropriate	in	all	situations.	The	ddl
and	ddl-file	metadata	repositories	will	check	for	the	ddl	and	ddl-file	model	properties	respectively.

TEIID-2707	the	org.teiid.joinPrefetchBatches	property	is	no	longer	used.

TEIID-2429	the	default	for	maxProcessingKb	has	effectively	doubled	(the	old	default	would	use	approaximately	4MB),
while	the	maxReserveKb	default	has	been	reduced	to	70%	of	the	memory	past	the	first	gigabyte	instead	of	75%.

TEIID-2445	the	UseConnectorMetadata	and	supports-multi-source-bindings	properties	have	been	deprecated,	but	will	still	be
respected	if	present.	There	is	no	equavalent	to	UserConnectorMetadata=true	as	it	is	always	implied.
UseConnectorMetadata=false	has	been	replaced	by	cache-metadata=false,	which	can	be	placed	at	either	the	vdb	or	model
level.	supports-multi-source-bindings	has	been	replaced	by	multisource,	which	no	longer	needs	to	be	specified	if	more	than
one	source	is	configured.

TEIID-2510	the	time-slice-in-millseconds	has	been	corrected	to	be	time-slice-in-milliseconds

The	connector	batch	size	setting	is	no	longer	used.	Instead	a	fetch	size	will	be	sent	to	the	translator	that	is	2	times	the
working	batch	size	or	the	non-pushed	limit,	whichever	is	less.

The	file	translator	now	defaults	to	exceptionIfFileNotFound=true,	you	can	set	the	translator	property	to	false	to	preserve	the
old	behavior	of	returning	null.

TEIID-2086	TEIID-2168	prepared	plan	and	result	set	caches	are	now	configured	as	infinispan	caches.	See	the	teiid	cache
container	in	the	configuration.	You	may	also	control	the	transactional	aspects	of	the	result	set	cache	on	the	resultset	and
resultset-repl	caches	via	the	configuration.

TEIID-1241	the	web	services	connector	property	ConfigName	was	deprecated	in	favor	of	EndPointName.	There	were	also
ServiceName,	NamespaceUri,	and	Wsdl	properties	added,	which	are	used	to	point	the

teiid-security-users	and	teiid-security-roles	properties	files	have	been	moved	under	the	configuration	directory	of	their
respective	deployment.

Other	Issues
TEIID-5687	-	Querying	NCHAR	values	in	Oracle	using	prepared	statements	and	unicode	values	will	result	in	the	value	being
converted	to	extended	ascii	instead.

TEIID-1281	-	Negative	start	indexing	is	not	supported	by	DB2	and	Derby	databases.	Usage	of	the	Teiid	SUBSTRING
against	these	sources	should	not	use	negative	start	values.

TEIID-1008	-	Most	versions	of	Oracle	and	MySQL	do	not	support	deeply	nested	correlated	references.	There	is	currently	no
workaround	for	this	issue.

For	compatibility	with	the	7.0	release	if	a	stored	procedure	parameter	list	begins	with	identifier=,	then	it	will	be	parsed	as	a
named	parameter	invocation	even	if	the	intent	was	to	use	a	comparison	predicate	as	the	first	parameter	value.	The
workaround	is	to	use	nesting	parens,	e.g.	call	proc((identifier=value),	…),	which	clarifies	that	this	is	positional	value.	This

Release	Notes

321

https://issues.redhat.com/browse/TEIID-3594
https://issues.redhat.com/browse/TEIID-3192
https://issues.redhat.com/browse/TEIID-3177
https://issues.redhat.com/browse/TEIID-2512
https://issues.redhat.com/browse/TEIID-2707
https://issues.redhat.com/browse/TEIID-2429
https://issues.redhat.com/browse/TEIID-2445
https://issues.redhat.com/browse/TEIID-2510
https://issues.redhat.com/browse/TEIID-2086
https://issues.redhat.com/browse/TEIID-2168
https://issues.redhat.com/browse/TEIID-1241
https://issues.redhat.com/browse/TEIID-5687
https://issues.redhat.com/browse/TEIID-1281
https://issues.redhat.com/browse/TEIID-1008

workaround	will	not	be	needed	in	later	releases.

TEIID-586	-	Salesforce	LIKE	pushdown	is	case	insensitive,	while	LIKE	evaluated	by	Teiid	is	case	sensitive	unless	an
alternative	collation	is	used.	Care	should	be	taken	to	ensure	consistent	results	if	mixed	case	values	are	being	searched.

TEIID-2836	-	Data	from	DB2	on	z/OS	in	EBCDIC	may	not	be	represented	correctly	at	runtime.	It	is	recommended	that	the
values	are	converted	to	ASCII	or	another	common	character	set.

TEIID-2998	-	Google	spreadsheets	containing	all	string	data	do	not	detect	their	row	data	and	labels	correctly	on	the	Google
backend.

TEIID-3070	-	Netty	threads	may	inappropriately	take	up	CPU	resources.	This	affects	most	EAP	releases.	Upgrade	the	AS
version	of	Netty	to	3.6.10.Final	to	address	this	issue.

TEIID-3289	-	The	timestamp	to	string	conversion	performed	in	MySQL	will	produce	a	string	with	all	of	the	trailing	zeros	(up
to	6)	for	the	fractional	seconds.	This	differs	from	the	expected	Teiid/Java	format.

TEIID-2836	-	Data	from	DB2	on	z/OS	in	EBCDIC	may	not	be	represented	correctly	at	runtime.	It	is	recommended	that	the
values	are	converted	to	ASCII	or	another	common	character	set.

TEIID-2998	-	Google	spreadsheets	containing	all	string	data	do	not	detect	their	row	data	and	labels	correctly	on	the	Google
backend.

TEIID-3070	-	Netty	threads	may	inappropriately	take	up	CPU	resources.	This	affects	most	EAP	releases.	Upgrade	the	AS
version	of	Netty	to	3.6.10.Final	to	address	this	issue.

TEIID-3289	-	The	timestamp	to	string	conversion	performed	in	MySQL	will	produce	a	string	with	all	of	the	trailing	zeros	(up
to	6)	for	the	fractional	seconds.	This	differs	from	the	expected	Teiid/Java	format.

TEIID-3779	-	There	are	a	host	of	Phoenix	issues	that	Teiid	is	currently	not	working	around	for	HBase	access.	If	you	hit	any
of	these,	please	let	us	know	so	that	we	can	work	with	the	Phoenix	community	to	get	it	resolved.	Generally	Phoenix	has	issues
with	subquery	evaluation	and	certain	datatypes,	such	as	char	and	timestamp.

TEIID-3772	TEIID-3769	TEIID-3766	are	not	likely	to	occur	and	generate	an	exception.

TEIID-3774	is	unlikely	but	can	return	inaccurate	results.

TEIID-3768	affects	correlated	subquery	comparison	using	an	aggregate	of	a	char	value	and	can	return	inaccurate	results.

TEIID-3808	-	The	Informix	driver	handling	of	timezone	information	is	inconsistent	-	even	if	the	databaseTimezone	translator
property	is	set.	Consider	ensuring	that	the	Informix	server	and	the	application	server	are	in	the	same	timezone.

TEIID-3805	-	SAP	Hana	returns	an	empty	string	rather	than	null	for	the	substring	function	when	the	from	index	is	larger	than
the	string	length.

TEIID-3816	-	Informix	can	return	incorrect	results	for	subquery	comparisons	involving	a	boolean	value	and	a	subquery	that
has	only	a	single	row.	If	you	encounter	such	a	scenario	and	need	Teiid	to	compensate,	then	please	open	an	issue.

Thirdparty	Library	Updates
The	following	components	have	been	updated:

From	14.0

Accumulo	was	updated	to	the	2.0.0	client.

From	12.3

Release	Notes

322

https://issues.redhat.com/browse/TEIID-2836
https://issues.redhat.com/browse/TEIID-2998
https://issues.redhat.com/browse/TEIID-3070
https://issues.redhat.com/browse/TEIID-3289

The	infinispan-hotrod	translator/resource	adapter	were	updated	to	Infinispan	10.0.1.

Olingo	was	upgraded	to	4.7

From	12.1

The	salesforce-41	translator/resource	adapter	were	updated	to	the	45.1.0	jars.

Olingo	was	upgraded	to	4.6

From	12.0

Apache	POI	for	the	excel	translator	was	upgraded	to	3.13.

Accumulo	core	and	related	dependencies	were	updated	to	1.9.2.

The	mongodb	driver	was	upgraded	to	3.9.1.

jts	and	related	were	updated	to	1.16.0

From	11.0

The	cassandra	driver	and	associated	dependencies	were	upgraded	to	3.5.1.

From	10.1

Saxon	was	upgraded	to	9.8.0-7.

The	MongoDB	client	was	upgraded	to	3.6.3

From	10.0

The	Swagger	libraries	were	updated	to	version	1.5.17,	and	the	swagger-parser	was	upgraded	to	version	1.0.33.

Detailed	Release	Notes

Detailed	Release	Notes	-	Teiid	-	Version	15.0.0

Documentation	and	Help

The	Teiid	community	project	is	hosted	on	jboss.org.	Documentation	and	help	may	be	obtained	from	the	local	distribution	under
teiid-docs	or	the	following	locations.

Online	Documentation

Wiki

JIRA

Forums

Licenses

Teiid	is	primarily	licensed	under	the	Apache	Software	License	2.0.	Individual	jars	built	for	Teiid	are	also	licensed	under	the	EPL,
MPL,	and	the	PostgreSQL-BSD	licenses	as	per	the	needs	of	their	originating	source.	See	the	license	directory	in	the	distribution
for	full	license	copies.	Third-party	jars	retain	their	original	licensing.

Release	Notes

323

https://issues.redhat.com/secure/ReleaseNote.jspa?projectId=12310782
http://teiid.io/
http://teiid.io/teiid_runtimes/teiid_wildfly/docs/
https://community.jboss.org/wiki/TheTeiidProject
http://jira.jboss.org/jira/browse/TEIID
http://community.jboss.org/en/teiid?view=discussions

About	Red	Hat

Red	Hat,	is	in	the	business	of	providing	superior	technical	support	to	our	customers.	Our	goal	is	to	make	Professional	Open
Source™	the	SAFE	CHOICE	for	you.	We	accomplish	this	by	backing	up	our	open	source	Java	products	with	technical	support
services	that	are	delivered	by	the	core	developers	themselves.	We	can	help	you	to	train	your	staff	and	provide	you	with	support	at
every	stage	of	the	application	lifecycle	-	from	development	and	integration	through	deployment	and	maintenance.	Visit	the	JBoss
Services	page	for	more	information.

Release	Notes

324

http://www.redhat.com/jboss/
http://www.jboss.com/services/index

Data	Sources
Teiid	provides	the	means	(i.e.,	Translators	and	JEE	connectors)	to	access	a	variety	of	types	of	data	sources.

The	types	of	data	sources	that	are	currently	accessible	are:
Databases
Web	Services
OData
OpenAPI	/	Swagger
Big	Data/No	SQL/Search	Engines/JCR	and	Other	Sources
Enterprise	Systems
Object	Sources
LDAP
Files
Spreadsheets

Databases

See	JDBC	Translators	for	access	to:

Oracle

PostgreSQL

MySQL/MariaDB

DB2

Microsoft	SQL	Server

Sybase

SAP	IQ

Microsoft	Access

Derby

H2

HSQL

Ingres

Informix

MetaMatrix

Teradata

Vertica

Exasol

Generic	ANSI	SQL	-	for	typical	JDBC/ODBC	sources

Simple	SQL	-	for	any	JDBC/ODBC	source

Data	Sources

325

Web	Services

See	Web	Services	Translator	for	access	to:

SOAP

REST

Arbitrary	HTTP(S)

OData
See	the	OData	Translator

OpenAPI	/	Swagger
See	the	OpenAPI	and	Swagger	Translators

Big	Data/No	SQL/Search	Engines/JCR	and	Other	Sources
Actian	Vector

Amazon	Athena

Amazon	S3

Amazon	SimpleDB

Apache	Accumulo

Apache	Cassandra	DB

Apache	SOLR

Apache	Spark

Couchebase

Greenplum

Hive	/	Hadoop	/	Amazon	Elastic	MapReduce

Impala	/	Hadoop	/	Amazon	Elastic	MapReduce

ModeShape	JCR	Repository

Mongo	DB

Mondrian	OLAP

Netezza	data	warehouse	appliance

Phoenix	/	HBase

PrestoDB

Redshift

Data	Sources

326

Enterprise	Systems

OSISoft	PI

SalesForce

SAP	Gateway

SAP	Hana

Teiid

Object	Sources

Infinispan	HotRod	Mode

Intersystems	Cache	Object	Database

JPA	sources

LDAP
See	the	LDAP	Translator	for	access	to:

RedHat	Directory	Server

Active	Directory

Files
See	the	File	Translator	and	file	sources	(file,	hdfs,	s3,	and	ftp)	for	use	with:

Delimited/Fixed	width

XML

JSON

Spreadsheets

Excel

Google	Spreadsheet

This	represents	data	sources	that	have	been	validated	to	work	using	the	available	translators	and	connectors.	However,	this	does
not	preclude	a	new	data	source	from	working.	It	can	be	as	easy	as	extending	an	existing	translator,	to	creating	a	new	translator
using	the	Translator	Development	extensions.

Take	a	look	at	the	list	of	Translators	that	are	used	as	the	bridge	between	Teiid	and	the	external	system.

Data	Sources

327

Virtual	databases
A	virtual	database	(VDB)	is	a	metadata	container	for	components	used	to	integrate	data	from	multiple	data	sources,	so	that	they
can	be	accessed	in	an	integrated	manner	through	a	single,	uniform	API.

A	virtual	database	typically	contains	multiple	schema	components	(also	called	as	models),	and	each	schema	contains	the	metadata
(tables,	procedures,	functions).	There	are	two	different	types	of	schemas:

Foreign	schema
Also	called	a	source	or	physical	schema,	a	foreign	schema	represents	external	or	remote	data	sources,	such	as	a	relational
database,	such	as	Oracle,	Db2,	or	MySQL;	files,	such	as	CSV	or	Microsoft	Excel;	or	web	services,	such	as	SOAP	or	REST.

Virtual	schema
A	view	layer,	or	logical	schema	layer	that	is	defined	using	schema	objects	from	foreign	schemas.	For	example,	when	you
create	a	view	table	that	aggregates	multiple	foreign	tables	from	different	sources,	the	resulting	view	shields	users	from	the
complexities	of	the	data	sources	that	define	the	view.

One	important	thing	to	note	is,	a	virtual	database	contains	only	metadata.	Any	use	case	involving	Teiid	must	have	a	virtual
database	model	to	begin	with.	So,	it	is	important	to	learn	how	to	design	and	develop	a	VDB.

The	following	example	of	a	virtual	database	model,	defines	a	single	foreign	schema	component	that	makes	a	connection	to	a
PostgreSQL	database.

The	SQL	DDL	commands	in	the	example	implement	the	SQL/MED	specification.

CREATE	DATABASE	my_example;

USE	DATABASE	my_example;

CREATE	SERVER	pgsql

				VERSION	'one'	FOREIGN	DATA	WRAPPER	postgresql

				OPTIONS	(

								"resource-name"	'java:/postgres-ds'

);

CREATE	SCHEMA	test	SERVER	pgsql;

IMPORT	FOREIGN	SCHEMA	public	FROM	SERVER	pgsql	INTO	test

				OPTIONS(

								importer.useFullSchemaName	false,

								importer.tableTypes	'TABLE,VIEW'

);

Or	as	an	XML	vdb:

<vdb	name="my-example"	version="1">

Virtual	databases

328

				<model	name="test"	type="PHYSICAL">

								<property	name="importer.schemaName"	value="public"/>

								<property	name="importer.useFullSchemaName"	value="false"/>

								<property	name="importer.tableTypes"	value="TABLE,VIEW"/>

								<source	name="pqsql"	translator-name="postgresql"	connection-jndi-name="java:/postgres-ds"/>

				</model>

</vdb>

Both	formats	define	the	same	VDB.

The	following	sections	describe	in	greater	detail	how	the	statements	in	the	preceding	example	are	used	to	define	a	virtual
database.	Before	that	we	need	to	learn	about	the	different	elements	of	the	source	schema	component.

External	data	sources
As	shown	in	preceding	example,	the	"source	schema"	component	of	a	virtual	database	is	a	collection	of	schema	objects,	tables,
procedures	and	functions,	that	represent	an	external	data	source’s	metadata	locally.	In	the	example,	schema	objects	are	not	defined
directly,	but	are	imported	from	the	server.	Details	of	the	connection	to	the	external	data	source	are	provided	through	a		resource-
name	,	which	is	a	named	connection	reference	to	a	external	data	source.

For	the	purposes	of	Teiid,	connecting	and	issuing	queries	to	fetch	the	metadata	from	these	external	data	sources,	Teiid
defines/provides	two	types	of	resources.

Resource	adapter
A	resource	adapter	(also	called	as	SERVER)	is	connection	object	to	the	external	data	source.	In	the	case	of	relational	database	this
can	be	achieved	through	a	JDBC	connection,	or	in	the	case	of	a	File	this	may	be	a	reference	to	file’s	location.	The	resource-
adapter	provides	a	unified	interface	to	define	a	connection	in	the	Teiid.	A	resource	adapter	also	provides	way	to	natively	issue
commands	and	gather	results.	Teiid	provides	variety	of	resource	adaptors	to	many	different	systems	or	one	can	be	developed	for
new/custom	data	source.	A	resource	adapters	connection	is	represented	above	as	the	"resource-name".

As	VDB	developer	you	need	to	know,	how	to	configure	these	sources	in	the	Teiid.	In	WildFly	Server	these	are	defined	as	JCA
components.	In	Teiid	embedded,	the	developer	has	to	define	the	connections	to	these	sources	programmatically.	Check	out
Administrator’s	Guide	on	how	to	configure	these	in	WildFly,	or	embedded	examples,	if	you	are	working	with	Teiid	Embedded.

Translator
A	translator,	also	known	as	a		DATA	WRAPPER	,	is	a	component	that	provides	an	abstraction	layer	between	the	Teiid	query	engine
and	a	physical	data	source.	The	translator	knows	how	to	convert	query	commands	from	Teiid	into	source-specific	commands	and
execute	them.	The	translator	also	has	the	intelligence	to	convert	data	that	the	physical	source	returns	into	a	form	that	the	Teiid
query	engine	can	process.	For	example,	when	working	with	a	web	service	translator,	the	translator	converts	SQL	procedures	from
the	Teiid	layer	into	HTTP	calls,	and	JSON	responses	are	converted	to	tabular	results.

Teiid	provides	various	translators	as	part	of	the	system,	or	one	can	be	developed	by	using	the	provided	java	libraries.	For
information	about	the	available	translators,	see	Translators.

Important In	a	VDB,	a	source	schema	must	be	configured	with	a	correct	Translator	and	a	valid	resource	adapter,	to
make	the	system	work.

Virtual	databases

329

Developing	a	Virtual	Database
There	are	few	different	ways	a	Virtual	Database	can	be	developed.	Each	method	has	advantages	and	disadvantages.

A	VDB	is	developed	as	file	artifact,	which	can	deployed	into	a	Teiid	Server.	This	file	artifact	contains	the	metadata	about	the
VDB,	or	contains	the	details	to	fetch	the	metadata	from	source	data	sources.	These	artifacts	can	be	shared	and	moved	between
different	servers.

vdb.xml	:	In	this	file	format,	you	can	use	combination	of	XML	elements	and	DDL	elements	to	define	the	metadata.

vdb.ddl	:	In	this	file	format,	you	can	use	strictly	DDL	using	SQL-MED	(with	few	custom	extensions)	to	define	the	metadata.
This	can	be	viewed	as	next	version	to	the	vdb.xml.

myvdb.vdb	:	This	is	an	archive	based	(zip)	file	format	is	combination	of	above	vdb.xml	or	vdb.ddl	file	enclosed	in	zip
archive	along	with	any	other	supporting	files	like	externalized	DDL	files,	UDF	libraries.	This	closely	resembles	the	legacy
Designer	VDB	format,	however	this	will	not	contain	any	.INDEX	or	.XMI	files.	If	the	individual	schema	elements	inside	a
given	model/schema	is	large	and	managability	of	that	schema	in	a	single	vdb	file	is	getting	hard	as	with	above	formats,	then
consider	using	this	format.	With	this	you	can	define	each	model/schema’s	DDL	in	its	own	file.	The	ZIP	archive	structure
must	resemble

myvdb.vdb

/META-INF

	vdb.ddl

/schema1.ddl

/schema2.ddl

/lib

		myudf.jar

vdb.xml	and	vdb.ddl	may	be	deployed	as	standalone	files.	As	a	standalone	file,	the	VDB	file	name	pattern	must	adhere	to	"-
vdb.xxx"	for	the	Teiid	VDB	deployer	to	recognize	this	file.

They	may	also	be	contained	in	a	.vdb	zip	file	along	with	other	relevant	files,	such	as	jars,	additional	ddl,	and	static	file	resources.

Important It	is	important	to	note	that,	the	metadata	represented	by	the	VDB	formats	is	EXACTLY	same	in	all	different
ways.	In	fact,	you	can	convert	a	VDB	from	one	type	to	the	other.

Steps	to	follow	in	developing	a	VDB

This	will	walk	through	developing	a	DDL	based	VDB.

Step	1:	Pick	Name	and	Version

Pick	the	name	and	version	of	the	virtual	database	you	want	to	create.	From	previous	example	this	represents

CREATE	DATABASE	my_example	VERSION	'1.0.0';

USE	DATABASE	my_example	VERSION	'1.0.0';

Step	2:	Configuring	a	Source(s)

Developing	a	Virtual	Database

330

When	working	with	external	sources,	there	are	few	extra	steps	need	to	be	followed,	as	not	all	the	software	components	required
for	the	connection	nor	configuration	are	automatically	provided	by	Teiid.

Step	2B:	Find	the	module	to	connect	to	External	Source

Typically	all	relational	databases	are	connected	using	their	JDBC	drivers.	Find	out	if	the	external	source	has	a	JDBC	driver?
if	this	source	has	JDBC	driver,	then	acquire	the	driver	jar	file.

Once	the	driver	is	acquired,	then	make	sure	this	driver	is	Type	4	driver,	and	then	deploy	this	driver	into	Teiid	server	using
either	web-console	application	or	CLI	admin-console.	The	below	example	shows	deploying	the	Oracle	driver	in	Teiid	Server
based	on	WildFly	using	CLI	admin-console.	If	driver	is	not	Type	4,	it	can	be	still	used,	but	more	set	up	is	needed.

</wildfly/bin>$./jboss-cli.sh	--connect

[standalone@localhost:9990	/]	deploy	/path/to/ojdbc6.jar

if	the	source	does	not	have	JDBC	driver	and	has	resource-adapter	provided	by	Teiid,	then	driver	for	it	is	already	available	in
Teiid	server.	No	further	action	required	for	this.

Step	2C:	Create	a	Connection	to	External	Source

Based	on	above	driver	or	resource	adapter	a	connection	to	the	external	source	need	to	be	created.	There	are	many	methods	to
create	a	data	source	connection.

Teiid	Server	(choose	one	method	from	below)

Edit	the	wildfly/standalone/configuration/standalone-teiid.xml	file	and	add	respective	data	source	or	resource	adapter
configuration.	The	examples	of	these	templates	are	provided	in	wildfly/docs/teiid/datasources	directory.

Use	Teiid	Web-console	and	follow	the	directions	to	create	a	data	source	or	resource-adapter.

Use	CLI	admin-console	and	execute	the	script.	The	sample	scripts	are	given	in	wildfly/docs/teiid/datasources	directory.
Also,	checkout	documentation	at	Administrator’s	Guide	for	more	details.

Teiid	Embedded

Create	the	connection	programmatically,	by	supplying	your	own	libraries	to	connect	to	the	source.

From	previous	example	this	represents

CREATE	SERVER	pgsql

				VERSION	'one'	FOREIGN	DATA	WRAPPER	postgresql

				OPTIONS	(

								"resource-name"	'java:/postgres-ds'

);

Warning This	probably	is	most	challenging	step	in	terms	of	understanding	Teiid,	make	sure	you	follow	before	going
further	into	next	steps.

Step	3:	Create	Source	Schema

Now	that	access	the	external	sources	is	defined,	"source	schema"	or	models	as	shown	before	needs	to	be	created	and	metadata
needs	to	be	defined.

From	previous	example	this	represents

Developing	a	Virtual	Database

331

CREATE	SCHEMA	test	SERVER	pgsql;

SET	SCHEMA	test;

SET	SCHEMA	statement	sets	the	context	in	which	following	DDL	statements	to	fall	in.

Schema	component	is	defined,	but	it	has	no	metadata.	i.e	tables,	procedures	or	functions.	These	can	be	defined	one	of	two	ways
for	a	source	model,	either	importing	the	metadata	directly	from	the	source	system	itself,	or	defining	the	DDL	manually	inline	in
this	file.

Step	3A:	Import	Metadata

Using	the	data	source	connections	created	in	Step	2,	import	the	metadata	upon	deployment	of	the	VDB.	Note	that	this
capability	is	slightly	different	for	each	source,	as	to	what	and	how/what	kind	of	metadata	is.	Check	individual	source’s
translator	documentation	for	more	information.	From	previous	example	this	represents

IMPORT	FOREIGN	SCHEMA	public	FROM	SERVER	pgsql	INTO	test

				OPTIONS(

								importer.tableTypes	'TABLE,VIEW'

);

The	above	import	statement	is	saying	that,	import	the	"public"	schema	from	external	data	source	defined	by	"pgsql"	into	local
"test"	schema	in	Teiid.	It	also	further	configures	to	only	fetch	TABLE,	VIEW	types,	and	do	not	use	fully	qualified	schema	names
in	the	imported	metadata.	Each	translator/source	has	many	of	these	configuration	options	you	can	use	to	filter/refine	your
selections,	for	more	information	consult	the	translator	documents	at	Translators	for	every	source	you	are	trying	to	connect	to.

Step	3B:	Define	Metadata	using	DDL

Instead	of	importing	the	metadata,	you	can	manually	define	the	tables	and	procedures	inline	to	define	the	metadata.	This	will	be
further	explained	in	next	sections	detail	on	every	DDL	statement	supported.	For	example,	you	can	define	a	table	like

CREATE	FOREIGN	TABLE	CUSTOMER	(

				SSN	char(10)	PRIMARY	KEY,

				FIRSTNAME	string(64),

				LASTNAME	string(64),

				ST_ADDRESS	string(256),

				APT_NUMBER	string(32),

				CITY	string(64),

				STATE	string(32),

				ZIPCODE	string(10)

);

Warning

Please	note	that	when	metadata	is	defined	in	this	manner,	the	source	system	must	also	have	representative
schema	to	support	any	queries	resulting	from	this	metadata.	Teiid	CAN	NOT	automatically	create	this
structure	in	your	data	source.	For	example,	with	above	table	definition,	if	you	are	connecting	Oracle	database,
the	Oracle	database	must	have	the	existing	table	with	matching	names.	Teiid	can	not	create	this	table	in	Oracle
for	you.

Repeat	this	Step	2	&	Step	3,	for	all	the	external	data	sources	to	be	included	in	this	VDB

Step	5:	Create	Virtual	Views

Developing	a	Virtual	Database

332

Now	using	the	above	source’s	metadata,	define	the	abstract/logical	metadata	layer	using	Teiid’s	DDL	syntax.	i.e.	create
VIEWS,	PROCEDURES	etc	to	meet	the	needs	of	your	business	layer.	For	example	(pseudo	code):

CREATE	VIRTUAL	SCHEMA	reports;

CREATE	VIEW	SalesByRegion	(

			quarter	date,

			amount	decimal,

			region	varchar(50)

)	AS

		SELECT	...	FROM	Sales	JOIN	Region	on	x	=	y	WHERE	...

Repeat	this	step	as	needed	any	number	of	Virtual	Views	you	need.	You	can	refer	to	View	tables	in	one	view	from	others.

Step	6:	Deploy	the	VDB

Once	the	VDB	is	completed,	then	this	VDB	needs	to	be	deployed	to	the	Teiid	Server.	(this	is	exactly	same	as	you	deploying	a
WAR	file	for	example).	One	can	use	Teiid	web-console	or	CLI	admin-console	to	do	this	job.	For	example	below	cli	can	be
used

deploy	my-vdb.ddl

Step	7:	Client	Access

Once	the	VDB	is	available	on	the	Teiid	Server	in	ACTIVE	status,	this	VDB	can	be	accessed	from	any	JDBC/ODBC
connection	based	applications.	You	can	use	BI	tools	such	as	Tableau,	Business	Objects,	QuickView,	Pentaho	by	creating	a
connection	to	this	VDB.	You	can	also	access	the	VDB	using	OData	V4	protocol	without	any	further	coding.

No	matter	how	you	are	developing	the	VDB,	whether	you	are	using	the	tooling	or	not,	the	above	are	steps	to	be	followed	to	build
a	successful	VDB.

vdb.xml

The	vdb-deployer.xsd	schema	for	this	xml	file	format	is	available	in	the	schema	folder	under	the	docs	with	the	Teiid	distribution.

See	also	link:r_xml-deployment-mode.adoc

VDB	Zip	Deployment
For	more	complicated	scenarios	you	are	not	limited	to	just	an	xml/ddl	file	deployment.	In	a	vdb	zip	deployment:

The	deployment	must	end	with	the	extension	.vdb

The	vdb	xml	file	must	be	zip	under	/META-INF/vdb.xml

If	a	/lib	folder	exists	any	jars	found	underneath	will	automatically	be	added	to	the	vdb	classpath.

Files	within	the	VDB	zip	are	accessible	by	a	Custom	Metadata	Repository	using	the		MetadataFactory.getVDBResources()	
method,	which	returns	a	map	of	all		VDBResources		in	the	VDB	keyed	by	absolute	path	relative	to	the	vdb	root.	The	resources
are	also	available	at	runtime	via	the	SYSADMIN.VDBResources	table.

Developing	a	Virtual	Database

333

The	built-in	DDL-FILE	metadata	repository	type	may	be	used	to	define	DDL-based	metadata	in	other	files	within	the	zip
archive.	This	improves	the	memory	footprint	of	the	vdb	metadata	and	the	maintainability	of	the	metadata.

Example	VDB	Zip	Structure

/META-INF

			vdb.xml

/ddl

			schema1.ddl

/lib

			some-udf.jar

In	the	above	example	a	vdb.xml	could	use	a	DDL-FILE	metadata	type	for	schema1:

<model	name="schema1"	...

			<metadata	type="DDL-FILE">/ddl/schema1.ddl</metadata>

</model>

The	contents	inside	schema1.ddl	can	include	DDL	for	Schema	Objects

Developing	a	Virtual	Database

334

DDL	VDB
A	Virtual	Database	(VDB)	can	created	through	DDL	statements.	Teiid	supports	the	SQL-MED	specification	to	utilize	foreign	data
sources.

DDL	captures	information	about	the	VDB	-	the	sources	it	integrate,	and	preferences	for	importing	metadata.	DDL	may	be
deployed	as	a	single	file	or	as	a	set	of	files	in	a	zip	archive.

See	Developing	a	Virtual	Database	for	a	discussion	of	the	.vdb	zip	packaging.

Table	of	Contents
DDL	File	Deployment
DDL	File	Format
Create	a	Database
Create	a	Translator
Associate	The	Translator	With	A	Source
Create	SCHEMA
Importing	Schema

Importing	another	Virtual	Database	(VDB	Reuse)
Create	Schema	Objects
Data	Roles
Differences	with	vdb.xml	metadata

DDL	File	Deployment

You	can	simply	create	a	SOME-NAME-vdb.ddl	file	with	your	DDL	content.	Then	use	a	standard	deployment	mechanism	(cli,
adminapi,	or	placing	the	file	in	the	deployments	directory)	to	deploy	it.

Important The	VDB	name	pattern	must	adhere	to	"-vdb.ddl"	for	the	Teiid	VDB	deployer	to	recognize	this	file	when
deployed	in	Teiid	Server.

Example	VDB	DDL

CREATE	DATABASE	my_example;

USE	DATABASE	my_example;

CREATE	SERVER	pgsql

				VERSION	'one'	FOREIGN	DATA	WRAPPER	postgresql

				OPTIONS	(

								"resource-name"	'java:/postgres-ds'

);

CREATE	SCHEMA	test	SERVER	pgsql;

IMPORT	FOREIGN	SCHEMA	public	FROM	SERVER	pgsql	INTO	test

				OPTIONS(

								importer.tableTypes	'TABLE,VIEW'

);

DDL	File	Format
For	compatibility	with	the	existing	metadata	system,	DDL	statements	must	appear	in	a	specific	order	to	define	a	virtual	database.
All	of	the	database	structure	must	be	defined	first	-	this	includes	create/alter	database,	domains,	vdb	import,	roles,	and	schemas
statements.	Then	the	schema	object,	schema	import,	and	permission	DDL	may	appear.

DDL	VDB

335

Create	a	Database

Every	VDB	file	must	start	with	database	definition	where	it	specifies	the	name	and	version	of	the	database.	The	create	syntax	for
database	is

CREATE	DATABASE	{db-name}	[VERSION	{version-string}]	OPTIONS	(<options-clause>)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

An	example	statement

CREATE	DATABASE	my_example	VERSION	'1'	OPTIONS	("cache-metadata"	true);

For	the	list	of	database	scoped	properties	see	VDB	properties.

Immediately	following	the	create	database	statement	is	an	analogous	use	database	statement.

As	we	learned	about	the	VDB	components	earlier	in	the	guide,	we	need	to	first	create	translators,	then	connections	to	data	sources,
and	then	using	these	we	can	gather	metadata	about	these	sources.	There	is	no	limit	on	how	many	translators,	or	data	sources	or
schemas	you	create	to	build	VDB.

Create	a	Translator
A	translator	is	an	adapter	to	the	foreign	data	source.	The	creation	of	translator	in	the	context	of	the	VDB	creates	a	reference	to	the
software	module	that	is	available	in	the	Teiid	system.	Some	of	the	examples	of	available	translators	include:

oracle

mysql

postgresql

mongodb

CREATE	FOREIGN	(DATA	WRAPPER	|	TRANSLATOR)	{translator-name}

				[TYPE	{base-translator-type}]

				[OPTIONS	(<options-clause>)]

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

Optional	TYPE	is	used	to	create	an	"override"	translator.	It	is	not	required	to	define	translators	already	known	to	the	engine	with	a
CREATE	-	for	example	CREATE	FOREIGN	DATA	WRAPPER	oracle	OPTIONS	…	-	will	effectively	be	ignored.

The	OPTIONS	clause	is	used	to	provide	the	"execution-properties"	of	a	specific	translator	defined	in	either	in	{translator-name}	or
{base-translator-name}.	These	names	MUST	match	with	available	Translators	in	the	system.	link:as_translators.adoc[Translators}
documents	all	the	available	translators.

For	all	available	translators	see	Translators

Example	Creating	Override	Translator

CREATE	FOREIGN	DATA	WRAPPER	oracle-override	TYPE	oracle	OPTIONS	(useBindVariables	false);

DDL	VDB

336

The	above	example	creates	a	translator	override	with	an	example	showing	turning	off	the	prepared	statements.

Additional	management	support	to	alter,	delete	a	translator

ALTER		(DATA	WRAPPER|TRANSLATOR)	{translator-name}	OPTIONS	(ADD|SET|DROP	<key-

value>);

DROP	FOREIGN	[<DATA>	<WRAPPER>|<TRANSLATOR>]	{translator-name}

Associate	The	Translator	With	A	Source
The	SERVER	construct	is	used	to	associate	your	translator	with	a	data	source.

CREATE	SERVER	{source-name}	[TYPE	'{source-type}']

				[VERSION	'{version}']	FOREIGN	DATA	WRAPPER	{translator-name}

				OPTIONS	(<options-clause>)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

Name Description

source-name Name	given	to	the	source’s	connection.

source-type Not	currently	used.

translator-name Name	of	the	translator	to	be	used	with	this	server.

options

Currently	only	resource-name	is	supported.	resource-name
provides	a	way	to	specify	the	environmentally	dependent
(JNDI	or	bean)	name	of	the	source	if	it	differs	from	the
server	name.	For	example	java:/source

Example	3:	creating	a	data	source	connection	to	Postgres	database

CREATE	SERVER	pgsql

				FOREIGN	DATA	WRAPPER	postgresql

				OPTIONS	(

								"resource-name"	'java:/postgres-ds'

);

An	example	file	source.

Example	4:	creating	a	data	source	connection	to	"file"	resource	adapter.

CREATE	SERVER	marketdata

				FOREIGN	DATA	WRAPPER	file

				OPTIONS(

								ParentDirectory	'/path/to/marketdata'	,"resource-name"	'java:/postgres-ds'

);

See	Data	Sources	for	more.

DDL	VDB

337

Additional	management	support	to	alter/delete	a	connection.

ALTER		SERVER	{source-name}		OPTIONS	(ADD|SET|DROP	<key-value>);

DROP	SERVER		{source-name};

Now	that	we	have	the	Translators	and	Connections	created,	the	next	step	is	to	create	SCHEMAs	and	work	with	metadata.

Create	SCHEMA
A	schema	is	a	container	for	metadata.	It	works	as	a	namespace	in	which	metadata	objects	like	TABLES,	VIEWS	and
PROCEDURES	exist.	The	below	DDL	shows	how	to	create	a	SCHEMA	element.

CREATE	[VIRTUAL]	SCHEMA	{schema-name}

				[SERVER	{server-name}	(<COMMA>	{server-name})*]

				OPTIONS	(<options-clause>)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

The	use	of	VIRTUAL	keyword	defines	if	this	schema	is	"Virtual	Schema".	In	the	absence	of	the	VIRTUAL	keyword,	this
Schema	element	represents	a	"Source	Schema".	Refer	to	VDB	Guide	about	different	types	of	Schema	types.

Important If	the	Schema	is	defined	as	"Source	Schema",	then	SERVER	configuration	must	be	provided,	to	be	able	to
determine	the	data	source	connection	to	be	used	when	executing	queries	that	belong	to	this	Schema.

Providing	multiple	Server	names	configure	this	Schema	as	"multi-source"	model.	See	Multisource	Models	for	more	information.

Below	are	typical	properties	that	can	be	configured	for	a	Schema	in	the	OPTIONS	clause.

Name Description

VISIBLE Set	to	false	to	make	the	Schema	not	visible	to	metadata
interrogation

ANNOTATION A	description	of	the	Schema

Example	5:	Showing	to	create	a	source	schema	for	PostgreSQL	server	from	example	above

CREATE	SCHEMA	test	SERVER	pgsql;

Additional	management	support	to	alter/delete	a	schema	can	be	done	through	following	commands.

ALTER	[VIRTUAL]	SCHEMA	{schema-name}	OPTIONS	(ADD|SET|DROP	<key-value>);

DROP	SCHEMA	{schema-name};

Importing	Schema
If	you	are	designing	a	source	schema,	you	can	add	the	TABLES,	PROCEDURES	manually	to	represent	the	data	source,	however
in	certain	situations	this	can	be	tedious,	or	complicated.	For	example,	if	you	need	to	represent	100s	of	existing	tables	from	your
Oracle	database	in	Teiid?	Or	if	you	are	working	with	MongoDB,	how	are	you	going	to	map	a	document	structure	into	a	TABLE?

DDL	VDB

338

For	this	purpose,	Teiid	provides	an	import	metadata	command,	that	can	import/create	metadata	that	represents	the	source.	The

following	command	can	be	used	for	that	purpose	with	most	of	the	sources	(LDAP	source	is	only	exception,	not	providing	import)

IMPORT	[FOREIGN	SCHEMA	{foreign-schema-name}]

				FROM	(SERVER	{server-name}	|	REPOSITORY	{repository-name})

				INTO	{schema-name}

				OPTIONS	(<options-clause>)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

foreign-schema-name	:	Name	of	schema	to	import.	Typically	most	databases	are	tied	to	a	schema	name,	like	"public",	"dbo"	or
name	of	the	database.	If	you	are	working	with	a	non-relational	source,	or	a	DDL	file,	you	can	provide	a	dummy	value	here	or	omit
the	entire	FOREIGN	SCHEMA	clause.	server-name:	name	of	the	server	created	above	to	import	metadata	from.	repository-name:
Custom/extended	"named"	repositories	from	which	metadata	can	be	imported.	See	MetadataRepository	interface	for	more	details.
Teiid	provides	a	built	in	type	called	"DDL-FILE"	see	example	below.	schema-name:	The	foreign	schema	name	to	import	from	-
it’s	meaning	is	up	to	the	translator.	import	qualifications	:	using	this	you	can	limit	your	import	of	the	Tables	from	foreign
datasource	specified	to	this	list.	options-clause	:	The	"importer"	properties	that	can	be	used	to	refine	the	import	process	behavior
of	the	metadata.	Each	Translator	defines	a	set	of	"importer"	properties	with	their	documentation	or	through	extension	properties.

The	below	example	shows	importing	metadata	from	a	PostgreSQL	using	server	example	above.

Example	Import

--	import	from	native	database

IMPORT	FOREIGN	SCHEMA	public

				FROM	SERVER	pgsql

				INTO	test

The	above	command	imports	public.customers,	public.orders	tables	using	pgsql’s	connection	into	a	VDB	schema	test.

Example	Import

--	in	archive	based	vdbs(.vdb)	you	can	provide	schema	in	separate	files	and	pull	

them	in	a	main	vdb.ddl	file	as:

IMPORT	FROM	REPOSITORY	"DDL-FILE"

				INTO	test	OPTIONS	("ddl-file"	'/path/to/schema1.ddl')

IMPORT	FROM	REPOSITORY	"DDL-FILE"

				INTO	test	OPTIONS	("ddl-file"	'/path/to/schema2.ddl')

Tip The	example	IMPORT	SCHEMA	can	be	used	with	any	custom	Metadata	Repository,	in	the	REPOSITORY	DDL-
FILE,	DDL-FILE	represents	a	particular	type	of	repository.

Importing	another	Virtual	Database	(VDB	Reuse)

If	you	like	to	import	another	VDB	that	is	created	into	the	current	VDB,	the	following	command	cn	be	used	to	import	all	the
metadata

IMPORT	DATABASE	{vdb-name}	VERSION	{version}	[WITH	ACCESS	CONTROL]

Specifying	the	WITH	ACCESS	CONTROL	also	imports	any	Data	Roles	defined	in	the	other	database.

DDL	VDB

339

Create	Schema	Objects

Most	DDL	statements	that	affect	schema	objects	need	the	schema	to	be	explicitly	set.	To	be	able	to	establish	the	schema	context
you	are	working	with	use	following	command:

Example:	Set	Schema

SET	SCHEMA	{schema-name};

then	you	will	be	create/drop/alter	schema	objects	for	that	schema.

Example:	Schema	Object	Creation

SET	SCHEMA	test;

CREATE	VIEW	my_view	AS	SELECT	'HELLO	WORLD';

Data	Roles

Data	roles,	also	called	entitlements,	are	sets	of	permissions	defined	per	VDB	that	dictate	data	access	(create,	read,	update,	delete).
Data	roles	use	a	fine-grained	permission	system	that	Teiid	will	enforce	at	runtime	and	provide	audit	log	entries	for	access
violations.	To	read	more	about	Data	Roles	and	Permissions	see	Data	Roles	and	Permissions

Here	we	will	show	DDL	support	to	create	these	Data	Roles	and	corresponding	permissions.

BNF	for	Create	Data	Role

CREATE	ROLE	{data-role}	WITH

				FOREIGN	ROLE	{enterprise-role}(,{enterprise-role})*

				|	ANY	AUTHENTICATED

data-role:	Data	role	referenced	in	the	VDB	enterprise-role:	Enterprise	role(s)	that	this	data-role	represents	WITH	ANY
AUTHENTICATED:	When	present,	this	data-role	is	given	to	any	user	who	is	valid	authenticated	user.

Example:	Create	Data	Role

CREATE	ROLE	readWrite	WITH	FOREIGN	ROLE	developer,analyst;

CREATE	ROLE	readOnly	WITH	ANY	AUTHENTICATED;

Note Roles	must	be	defined	as	a	structural	component	of	the	VDB.	GRANT/REVOKE	may	then	appear	after	all	of	the
database	structure	has	been	defined.

See	Permissions	for	more	details	on	the	permission	system.

BNF	for	GRANT/REVOKE	command

GRANT	[<permission-types>	(,<permission-types>)*]

				ON	(<grant-resource>)

				TO	{data-role}

GRANT	(TEMPORARY	TABLE	|	ALL	PRIVILEGES)

				TO	{data-role}

GRANT	USAGE	ON	LANGUAGE	{language-name}

				TO	{data-role}

<permission-types>	::=

				SELECT	|	INSERT	|		UPDATE	|	DELETE	|

				EXECUTE	|	ALTER	|	DROP

DDL	VDB

340

<grant-resource>	::=

								TABLE	{schema-name}.{table-name}	|

								PROCEDURE	{schema-name}.{procedure-name}	|

								SCHEMA	{schema-name}	|

								COLUMN	{schema-name}.{table-name}.{column-name}	[MASK	[ORDER	n]	{expression}]

REVOKE	[(<permission-types>	(,<permission-types>)*)]

				ON	(<revoke-resource>)

				FROM	{data-role}

REVOKE

				(TEMPORARY	TABLE	|	ALL	PRIVILEGES)

				FROM	{data-role}

REVOKE	USAGE	ON	LANGUAGE	{language-name}

				FROM	{data-role}

<revoke-resource>	::=

								TABLE	{schema-name}.{table-name}	|

								PROCEDURE	{schema-name}.{procedure-name}	|

								SCHEMA	{schema-name}	|

								COLUMN	{schema-name}.{table-name}.{column-name}	[MASK]

permission-types:	Types	of	permissions	to	be	granted

language-name:	Name	of	the	language

grant-resource:	This	is	Schema	element	in	the	VDB	on	which	this	grant	applies	to.

revoke-resource:	This	is	Schema	element	in	the	VDB	on	which	this	revoke	applies	to.	Specifying	the	CONDITION	or
MASK	keyword	will	attempt	to	move	the	specific	CONDITION	or	MASK	for	that	resource.

schema-name:	Name	of	the	schema	this	resource	belongs	to

table-name:	Name	of	the	Table/View

procedure-name:	Procedure	Name

column-name:	Name	of	the	column

expression:	any	valid	sql	expression,	this	can	include	columns	from	referenced	resource

BNF	for	CREATE	POLICY	and	DROP	POLICY.

Warning

GRANT/REVOKE	mostly	function	as	direct	replacements	for	the	legacy	permission	model.	They	do	not
function	the	same	as	standard	SQL	GRANT/REVOKE.	GRANT/REVOKE	apply/remove	permissions	from
the	given	resource	-	but	do	not	affect	prior	GRANT/REVOKEs	against	any	other	resource.	For	example	if	you
GRANT	the	select	permission	on	a	table,	then	REVOKE	the	select	permission	on	the	table’s	schema,	the
GRANT	of	the	select	permission	will	remain	on	the	table.	At	runtime	GRANTs	are	still	interpreted
hierarchically	-	a	select	GRANT	on	a	schema	implies	read	access	to	all	contained	schema	objects.
GRANT/REVOKE	is	also	not	ADD/DROP	aware.	If	the	GRANT	target	is	dropped	the	old	GRANT	still
remains	and	could	affect	any	recreated	object.

Warning POLICIES	are	not	ADD/DROP	aware.	If	the	POLICY	target	is	dropped	the	old	POLICY	still	remains	and
could	affect	any	recreated	object.

Example:	Give	insert,	select,	update	permission	on	single	table	to	user	with	enterprise	role	"role1"

CREATE	ROLE	RoleA	WITH	FOREIGN	ROLE	role1;

...

GRANT	INSERT,	SELECT,	UPDATE	ON	TABLE	test.Customer	TO	RoleA;

Example	:	Give	all	permissions	to	user	with	"admin"	enterprise	role

CREATE	ROLE	everything	WITH	FOREIGN	ROLE	admin;

DDL	VDB

341

...

GRANT	ALL	PRIVILEGES	TO	everything;

Example	:	All	users	can	see	only	Orders	table	contents	amount	<	1000

CREATE	ROLE	base_role	WITH	ANY	AUTHENTICATED;

...

GRANT	SELECT	ON	TABLE	test.Orders	TO	base_role;

CREATE	POLICY	policyOrders	ON	test.Orders	TO	base_role	USING	(amount	<	1000)	TO	

base_role;

Example	:	Override	previous	example	to	more	privileged	user.

CREATE	POLICY	policyRoleAOrders	ON	test.Orders	TO	RoleA	USING	(amount	<	1000	and	amount	>=1000);

Example	:	Restricting	rows	to	only	those	owned	by	this	user.

GRANT	SELECT	ON	TABLE	test.CustomerOrders	TO	RoleA;

CREATE	POLICY	policyCustomerOrders	ON	test.CustomerOrders	TO	RoleA	USING	(name	=	user());

In	the	above	example,	user()	function	returns	the	currently	logged	in	user	id,	if	that	matches	to	the	name	column,	only	those	rows
will	be	returned.	There	are	functions	like	hasRole('x')	that	can	be	used	too.

Example	:	Column	Masking,	mask	"amount	for	all	users"

GRANT	SELECT	ON	COLUMN	test.Order.amount

				MASK	'xxxx'

				TO	base_role;

Example	:	Column	Masking,	mask	"amount	for	all	users	when	amount	>	1000"

GRANT	SELECT	ON	COLUMN	test.Order.amount

				MASK	'CASE	WHEN	amount	>	1000	THEN	'xxxx'	END'

				TO	base_role;

Example	:	Column	Masking,	mask	"amount	for	all	users"	except	the	calling	user	is	equal	to	the	user()

GRANT	SELECT	ON	COLUMN	test.Order.amount

				MASK	'xxxx'

				CONDITION	'customerid	<>	user()'

				TO	base_role;

Differences	with	vdb.xml	metadata
Using	a	.ddl	file	instead	of	a	.xml	file	to	define	a	vdb	will	result	in	differences	in	how	metadata	is	loaded	when	using	a	full	server
deployment	of	Teiid.

Using	a	vdb.ddl	file	does	not	support:	*	metadata	caching	at	the	schema	level	-	although	this	feature	may	be	added	later	*
metadata	reload	if	a	datasource	is	unavailable	at	deployment	time	*	parallel	loading	of	source	metadata

All	of	same	limitations	affect	all	VDBs	(regardless	of	.xml	or	.ddl)	when	using	Teiid	Embedded.

DDL	VDB

342

DDL	VDB

343

XML	VDB
XML	based	metadata	may	be	deployed	in	a	single	xml	file	deployment	or	a	zip	file	containing	at	least	the	xml	file.	The	contents	of
the	xml	file	will	be	similar	either	way.	See	Developing	a	Virtual	Database	for	a	discussion	of	the	.vdb	zip	packaging.	The	XML
may	embedded	or	reference	DDL.

XML	File	Deployment

You	can	simply	create	a	SOME-NAME-vdb.xml	file.	The	XML	file	captures	information	about	the	VDB,	the	sources	it	integrate,
and	preferences	for	importing	metadata.	The	format	of	the	XML	file	need	to	adhere	to	vdb-deployer.xml	file,	which	is	available	in
the	schema	folder	under	the	docs	with	the	Teiid	distribution.

Important The	VDB	name	pattern	must	adhere	to	"-vdb.xml"	for	the	Teiid	VDB	deployer	to	recognize	this	file	when
deployed	in	Teiid	Server.

Tip if	you	have	existing	VDB	in	combination	of	XML	&	DDL	format,	you	can	migrate	to	all	DDL	version	using	the
"teiid-convert-vdb.bat"	or	"teiid-convert-vdb.sh"	utility	in	the	"bin"	directory	of	the	installation.

XML	File	Format
Example	VDB	XML	Template

<vdb	name="${name}"	version="${version}">

				<!--	Optional	description	-->

				<description>...</description>

				<!--	Optional	connection-type	-->

				<connection-type>...</connection-type>

				<!--	VDB	properties	-->

				<property	name="${property-name}"	value="${property-value}"	/>

				<!--	UDF	defined	in	an	AS	module,		see	Developers	Guide	-->

				<property	name	="lib"	value	="{module-name}"></property>

				<import-vdb	name="..."	version="..."	import-data-policies="true|false"/>

				<!--	define	a	model	fragment	for	each	data	source	-->

				<model	visible="true"	name="${model-name}"	type="${model-type}"	>

								<property	name="..."	value="..."	/>

								<source	name="${source-name}"	translator-name="${translator-name}"

												connection-jndi-name="${deployed-jndi-name}">

								<metadata	type="${repository-type}">raw	text</metadata>

								<!--	additional	metadata

								<metadata	type="${repository-type}">raw	text</metadata>

								-->

				</model>

			<!--	define	a	model	with	multiple	sources	-	see	Multi-Source	Models	-->

			<model	name="${model-name}"	path="/Test/Customers.xmi">

								<property	name="multisource"	value="true"/>

								.	.	.

								<source	name="${source-name}"

Using	XML	&	DDL

344

												translator-name="${translator-name}"	connection-jndi-name="${deployed-jndi-name}"/>

								<source	.	.	.	/>

								<source	.	.	.	/>

				</model>

				<!--	see	Reference	Guide	-	Data	Roles	-->

				<data-role	name="${role-name}">

								<description>${role-description}</description>

								….

				</data-role>

				<!--	create	translator	instances	that	override	default	properties	-->

				<translator	name="${translator-name}"	type="${translator-type}"	/>

								<property	name="..."	value="..."	/>

				</translator>

</vdb>

Note
Property	Substitution	-	If	a	-vdb.xml	file	has	defined	property	values	like	${my.property.name.value},	these	can
be	replaced	by	actual	values	that	are	defined	through	JAVA	system	properties.	To	define	system	properties	on	a
WildFly	server,	please	consult	WildFly	documentation.

Warning
You	may	choose	to	locally	name	vdb	artifacts	as	you	wish,	but	the	runtime	names	of	deployed	VDB	artifacts
must	either	be	*.vdb	for	a	zip	file	or	*-vdb.xml	for	an	xml	file.	Failure	to	name	the	deployment	properly	will
result	in	a	deployment	failure	as	the	Teiid	subsystem	will	not	know	how	to	properly	handle	the	artifact.

VDB	Element

Attributes

name

The	name	of	the	VDB.	The	VDB	name	referenced	through	the	driver	or	datasource	during	the	connection	time.

version

The	version	of	the	VDB.	Provides	an	explicit	versioning	mechanism	to	the	VDB	name	-	see	VDB	Versioning.

Description	Element

Optional	text	element	to	describe	the	VDB.

Connection	Type	Element

Determines	how	clients	can	connect	to	the	VDB.	Can	be	one	of	BY_VERSION,	ANY,	or	NONE.	Defaults	to	BY_VERSION.	See
VDB	Versioning.

Properties	Element

see	VDB	Properties	for	properties	that	can	be	set	at	VDB	level.

import-vdb	Element

VDBs	may	reuse	other	VDBs	deployed	in	the	same	server	instance	by	using	an	"import-vdb"	declaration	in	the	vdb.xml	file.	An
imported	VDB	can	have	it’s	tables	and	procedures	referenced	by	views	and	procedures	in	the	importing	VDB	as	if	they	are	part	of
the	VDB.	Imported	VDBs	are	required	to	exist	before	an	importing	VDB	may	start.	If	an	imported	VDB	is	undeployed,	then	any
importing	VDB	will	be	stopped.+

An	imported	VDB	includes	all	of	its	models	and	may	not	conflict	with	any	model,	data	policy,	or	source	already	defined	in	the
importing	VDB.	Once	a	VDB	is	imported	it	is	mostly	operationally	independent	from	the	base	VDB.	Only	cost	related	metadata
may	be	updated	for	an	object	from	an	imported	VDB	in	the	scope	of	the	importing	VDB.	All	other	updates	must	be	made	through

Using	XML	&	DDL

345

the	original	VDB,	but	they	will	be	visible	in	all	imported	VDBs.	Even	materialized	views	are	separately	maintained	for	an
imported	VDB	in	the	scope	of	each	importing	VDB.

Example	reuse	VDB	XML

<vdb	name="reuse"	version="1">

				<import-vdb	name="common"	version="1"	import-data-policies="false"/>

				<model	visible="true"	type="VIRTUAL"	name="new-model">

									<metadata	type	=	"DDL"><![CDATA[

														CREATE	VIEW	x	(

																y	varchar

)	AS

																		select	*	from	old-model.tbl;

]]>

									</metadata>

				</model>

</vdb>

Attributes

name

The	name	of	the	VDB	to	be	imported.

version

The	version	of	the	VDB	to	be	imported	(should	be	an	positive	integer).

import-data-policies

Optional	attribute	to	indicate	whether	the	data	policies	should	be	imported	as	well.	Defaults	to	"true".

Model	Element

Attributes

name

The	name	of	the	model	is	used	as	a	top	level	schema	name	for	all	of	the	metadata	imported	from	the	connector.	The	name	should
be	unique	among	all	Models	in	the	VDB	and	should	not	contain	the	'.'	character.

visible

By	default	this	value	is	set	to	"true",	when	the	value	is	set	to	"false",	this	model	will	not	be	visible	to	when	JDBC	metadata
queries.	Usually	it	is	used	to	hide	a	model	from	client	applications	that	should	not	directly	issue	queries	against	it.	However,	this
does	not	prohibit	either	client	application	or	other	view	models	using	this	model,	if	they	knew	the	schema	for	this	model.

Property	Elements

All	properties	are	available	as	extension	metadata	on	the	corresponding		Schema		object	that	is	accessible	via	the	metadata	API.

cache-metadata

Can	be	"true"	or	"false".	defaults	to	"false"	for	-vdb.xml	deployments	otherwise	"true".	If	"false",	Teiid	will	obtain	metadata	once
for	every	launch	of	the	vdb.	"true"	will	save	a	file	containing	the	metadata	into	the	PROFILE/data/teiid	directory	Can	be	used	to
override	the	vdb	level	cache-metadata	property.

teiid_rel:DETERMINISM

Can	be	one	of:	DETERMINISM	NONDETERMINISTIC	COMMAND_DETERMINISTIC	SESSION_DETERMINISTIC
USER_DETERMINISTIC	VDB_DETERMINISTIC	DETERMINISTIC

Using	XML	&	DDL

346

Will	influence	the	cache	scope	for	result	set	cache	entries	formed	from	accessing	this	model.	Alternatively	the	scope	may	be
influenced	through	the	Translator	API	or	via	table/procedure	extension	metadata.

Source	Element

A	source	is	a	named	binding	of	a	translator	and	connection	source	to	a	model.

name

The	name	of	the	source	to	use	for	this	model.	This	can	be	any	name	you	like,	but	will	typically	be	the	same	as	the	model	name.
Having	a	name	different	than	the	model	name	is	only	useful	in	multi-source	scenarios.	In	multi-source,	the	source	names	under	a
given	model	must	be	unique.	If	you	have	the	same	source	bound	to	multiple	models	it	may	have	the	same	name	for	each.	An
exception	will	be	raised	if	the	same	source	name	is	used	for	different	sources.

translator-name

The	name	or	type	of	the	Teiid	Translator	to	use.	Possible	values	include	the	built-in	types	(ws,	file,	ldap,	oracle,	sqlserver,	db2,
derby,	etc.)	and	translators	defined	in	the	translators	section.

connection-jndi-name

The	JNDI	name	of	this	source’s	connection	factory.	There	should	be	a	corresponding	datasource	that	defines	the	connection
factory	in	the	JBoss	AS.	Check	out	the	deploying	VDB	dependencies	section	for	info.	You	also	need	to	define	these	connection
factories	before	you	can	deploy	the	VDB.

Property	Elements

importer.<propertyname>

Property	to	be	used	by	the	connector	importer	for	the	model	for	purposes	importing	metadata.	See	possible	property	name/values
in	the	Translator	specific	section.	Note	that	using	these	properties	you	can	narrow	or	widen	the	data	elements	available	for
integration.

Metadata	Element

The	optional	metadata	element	defines	the	metadata	repository	type	and	optional	raw	metadata	to	be	consumed	by	the	metadata
repository.

type

The	metadata	repository	type.	Defaults	to	NATIVE	for	source	models.	For	all	other	deployments/models	a	value	must	be
specified.	Built-in	types	include	DDL,	NATIVE,	and	DDL-FILE.	The	usage	of	the	raw	text	varies	with	the	by	type.	NATIVE
metadata	repositories	do	not	use	the	raw	text.	The	raw	text	for	DDL	is	expected	to	be	be	a	series	of	DDL	statements	that	define	the
schema.	Note	that,	since	<model>	element	means	schema,	you	only	use	Schema	Object	DDL.	The	rest	of	the	DDL	statements	can
NOT	be	used	in	the	artifact	mode,	as	those	constructs	are	defined	by	the	XML	file.	Like	<Model>	element	is	similar	to	"CREATE
SCHEMA	…".	Due	to	backwards	compatibility	Teiid	supports	both	modes	as	both	have	their	advantages.

DDL-FILE	(used	only	with	zip	deployments)	is	similar	to	DDL,	except	that	the	raw	text	specifies	an	absolute	path	relative	to	the
vdb	root	of	the	location	of	a	file	containing	the	DDL.	See	Metadata	Repositories	for	more	information	and	examples.

The	INDEX	type	from	Designer	VDBs	is	deprecated.

Translator	Element

Attributes

name

The	name	of	the	the	Translator.	Referenced	by	the	source	element.

type

Using	XML	&	DDL

347

The	base	type	of	the	Translator.	Can	be	one	of	the	built-in	types	(ws,	file,	ldap,	oracle,	sqlserver,	db2,	derby,	etc.).

Property	Elements

Set	a	value	that	overrides	a	translator	default	property.	See	possible	property	name/values	in	the	Translator	specific	section.

VDB	Reuse
VDBs	may	reuse	other	VDBs	deployed	in	the	same	server	instance	by	using	an	"import-vdb"	declaration.		An	imported	VDB	can
have	it’s	tables	and	procedures	referenced	by	views	and	procedures	in	the	importing	VDB	as	if	they	are	part	of	the	VDB.	
Imported	VDBs	are	required	to	exist	before	an	importing	VDB	may	start.		If	an	imported	VDB	is	undeployed,	then	any	importing
VDB	will	be	stopped.

An	imported	VDB	includes	all	of	its	models	and	may	not	conflict	with	any	model,	data	policy,	or	source	already	defined	in	the
importing	VDB.		Once	a	VDB	is	imported	it	is	mostly	operationally	independent	from	the	base	VDB.		Only	cost	related	metadata
may	be	updated	for	an	object	from	an	imported	VDB	in	the	scope	of	the	importing	VDB.		All	other	updates	must	be	made	through
the	original	VDB,	but	they	will	be	visible	in	all	imported	VDBs.		Even	materialized	views	are	separately	maintained	for	an
imported	VDB	in	the	scope	of	each	importing	VDB.

Example	reuse	VDB	XML

<vdb	name="reuse"	version="1">

				<property	name="imported-model.visible"	value="false"/>

				<import-vdb	name="common"	version="1"	import-data-policies="false"/>

				<model	visible="true"	type="VIRTUAL"	name="new-model">

									<metadata	type	=	"DDL"><![CDATA[

														CREATE	VIEW	x	(

																y	varchar

)	AS

																		select	*	from	imported-model.tbl;

]]>

									</metadata>

				</model>

</vdb>

In	the	above	example	the	reuse	VDB	will	have	access	to	all	of	the	models	defined	in	the	common	VDB	and	adds	in	the	"new-
model".	The	visibility	of	imported	models	may	be	overridden	via	boolean	vdb	properties	using	the	key	model.visible	-	shown
above	as	imported-model.visible	with	a	value	of	false.

Using	XML	&	DDL

348

Virtual	database	properties
DATABASE	properties

domain-ddl

schema-ddl

cache-metadata

Can	be		true		or		false.	Defaults	to	`false		for	-vdb.xml	deployments	otherwise		true	.	If		false	,	Teiid	will	obtain
metadata	once	for	every	launch	of	the	virtual	database.		true		will	save	a	file	containing	the	metadata	into	the
PROFILE/data/teiid	directory.

query-timeout	Sets	the	default	query	timeout	in	milliseconds	for	queries	executed	against	this	VDB.		0		indicates	that	the
server	default	query	timeout	should	be	used.	Defaults	to	0.	Will	have	no	effect	if	the	server	default	query	timeout	is	set	to	a
lesser	value.	Note	that	clients	can	still	set	their	own	timeouts	that	will	be	managed	on	the	client	side.

lib	Set	to	a	list	of	modules	for	the	vdb	classpath	for	user	defined	function	loading.	For	more	information,	see	Support	for
User-Defined	Functions	(Non-Pushdown)	in	the	Translator	Development	Guide.

security-domain	Set	to	the	security	domain	to	use	if	a	specific	security	domain	is	applicable	to	the	VDB.	Otherwise	the
security	domain	list	from	the	transport	will	be	used.

			<property	name="security-domain"	value="custom-security"	/>

Note An	admin	needs	to	configure	a	matching	"custom-security"	login	module	in	standalone-teiid.xml	configuration
file	before	the	VDB	is	deployed.

connection.XXX	For	use	by	the	ODBC	transport	and	OData	to	set	default	connection/execution	properties.	For	more
information	about	related	properties,	see	Driver	Connection	in	the	Client	Developer’s	Guide.	Note	these	are	set	on	the
connection	after	it	has	been	established.

CREATE	DATABASE	vdb	OPTIONS	("connection.partialResultsMode"	true);

			<property	name="connection.partialResultsMode"	value="true"	/>

authentication-type

Authentication	type	to	be	used	with	this	VDBs	security	domain.	Allowed	values	currently	are	(GSS,	USERPASSWORD,	SSL).
The	default	is	set	on	the	session	service	(typically	USERPASSWORD).

Authentication	Patterns

Authentication	patterns	further	control	the	expected	authentication	using	the	user	name	given	with	the	connection	attempt.

password-pattern
Regular	expression	matched	against	the	connecting	user’s	name	that	determines	if	USERPASSWORD	authentication	is
used.	password-pattern	takes	precedence	over	authentication-type.

ssl-pattern
Regular	expression	matched	against	the	connecting	user’s	name	that	determines	if	SSL	authentication	is	used.	ssl-pattern
takes	precedence	over	password-pattern.

gss-pattern

VDB	Properties

349

Regular	expression	matched	against	the	connecting	user’s	name	that	determines	if	GSS	authentication	is	used.	gss-
pattern	takes	precedence	over	ssl-pattern.

max-sessions-per-user	(11.2+)

Maximum	number	of	sessions	allowed	for	each	user,	as	identified	by	the	user	name,	of	this	VDB.	No	setting	or	a	negative	number
indicates	no	per	user	max,	but	the	session	service	max	will	still	apply.	This	is	enforced	at	each	Teiid	server	member	in	a	cluster,
and	not	cluster	wide.	Derived	sessions	that	are	created	for	tasks	under	an	existing	session	do	not	count	against	this	maximum.

model.visible

Used	to	override	the	visibility	of	imported	vdb	models,	where	model	is	the	name	of	the	imported	model.

include-pg-metadata

By	default,	PostgreSQL	metadata	is	always	added	to	VDB	unless	you	set	the	property	org.teiid.addPGMetadata	to	false.	This
property	enables	adding	PG	metadata	per	VDB.	For	more	information,	System	Properties	in	the	Administrator’s	Guide.	Please
note	that	if	you	are	using	ODBC	to	access	your	VDB,	the	VDB	must	include	PG	metadata.

lazy-invalidate

By	default	TTL	expiration	will	be	invalidating.	For	more	information,	see	Internal	Materialization	in	the	Caching	guide.	Setting
lazy-invalidate	to		true		will	make	TTL	refreshes	non-invalidating.

deployment-name

Effectively	reserved.	Will	be	set	at	deploy	time	by	the	server	to	the	name	of	the	server	deployment.

Schema	and	model	properties
visible

Marks	the	schema	as	visible	when	the	value	is		true		(the	default	setting).	When	the		visible		flag	is	set	to		false	,	the
schema’s	metadata	is	hidden	from	any	metadata	requests.	Setting	the	property	to		false		does	not	prohibit	you	from	issuing
queries	against	this	schema.	For	information	about	how	to	control	access	to	data,	see	Data	roles.

multisource

Sets	the	schema	to	multi-source	mode,	where	the	data	exists	in	partitions	in	multiple	different	sources.	It	is	assumed	that	metadata
of	the	schema	is	the	same	across	all	data	sources.

multisource.columnName

In	a	multi-source	schema,	an	additional	column	that	designates	the	partition	is	implicitly	added	to	all	tables	to	identify	the	source.
This	property	defines	the	name	of	that	column,	the	type	will	be	always		String	.

multisource.addColumn

This	flag	specifies	to	add	an	implicit	partition	column	to	all	the	tables	in	this	schema.	A	true	value	adds	the	column.	Default	is
false.

allowed-languages

Specifies	a	comma-separated	list	of	programming	languages	that	can	be	used	for	any	purpose	in	the	VDB.	Names	are	case-
sensitive,	and	the	list	cannot	include	whitespace	between	entries.	For	example,		<property	name="allowed-languages"
value="javascript"/>	

allow-language	Specifies	that	a	role	has	permission	to	use	a	language	that	is	listed	in	the		allowed-languages		property.	For
example,	the		allow-language		property	in	following	excerpt	specifies	that	users	with	the	role		RoleA		have	permission	to
use	Javascript.

<data-role	name="RoleA">

								<description>Read	and	javascript	access.</description>

VDB	Properties

350

								<permission>

												<resource-name>modelName</resource-name>

												<allow-read>true</allow-read>

								</permission>

								<permission>

												<resource-name>javascript</resource-name>

												<allow-language>true</allow-language>

								</permission>

								<mapped-role-name>role1</mapped-role-name>

				</data-role>

VDB	Properties

351

DDL	metadata	for	schema	objects
The	DDL	for	schema	objects	is	common	to	both	XML	and	DDL	VDBs.

Tables	and	views	exist	in	the	same	namespace	in	a	schema.	Indexes	are	not	considered	schema	scoped	objects,	but	are	rather
scoped	to	the	table	or	view	they	are	defined	against.	Procedures	and	functions	are	defined	in	separate	namespaces,	but	a	function
that	is	defined	by	virtual	procedure	language	exists	as	both	a	function	and	a	procedure	of	the	same	name.	Domain	types	are	not
schema-scoped;	they	are	scoped	to	the	entire	VDB.

Data	types
For	information	about	data	types,	see	simple	data	type	in	the	BNF	for	SQL	grammar.

Foreign	tables
A	FOREIGN	table	is	table	that	is	defined	on	source	schema	that	represents	a	real	relational	table	in	source	databases	such	as
Oracle,	Microsoft	SQL	Server,	and	so	forth.	For	relational	databases,	Teiid	can	automatically	retrieve	the	database	schema
information	upon	the	deployment	of	the	VDB,	if	you	want	to	auto	import	the	existing	schema.	However,	users	can	use	the
following	FOREIGN	table	semantics,	when	they	would	like	to	explicitly	define	tables	on	PHYSICAL	schema	or	represent	non-
relational	data	as	relational	in	custom	translators.

Example:	Create	foreign	table	(Created	on	PHYSICAL	model)

CREATE	FOREIGN	TABLE	{table-name}	(

				<table-element>	(,<table-element>)*

				(,<constraint>)*

)	[OPTIONS	(<options-clause>)]

<table-element>	::=

				{column-name}	<data-type>	<element-attr>	<options-clause>

<data-type>	::=

				varchar	|	boolean	|	integer	|	double	|	date	|	timestamp	..	(see	Data	Types)

<element-attr>	::=

				[AUTO_INCREMENT]	[NOT	NULL]	[PRIMARY	KEY]	[UNIQUE]	[INDEX]	[DEFAULT	{expr}]

<constraint>	::=

				CONSTRAINT	{constraint-name}	(

								PRIMARY	KEY	<columns>	|

								FOREIGN	KEY	(<columns>)	REFERENCES	tbl	(<columns>)

								UNIQUE	<columns>	|

								ACCESSPATTERN	<columns>

								INDEX	<columns>

<columns>	::=

				({column-name}	[,{column-name}]*)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

For	more	information	about	creating	foreign	tables,	see	CREATE	TABLE	in	BNF	for	SQL	grammar.

Example:	Create	foreign	table	(Created	on	PHYSICAL	model)

CREATE	FOREIGN	TABLE	Customer	(

				id	integer	PRIMARY	KEY,

				firstname	varchar(25),

				lastname	varchar(25),

				dob	timestamp);

Schema	object	DDL

352

CREATE	FOREIGN	TABLE	Order	(

				id	integer	PRIMARY	KEY,

				customerid	integer	OPTIONS(ANNOTATION	'Customer	primary	key'),

				saledate	date,

				amount	decimal(25,4),

				CONSTRAINT	CUSTOMER_FK	FOREIGN	KEY(customerid)	REFERENCES	Customer(id)

)	OPTIONS(UPDATABLE	true,	ANNOTATION	'Orders	Table');

TABLE	OPTIONS:	(the	following	options	are	well	known,	any	others	properties	defined	will	be	considered	as	extension
metadata)

Property Data	type	or	allowed	values Description

UUID string Unique	identifier	for	the	view.

CARDINALITY int
Costing	information.	Number	of
rows	in	the	table.	Used	for	planning
purposes.

UPDATABLE 'TRUE' 'FALSE'

Defines	whether	or	not	the	view	is
allowed	to	update. ANNOTATION string

Description	of	the	view. DETERMINISM

NONDETERMINISTIC,
COMMAND_DETERMINISTIC,
SESSION_DETERMINISTIC,
USER_DETERMINISTIC,
VDB_DETERMINISTIC,
DETERMINISTIC

COLUMN	OPTIONS:	(the	following	options	are	well	known,	any	others	properties	defined	will	be	considered	as	extension
metadata).

Property Data	type	or	allowed	values Description

UUID string
A	unique
identifier	for
the	column.

NAMEINSOURCE string

If	this	is	a
column
name	on	the
FOREIGN
table,	this
value
represents
name	of	the
column	in
source

Schema	object	DDL

353

database.	If
omitted,	the
column
name	is	used
when
querying	for
data	against
the	source.

CASE_SENSITIVE 'TRUE'|'FALSE'

SELECTABLE 'TRUE'|'FALSE'

TRUE	when
this	column
is	available
for	selection
from	the	user
query.

UPDATABLE 'TRUE'|'FALSE'

Defines	if
the	column
is	updatable.
Defaults	to
true	if	the
view/table	is
updatable.

SIGNED 'TRUE'|'FALSE'

CURRENCY 'TRUE'|'FALSE'

FIXED_LENGTH 'TRUE'|'FALSE'

SEARCHABLE 'SEARCHABLE'|'UNSEARCHABLE'|'LIKE_ONLY'|'ALL_EXCEPT_LIKE'

Column
searchability.
Usually
dictated	by
the	data
type.

MIN_VALUE

MAX_VALUE

CHAR_OCTET_LENGTH integer

ANNOTATION string

NATIVE_TYPE string

RADIX integer

NULL_VALUE_COUNT long

Costing
information.
Number	of
NULLS	in
this	column.

Schema	object	DDL

354

DISTINCT_VALUES long
Costing
information.
Number	of
distinct
values	in	this
column.

Columns	may	also	be	marked	as	NOT	NULL,	auto_increment,	or	with	a	DEFAULT	value.

A	column	of	type	bigdecimal/decimal/numeric	can	be	declared	without	a	precision/scale,	which	defaults	to	an	internal	maximum
for	precision	with	half	scale,	or	with	a	precision	which	will	default	to	a	scale	of	0.

A	column	of	type	timestamp	can	be	declared	without	a	scale	which	will	default	to	an	internal	maximum	of	9	fractional	seconds.

Table	Constraints
Constraints	can	be	defined	on	table/view	to	define	indexes	and	relationships	to	other	tables/views.	This	information	is	used	by	the
Teiid	optimizer	to	plan	queries,	or	use	the	indexes	in	materialization	tables	to	optimize	the	access	to	the	data.

CONSTRAINTS	are	same	as	one	can	define	on	RDBMS.

Example	of	CONSTRAINTs

CREATE	FOREIGN	TABLE	Orders	(

				name	varchar(50),

				saledate	date,

				amount	decimal,

				CONSTRAINT	CUSTOMER_FK	FOREIGN	KEY(customerid)	REFERENCES	Customer(id)

				ACCESSPATTERN	(name),

				PRIMARY	KEY	...

				UNIQUE	...

				INDEX	...

ALTER	TABLE
For	the	full	SQL	grammar	for	the	ALTER	TABLE	statement,	see	ALTER	TABLE	in	the	BNF	for	SQL	grammar.

Using	the	ALTER	command,	one	can	Add,	Change,	Delete	columns,	modify	the	values	of	any	OPTIONS,	and	add	constraints.
The	following	examples	show	how	to	use	the	ALTER	command	to	modify	table	objects.

--	add	column	to	the	table

ALTER	FOREIGN	TABLE	"Customer"	ADD	COLUMN	address	varchar(50)	OPTIONS(SELECTABLE	true);

--	remove	column	to	the	table

ALTER	FOREIGN	TABLE	"Customer"	DROP	COLUMN	address;

Schema	object	DDL

355

--	adding	options	property	on	the	table

ALTER	FOREIGN	TABLE	"Customer"	OPTIONS	(ADD	CARDINALITY	10000);

--	Changing	options	property	on	the	table

ALTER	FOREIGN	TABLE	"Customer"	OPTIONS	(SET	CARDINALITY	9999);

--	Changing	options	property	on	the	table's	column

ALTER	FOREIGN	TABLE	"Customer"	ALTER	COLUMN	"name"	OPTIONS(SET	UPDATABLE	FALSE)

--	Changing	table's	column	type	to	integer

ALTER	FOREIGN	TABLE	"Customer"	ALTER	COLUMN	"id"	TYPE	bigdecimal;

--	Changing	table's	column	column	name

ALTER	FOREIGN	TABLE	"Customer"	RENAME	COLUMN	"id"	TO	"customer_id";

--	Adding	a	constraint

ALTER	VIEW	"Customer_View"	ADD	PRIMARY	KEY	(id);

Views
A	view	is	a	virtual	table.	A	view	contains	rows	and	columns,	like	a	real	table.	The	columns	in	a	view	are	columns	from	one	or
more	real	tables	from	the	source	or	other	view	models.	They	can	also	be	expressions	made	up	multiple	columns,	or	aggregated
columns.	When	column	definitions	are	not	defined	on	the	view	table,	they	are	derived	from	the	projected	columns	of	the	view’s
select	transformation	that	is	defined	after	the		AS		keyword.

You	can	add	functions,	JOIN	statements	and	WHERE	clauses	to	a	view	data	as	if	the	data	were	coming	from	one	single	table.

Access	patterns	are	not	currently	meaningful	to	views,	but	are	still	allowed	by	the	grammar.	Other	constraints	on	views	are	also
not	enforced,	unless	they	are	specified	on	an	internal	materialized	view,	in	which	case	they	will	be	automatically	added	to	the
materialization	target	table.	However,	non-access	pattern	View	constraints	are	still	useful	for	other	purposes,	such	as	to	convey
relationships	for	optimization	and	for	discovery	by	clients.

BNF	for	CREATE	VIEW

CREATE	VIEW	{table-name}	[(

				<view-element>	(,<view-element>)*

				(,<constraint>)*

)]	[OPTIONS	(<options-clause>)]

				AS	{transformation_query}

<table-element>	::=

				{column-name}	[<data-type>	<element-attr>	<options-clause>]

<data-type>	::=

				varchar	|	boolean	|	integer	|	double	|	date	|	timestamp	..	(see	Data	Types)

<element-attr>	::=

				[AUTO_INCREMENT]	[NOT	NULL]	[PRIMARY	KEY]	[UNIQUE]	[INDEX]	[DEFAULT	{expr}]

<constraint>	::=

				CONSTRAINT	{constraint-name}	(

								PRIMARY	KEY	<columns>	|

								FOREIGN	KEY	(<columns>)	REFERENCES	tbl	(<columns>)

								UNIQUE	<columns>	|

								ACCESSPATTERN	<columns>

								INDEX	<columns>

<columns>	::=

				({column-name}	[,{column-name}]*)

<options-clause>	::=

				<key>	<value>[,<key>,	<value>]*

Schema	object	DDL

356

Table	1.	VIEW	OPTIONS:	(These	properties	are	in	addition	to	properties	defined	in	the	CREATE	TABLE)

Property Data	type	or	allowed	values Description

MATERIALIZED 'TRUE'|'FALSE' Defines	if	a	table	is	materialized.

MATERIALIZED_TABLE 'table.name'

If	this	view	is	being	materialized	to	a
external	database,	this	defines	the
name	of	the	table	that	is	being
materialized	to.

Example:	Create	view	table	(created	on	VIRTUAL	schema)

CREATE	VIEW	CustomerOrders

		AS

		SELECT	concat(c.firstname,	c.lastname)	as	name,

								o.saledate	as	saledate,

								o.amount	as	amount

		FROM	Customer	C	JOIN	Order	o	ON	c.id	=	o.customerid;

Important
Note	that	the	columns	are	implicitly	defined	by	the	transformation	query	(SELECT	statement).	Columns	can
also	defined	inline,	but	if	they	are	defined	they	can	be	only	altered	to	modify	their	properties.	You	cannot
ADD	or	DROP	new	columns.

ALTER	TABLE
The	BNF	for	ALTER	VIEW,	refer	to	ALTER	TABLE

Using	the	ALTER	COMMAND	you	can	change	the	transformation	query	of	the	VIEW.	You	are	NOT	allowed	to	alter	the	column
information.	Transformation	queries	must	be	valid.

ALTER	VIEW	CustomerOrders

				AS

				SELECT	concat(c.firstname,	c.lastname)	as	name,

								o.saledate	as	saledate,

								o.amount	as	amount

		FROM	Customer	C	JOIN	Order	o	ON	c.id	=	o.customerid

		WHERE	saledate	<	TIMESTAMPADD(now(),	-1,	SQL_TSI_MONTH)

INSTEAD	OF	triggers	on	VIEW	(Update	VIEW)
A	view	comprising	multiple	base	tables	must	use	an		INSTEAD	OF		trigger	to	insert	records,	apply	updates,	and	implement	deletes
that	reference	data	in	the	tables.	Based	on	the	select	transformation’s	complexity	some	times	INSTEAD	OF	TRIGGERS	are
automatically	provided	for	the	user	when		UPDATABLE		OPTION	on	the	VIEW	is	set	to		TRUE	.	However,	using	the	CREATE
TRIGGER	mechanism	user	can	provide/override	the	default	behavior.

Schema	object	DDL

357

Example:	Define	INSTEAD	OF	trigger	on	View	for	INSERT

CREATE	TRIGGER	ON	CustomerOrders	INSTEAD	OF	INSERT	AS

			FOR	EACH	ROW

			BEGIN	ATOMIC

						INSERT	INTO	Customer	(...)	VALUES	(NEW.name	...);

						INSERT	INTO	Orders	(...)	VALUES	(NEW.value	...);

			END

For	Update

Example:	Define	instead	of	trigger	on	View	for	UPDATE

CREATE	TRIGGER	ON	CustomerOrders	INSTEAD	OF	UPDATE	AS

			FOR	EACH	ROW

			BEGIN	ATOMIC

						IF	(CHANGING.saledate)

						BEGIN

										UPDATE	Customer	SET	saledate	=	NEW.saledate;

										UPDATE	INTO	Orders	(...)	VALUES	(NEW.value	...);

						END

			END

While	updating	you	have	access	to	previous	and	new	values	of	the	columns.	For	more	information	about	update	procedures,	see
Update	procedures.

AFTER	triggers	on	source	tables
A	source	table	can	have	any	number	of	uniquely	named	triggers	registered	to	handle	change	events	that	are	reported	by	a	change
data	capture	system.

Similar	to	view	triggers	AFTER	insert	provides	access	to	new	values	via	the	NEW	group,	AFTER	delete	provides	access	to	old
values	via	the	OLD	group,	and	AFTER	update	provides	access	to	both.

Example:Define	AFTER	trigger	on	Customer

CREATE	TRIGGER	ON	Customer	AFTER	INSERT	AS

			FOR	EACH	ROW

			BEGIN	ATOMIC

						INSERT	INTO	CustomerOrders	(CustomerName,	CustomerID)	VALUES	(NEW.Name,	NEW.ID);

			END

You	will	typically	define	a	handler	for	each	operation	-	INSERT/UPDATE/DELTE.

For	more	detailed	information	about	update	procedures,	see	Update	procedures

Create	procedure/function
A	user	can	define	one	of	the	following	functions:

Source	Procedure	("CREATE	FOREIGN	PROCEDURE")

Schema	object	DDL

358

A	stored	procedure	in	source.

Source	Function	("CREATE	FOREIGN	FUNCTION")
A	function	that	depends	on	capabilities	in	the	data	source,	and	for	which	Teiid	will	pushdown	to	the	source	instead	of
evaluating	in	the	Teiid	engine.

Virtual	Procedure	("CREATE	VIRTUAL	PROCEDURE")
Similar	to	stored	procedure,	however	this	is	defined	using	the	Teiid’s	Procedure	language	and	evaluated	in	the	Teiid’s	engine.

Function/UDF	("CREATE	VIRTUAL	FUNCTION")
A	user	defined	function,	that	can	be	defined	using	the	Teiid	procedure	language,	or	than	can	have	the	implementation	defined
by	a	Java	class.	For	more	information	about	writing	the	Java	code	for	a	UDF,	see	Support	for	user-defined	functions	(non-
pushdown)	in	the	Translator	Development	Guide.

For	more	information	about	creating	functions	or	procedures,	see	the	BNF	for	SQL	grammar.

Variable	arguments
Instead	of	using	just	an	IN	parameter,	the	last	non	optional	parameter	can	be	declared	VARIADIC	to	indicate	that	it	can	be
repeated	0	or	more	times	when	the	procedure	is	called.

Example:	Vararg	procedure

CREATE	FOREIGN	PROCEDURE	proc	(x	integer,	VARIADIC	z	integer)

				RETURNS	(x	string);

FUNCTION	OPTIONS:(the	below	are	well	known	options,	any	others	properties	defined	will	be	considered	as	extension
metadata)

Property Data	Type	or	Allowed	Values Description

UUID string unique	Identifier

Schema	object	DDL

359

NAMEINSOURCE If	this	is	source	function/procedure
the	name	in	the	physical	source,	if
different	from	the	logical	name	given
above

ANNOTATION string Description	of	the	function/procedure

CATEGORY string Function	Category

DETERMINISM

NONDETERMINISTIC,
COMMAND_DETERMINISTIC,
SESSION_DETERMINISTIC,
USER_DETERMINISTIC,
VDB_DETERMINISTIC,
DETERMINISTIC

Not	used	on	virtual	procedures

NULL-ON-NULL 'TRUE'|'FALSE'

JAVA_CLASS string Java	Class	that	defines	the	method	in
case	of	UDF

JAVA_METHOD string
The	Java	method	name	on	the	above
defined	java	class	for	the	UDF
implementation

VARARGS 'TRUE'|'FALSE'

Indicates	that	the	last	argument	of	the
function	can	be	repeated	0	to	any
number	of	times.	default	false.	It	is
more	proper	to	use	a	VARIADIC
parameter.

AGGREGATE 'TRUE'|'FALSE'

Indicates	the	function	is	a	user
defined	aggregate	function.
Properties	specific	to	aggregates	are
listed	below.

Note	that	NULL-ON-NULL,	VARARGS,	and	all	of	the	AGGREGATE	properties	are	also	valid	relational	extension	metadata
properties	that	can	be	used	on	source	procedures	marked	as	functions.

You	can	also	create	FOREIGN	functions	that	are	based	on	source-specific	functions.	For	more	information	about	creating	foreign
functions	that	use	functions	that	are	provided	by	the	data	source,	see	Source	supported	functions	in	the	Translator	development
guide.

.AGGREGATE	FUNCTION	OPTIONS

Property Data	type	or	allowed	values Description

ANALYTIC 'TRUE'|'FALSE'
Indicates	the	aggregate	function	must
be	windowed.	The	default	value	is
	false	.

ALLOWS-ORDERBY 'TRUE'|'FALSE'
Indicates	that	the	aggregate	function
can	use	an	ORDER	BY	clause.	The
default	value	is		false	.

ALLOWS-DISTINCT 'TRUE'|'FALSE'
Indicates	the	aggregate	function	can
use	the		DISTINCT		keyword.	The
default	value	is		false	.

Schema	object	DDL

360

DECOMPOSABLE 'TRUE'|'FALSE'

Indicates	the	single	argument
aggregate	function	can	be
decomposed	as	agg(agg(x))	over
subsets	of	data.	The	default	value	is
	false	.

USES-DISTINCT-ROWS 'TRUE'|'FALSE'

Indicates	the	aggregate	function
effectively	uses	distinct	rows	rather
than	all	rows.	The	default	value	is
	false	.

Note	that	virtual	functions	defined	using	the	Teiid	procedure	language	cannot	be	aggregate	functions.

Note

Providing	the	JAR	libraries	-	If	you	have	defined	a	UDF	(virtual)	function	without	a	Teiid	procedure	definition,
then	it	must	be	accompanied	by	its	implementation	in	Java.	For	information	about	how	to	configure	the	Java
library	as	a	dependency	to	the	VDB,	see	Support	for	User-Defined	Functions	in	the	Translator	development
guide.

PROCEDURE	OPTIONS:(the	following	options	are	well	known,	any	others	properties	defined	will	be	considered	as	extension
metadata)

Property Data	Type	or	Allowed	Values Description

UUID string Unique	Identifier

NAMEINSOURCE string In	the	case	of	source

ANNOTATION string Description	of	the	procedure

UPDATECOUNT int

if	this	procedure	updates	the
underlying	sources,	what	is	the
update	count,	when	update	count	is
>1	the	XA	protocol	for	execution	is
enforced

Example:	Define	virtual	procedure

CREATE	VIRTUAL	PROCEDURE	CustomerActivity(customerid	integer)

				RETURNS	(name	varchar(25),	activitydate	date,	amount	decimal)

				AS

				BEGIN

								...

				END

For	more	information	about	virtual	procedures	and	virtual	procedure	language,	see	Virtual	procedures,	and	Procedure	language.

Example:	Define	virtual	function

CREATE	VIRTUAL	FUNCTION	CustomerRank(customerid	integer)

			RETURNS	integer	AS

			BEGIN

						DECLARE	integer	result;

						...

						RETURN	result;

			END

Procedure	columns	may	also	be	marked	as	NOT	NULL,	or	with	a	DEFAULT	value.	On	a	source	procedure	if	you	want	the
parameter	to	be	defaultable	in	the	source	procedure	and	not	supply	a	default	value	in	Teiid,	then	the	parameter	must	use	the
extension	property	teiid_rel:default_handling	set	to	omit.

Schema	object	DDL

361

There	can	only	be	a	single	RESULT	parameter	and	it	must	be	an		out		parameter.	A	RESULT	parameter	is	the	same	as	having	a
single	non-table	RETURNS	type.	If	both	are	declared	they	are	expected	to	match	otherwise	an	exception	is	thrown.	One	is	no
more	correct	than	the	other.	"RETURNS	type"	is	shorter	hand	syntax	especially	for	functions,	while	the	parameter	form	is	useful
for	additional	metadata	(explicit	name,	extension	metadata,	also	defining	a	returns	table,	etc.).

A	return	parameter	will	be	treated	as	the	first	parameter	in	for	the	procedure	at	runtime,	regardless	of	where	it	appears	in	the
argument	list.	This	matches	the	expectation	of	Teiid	and	JDBC	calling	semantics	that	expect	assignments	in	the	form	"?	=	EXEC
…".

.Relational	extension	OPTIONS:

Property Data	Type	or	Allowed	Values Description

native-query Parameterized	String

Applies	to	both	functions	and
procedures.	The	replacement	for	the
function	syntax	rather	than	the
standard	prefix	form	with
parentheses.	For	more	information,
see	Parameterizable	native	queries
in	Translators.

non-prepared boolean

Applies	to	JDBC	procedures	using
the	native-query	option.	If	true	a
PreparedStatement	will	not	be	used
to	execute	the	native	query.

virtual-function string

Applies	to	source	functions.	Fully-
qualified	name	of	the	virtual	function
that	can	be	pushed	to	the	source	as
the	given	function.	The	function
signature	must	match	exactly	with
the	virtual	function	for	the	pushdown
to	occur.

Example:	Native	query

CREATE	FOREIGN	FUNCTION	func	(x	integer,	y	integer)

				RETURNS	integer	OPTIONS	("teiid_rel:native-query"	'$1	<<	$2');

Example:Sequence	native	query

CREATE	FOREIGN	FUNCTION	seq_nextval	()

				RETURNS	integer

				OPTIONS	("teiid_rel:native-query"	'seq.nextval');

Tip Use	source	function	representations	to	expose	sequence	functionality.

Extension	metadata
When	defining	the	extension	metadata	in	the	case	of	Custom	Translators,	the	properties	on	tables/views/procedures/columns	can
be	whatever	you	need.	It	is	recommended	that	you	use	a	consistent	prefix	that	denotes	what	the	properties	relate	to.	Prefixes
starting	with	teiid_	are	reserved	for	use	by	Teiid.	Property	keys	are	not	case	sensitive	when	accessed	via	the	runtime	APIs	-	but
they	are	case	sensitive	when	accessing	SYS.PROPERTIES.

Warning The	usage	of	SET	NAMESPACE	for	custom	prefixes	or	namespaces	is	no	longer	allowed.

CREATE	VIEW	MyView	(...)

		OPTIONS	("my-translator:mycustom-prop"	'anyvalue')

Table	2.	Built-in	prefixes

Schema	object	DDL

362

Table	2.	Built-in	prefixes

Prefix Description

teiid_rel Relational	Extensions.	Uses	include	function	and	native
query	metadata

teiid_sf Salesforce	Extensions.

teiid_mongo MongoDB	Extensions

teiid_odata OData	Extensions

teiid_accumulo Accumulo	Extensions

teiid_excel Excel	Extensions

teiid_ldap LDAP	Extensions

teiid_rest REST	Extensions

teiid_pi PI	Database	Extensions

Schema	object	DDL

363

DDL	metadata	for	domains
Domains	are	simple	type	declarations	that	define	a	set	of	valid	values	for	a	given	type	name.	They	can	be	created	at	the	database
level	only.

The	DDL	for	domains	is	common	to	both	XML	and	DDL	VDBs.	However	in	an	XML	vdb	domains	must	be	defined	in	a	VDB
property	"domain-ddl".

Create	domain

CREATE	DOMAIN	<Domain	name>	[AS]	<data	type>

					[[NOT]	NULL]

The	domain	name	may	any	non-keyword	identifier.

See	the	BNF	for	Data	Types

Once	a	domain	is	defined	it	may	be	referenced	as	the	data	type	for	a	column,	parameter,	etc.

Example:	Virtual	database	DDL

CREATE	DOMAIN	mychar	AS	VARCHAR(1000);

CREATE	VIRTUAL	SCHEMA	viewLayer;

SET	SCHEMA	viewLayer;

CREATE	VIEW	v1	(col1	mychar)	as	select	'value';

...

Example:	XML	VDB

<vdb	name="Portfolio"	version="1">

				<property	name="domain-ddl"	value="CREATE	DOMAIN	ssn	AS	VARCHAR(9);	CREATE	DOMAIN	myint	AS	integer	not	null

;"	/>

				...

When	the	system	metadata	is	queried,	the	type	for	the	column	is	shown	as	the	domain	name.

Limitations
Domain	names	might	not	be	recognized	in	the	following	places	where	a	data	type	is	expected:

create	temp	table

execute	immediate

arraytable

objecttable

texttable

xmltable

When	you	query	a	pg_attribute,	the	ODBC/pg	metadata	will	show	the	name	of	the	base	type,	rather	than	the	domain	name.

Domain	DDL

364

Domain	DDL

365

Multisource	Models
Multisource	models	can	be	used	to	quickly	access	data	in	multiple	sources	with	homogeneous	metadata.	When	you	have	multiple
instances	using	identical	schema	(horizontal	sharding),	Teiid	can	help	you	gather	data	across	all	the	instances,	using	"multisource"
models.	In	this	scenario,	instead	of	creating/importing	a	model	for	every	data	source,	one	source	model	is	defined	to	represents	the
schema	and	is	configured	with	multiple	data	"sources"	underneath	it.	During	runtime	when	a	query	issued	against	this	model,	the
query	engine	analyzes	the	information	and	gathers	the	required	data	from	all	sources	configured	and	gathers	the	results	and
provides	in	a	single	result.	Since	all	sources	utilize	the	same	physical	metadata,	this	feature	is	most	appropriate	for	accessing	the
same	source	type	with	multiple	instances.

Configuration

To	mark	a	model	as	multisource,	the	model	property	multisource	can	be	set	to	true	or	more	than	one	source	can	be	listed	for	the
model	in	the	"vdb.xml"	file.	Here	is	a	code	example	showing	a	vdb	with	single	model	with	multiple	sources	defined.

<vdb	name="vdbname"	version="1">

				<model	visible="true"	type="PHYSICAL"	name="Customers"	path="/Test/Customers.xmi">

								<property	name="multisource"	value="true"/>

								<!--	optional	properties

								<property	name="multisource.columnName"	value="somename"/>

								<property	name="multisource.addColumn"	value="true"/>

								-->

								<source	name="chicago"

												translator-name="oracle"	connection-jndi-name="chicago-customers"/>

								<source	name="newyork"

												translator-name="oracle"	connection-jndi-name="newyork-customers"/>

								<source	name="la"

												translator-name="oracle"	connection-jndi-name="la-customers"/>

				</model>

</vdb>

NOTE	Tooling	support	for	managing	the	multisource	feature	is	limited.	You	must	deploy	a	separate	data	source	for	each	source
defined	in	the	xml	file.

In	the	above	example,	the	VDB	has	a	single	model	called		Customers	,	that	has	multiple	sources	(chicago	,		newyork	,	and		la)
that	define	different	instances	of	data.

The	Multisource	Column

When	a	model	is	marked	as	multisource,	the	engine	will	add	or	use	an	existing	column	on	each	table	to	represent	the	source	name
values.	In	the	above	vdb.xml	the	column	would	return		chicago	,		la	,		newyork		for	each	of	the	respective	sources.	The	name	of
the	column	defaults	to	SOURCE_NAME,	but	is	configurable	by	setting	the	model	property	multisource.columnName.		If	a
column	already	exists	on	the	table	(or	an	IN	procedure	parameter)	with	the	same	name,	the	engine	will	assume	that	it	should
represent	the	multisource	column	and	it	will	not	be	used	to	retrieve	physical	data.	If	the	multisource	column	is	not	present,	the
generated	column	will	be	treated	as	a	pseudo	column	which	is	not	selectable	via	wildcards	(*	nor	tbl.*).

This	allows	queries	like	the	following:

select	*	from	table	where	SOURCE_NAME	=	'newyork'

update	table	column=value	where	SOURCE_NAME='chicago'

delete	from	table	where	column	=	x	and	SOURCE_NAME='la'

insert	into	table	(column,	SOURCE_NAME)	VALUES	('value',	'newyork')

MultiSource	Models

366

The	Multi-Source	Column	in	System	Metadata

The	pseudo	column	is	by	default	not	present	in	your	actual	metadata;	it	is	not	added	on	source	tables/procedures	when	you	import
the	metadata.		If	you	would	like	to	use	the	multisource	column	in	your	transformations	to	control	which	sources	are	accessed	or
updated	and/or	want	the	column	reported	via	metadata	facilities,	there	are	several	options:

If	directly	using	DDL,	the	pseduo-column	will	already	be	available	to	transformations,	but	will	not	be	present	in	your	System
metadata	by	default.		If	using	DDL	and	want	to	be	selective	(rather	than	using	the	multisource.addColumn	property),	you
can	manually	add	the	column	via	DDL.

With	either	VDB	type	to	make	the	multisource	column	present	in	the	system	metadata,	you	may	set	the	model	property
multisource.addColumn	to	true	on	a	multisource	model.	If	the	table	has	a	column	or	the	procedure	has	a	parameter	already
with	a	matching	name,	then	an	additional	column	will	not	be	added.	A	variadic	procedure	can	still	have	a	source	parameter
added,	but	it	can	only	be	specified	when	using	named	parameters.	Care	should	be	taken	though	when	using	this	property	as
any	transformation	logic	(views/procedures)	that	you	have	defined	will	not	have	been	aware	of	the	multisource	column	and
may	fail	validation	upon	server	deployment.

You	can	manually	add	the	multisource	column.

Other	Partitioning	Columns

If	other	columns	on	a	multisource	table	are	partitioned	across	the	sources,	the	optimizer	can	be	made	aware	via	an	extension
property.	Operations	over	that	column,	such	as	group	by	or	distinct,	can	then	be	pushed	separately	to	each	source	without	post-
processing	in	the	engine.	If	you	need	to	enable	this,	add	the	extension	metadata	property	teiid_rel:multisource.partitioned=true	to
the	column.

Example	DDL

CREATE	FOREIGN	TABLE	TBL	(my_col	integer	options	("teiid_rel:multisource.partitoned"	true)	...);

Planning	and	Execution
The	planner	logically	treats	a	multisource	table	as	if	it	were	a	view	containing	the	union	all	of	the	respective	source	tables.		More
complex	partitioning	scenarios,	such	as	heterogeneous	sources	or	list	partitioning	will	require	the	use	of	a	Federated
Optimizations#Partitioned	Union.

Most	of	the	federated	optimizations	available	over	unions	are	still	applicable	in	multisource	mode.	This	includes	aggregation
pushdown/decomposition,	limit	pushdown,	join	partitioning,	etc.

You	can	add/remove	sources	from	multisource	models	at	runtime	with	the	admin	addSource	and	removeSource	options.	The
processing	of	a	multisource	plan	will	determine	the	set	of	multisource	targets	when	the	access	node	is	opened.	If	the	plan	is	reused
and	the	sources	change	since	the	last	execution,	the	multisource	access	will	be	regenerated.	If	a	source	is	added	after	a	relevant
multisource	query	starts,	it	will	not	be	in	the	results.	If	a	source	is	removed	after	a	relevant	multisource	query	starts,	it	will	be
treated	as	a	null	source	which	should	in	most	situations	allow	the	query	to	complete	normally.

That	the	SHOW	PLAN	output	will	vary	upon	when	it	is	obtained.	If	you	get	the	SHOW	PLAN	output	prior	to	execution,	the
multisource	access	will	appear	as	a	single	access	node.	After	execution	the	SHOW	PLAN	output	will	show	the	set	of	sources
accessed	as	individual	nodes.

SELECTs,	UPDATEs,	DELETEs

A	multisource	query	against	a	SELECT/UPDATE/DELETE	may	affect	any	subset	of	the	sources	based	upon	the	evaluation
of	the	WHERE	clause.

The	multisource	column	may	not	be	targeted	in	an	update	change	set.

MultiSource	Models

367

The	sum	of	the	update	counts	for	UPDATEs/DELETEs	will	be	returned	as	the	resultant	update	count.

When	running	under	a	transaction	in	a	mode	that	detects	the	need	for	a	transaction	and	multiple	updates	may	performed	or	a
transactional	read	is	required	and	multiple	sources	may	be	read	from,	a	transaction	will	be	started	to	enlist	each	source.

INSERTs

A	multisource	INSERT	must	use	the	source_name	column	as	an	insert	column	to	specify	which	source	should	be	targeted	by
the	INSERT.	Only	an	INSERT	using	the	VALUES	clause	is	supported.

Stored	Procedures

A	physical	stored	procedures	requires	the	addition	of	a	string	in	parameter	matching	the	multisource	column	name	to	specify
which	source	the	procedure	is	executed	on.	If	the	parameter	is	not	present	and	defaults	to	a	null	value,	then	the	procedure	will	be
executed	on	each	source.		It	is	not	possible	to	execute	procedures	that	are	required	to	return	IN/OUT,	OUT,	or	RETURN
parameters	values	on	more	than	1	source.

Example	DDL

CREATE	FOREIGN	PROCEDURE	PROC	(arg1	IN	STRING	NOT	NULL,	arg2	IN	STRING,	SOURCE_NAME	IN	STRING)

Example	Calls	Against	A	Single	Source

CALL	PROC(arg1=>'x',	SOURCE_NAME=>'sourceA')

EXEC	PROC('x',	'y',	'sourceB')

Example	Calls	Against	All	Sources

CALL	PROC(arg1=>'x')

EXEC	PROC('x',	'y')

MultiSource	Models

368

Metadata	Repositories
Traditionally	the	metadata	for	a	Virtual	Database	is	supplied	to	Teiid	engine	through	a	VDB	archive	file.	A	number	of
MetadataRepository	instances	contribute	to	the	loading	of	the	metadata.	Built-in	metadata	repositories	include	the	following:

NATIVE

This	is	only	applicable	on	source	models	(and	is	also	the	default),	when	used	the	metadata	for	the	model	is	retrieved	from	the
source	database	itself.

Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="NATIVE"></metadata>

				</model>

</vdb>

DDL

Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="DDL">

										DDL	Here

								</metadata>

				</model>

</vdb>

This	is	applicable	to	both	source	and	view	models.	See	DDL	Metadata	for	more	information	on	how	to	use	this	feature.

DDL-FILE

Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="DDL-FILE">/accounts.ddl</metadata>

				</model>

</vdb>

DDL	is	applicable	to	both	source	and	view	models	in	zip	VDB	deployments.	See	DDL	Metadata	for	more	information	on	how	to
use	this	feature.

UDF	(11.2+)
Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

Metadata	Repositories

369

				<model	name="{model-name}"	type="VIRTUAL">

								<property	name="importer.schemaName"	value="org.foo.Class"/>

								<metadata	type="UDF"></metadata>

				</model>

</vdb>

Sample	ddl	file

CREATE	DATABASE	{vdb-name}	VERSION	'1';

USE	DATABASE	{vdb-name}	VERSION	'1';

CREATE	VIRTUAL	SCHEMA	{model-name};

IMPORT	FOREIGN	SCHEMA	"org.foo.Class"	FROM	REPOSITORY	UDF	INTO	{model-name};

The	logic	will	import	all	static	functions	that	return	non-void	results,	or	import	the	user	defined	aggregate	function	if	the	class
implements	the	UserDefinedAggregate	interface.

Chaining	Repositories
When	defining	the	metadata	type	for	a	model,	multiple	metadata	elements	can	be	used.	All	the	repository	instances	defined	are
consulted	in	the	order	configured	to	gather	the	metadata	for	the	given	model.	For	example:

Sample	vdb.xml	file

<vdb	name="{vdb-name}"	version="1">

				<model	name="{model-name}"	type="PHYSICAL">

								<source	name="AccountsDB"	translator-name="oracle"	connection-jndi-name="java:/oracleDS"/>

								<metadata	type="NATIVE"/>

								<metadata	type="DDL">

										DDL	Here

								</metadata>

				</model>

</vdb>

Note For	the	above	model,	NATIVE	importer	is	first	used,	then	DDL	importer	used	to	add	additional	metadata	to
NATIVE	imported	metadata.

Custom

See	Custom	Metadata	Repository

Metadata	Repositories

370

REST	Service	Through	VDB
With	help	of	DDL	Metadata	variety	of	metadata	can	be	defined	on	VDB	schema	models.	This	metadata	is	not	limited	to	just
defining	the	tables,	procedures	and	functions.	The	capabilities	of	source	systems	or	any	extensions	to	metadata	can	also	be	defined
on	the	schema	objects	using	the	OPTIONS	clause.	One	such	extension	properties	that	Teiid	defines	is	to	expose	Teiid	procedures
as	REST	based	services.

Expose	Teiid	Procedure	as	Rest	Service

One	can	define	below	REST	based	properties	on	a	Teiid	virtual	procedure,	and	when	the	VDB	is	deployed	the	Teiid	VDB
deployer	will	analyze	the	metadata	and	deploy	a	REST	service	automatically.	When	the	VDB	un-deployed	the	REST	service	also
deployed.

Property	Name Description Is	Required Allowed	Values

METHOD HTTP	Method	to	use Yes
Method	names	including
GET	|	POST|	PUT	|
DELETE

URI URI	of	procedure Yes

A	relative	path,	which	can
include	parameters	as
{param	name}.	For
example:
/procedure/{param1}

PRODUCES Type	of	content	produced
by	the	service

No.	If	not	specified	will
be	inferred	from	the
procedure	return	value.

A	comma	separated	list	of
the	full	MIME	type(s),	or
one	of	xml,	json,	or	plain

CHARSET
When	string/xml	data	is
returned,	this	will	be	the
encoding

No.	If	not	specified	will
default	to	the	system
default	charset.

A	valid	Java	charset	name,
such	as	UTF-8,	US-
ASCII,	etc.

The	above	properties	must	be	defined	with	NAMESPACE	`http://teiid.org/rest'	on	the	metadata.	Here	is	an	example	VDB	that
defines	the	REST	based	service.

Example	VDB	with	REST	based	metadata	properties

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="sample"	version="1">

				<property	name="{http://teiid.org/rest}auto-generate"	value="true"/>

				<model	name="PM1">

								<source	name="text-connector"	translator-name="loopback"	/>

									<metadata	type="DDL"><![CDATA[

																CREATE	FOREIGN	TABLE	G1	(e1	string,	e2	integer);

																CREATE	FOREIGN	TABLE	G2	(e1	string,	e2	integer);

]]>	</metadata>

				</model>

				<model	name="View"	type	="VIRTUAL">

									<metadata	type="DDL"><![CDATA[

												--	This	procedure	produces	XML	payload

												CREATE	VIRTUAL	PROCEDURE	g1Table(IN	p1	integer)	RETURNS	TABLE	(xml_out	xml)	OPTIONS	(UPDATECOUNT	0,

	"teiid_rest:METHOD"	'GET',	"teiid_rest:URI"	'g1/{p1}')

												AS

												BEGIN

																SELECT	XMLELEMENT(NAME	"rows",	XMLATTRIBUTES	(g1Table.p1	as	p1),	XMLAGG(XMLELEMENT(NAME	"row",	

XMLFOREST(e1,	e2))))	AS	xml_out	FROM	PM1.G1;

REST	Service	Through	VDB

371

												END

												--	This	procedure	produces	JSON	payload

												CREATE	VIRTUAL	PROCEDURE	g2Table(IN	p1	integer)	RETURNS	TABLE	(json_out	clob)	OPTIONS	(UPDATECOUNT	

0,	"teiid_rest:METHOD"	'GET',	"teiid_rest:URI"	'g2/{p1}')

												AS

												BEGIN

																SELECT	JSONOBJECT(JSONARRAY_AGG(JSONOBJECT(e1,	e2))	as	g2)	AS	json_out	FROM	PM1.G2;

												END

]]>	</metadata>

				</model>

</vdb>

Note

<property	name="{http://teiid.org/rest}auto-generate"	value="true"/>,	can	be	used	to	control	the	generation	of	the
REST	based	WAR	based	on	the	VDB.	This	property	along	with	at	least	one	procedure	with	REST	based
extension	metadata	is	required	to	generate	a	REST	WAR	file.	Also,	the	procedure	needs	to	return	result	set	with
single	column	of	either	XML,	Clob,	Blob	or	String.	When	PRODUCES	property	is	not	defined,	this	property	is
derived	from	the	result	column	that	is	projected	out.	The	PRODUCES	values	xml,	json,	and	plain	are	actually
converted	to	the	MIME	types	application/xml,	application/json,	and	text/plain	respectively.	You	may	enter	the	full
MIME	type	if	you	need,	such	as	text/html.

When	the	above	VDB	is	deployed	in	the	WildFly	+	Teiid	server,	and	if	the	VDB	is	valid	and	after	the	metadata	is	loaded	then	a
REST	war	generated	automatically	and	deployed	into	the	local	WildFly	server.	The	REST	VDB	is	deployed	with	"{vdb-
name}_{vdb-version}"	context.	The	model	name	is	prepended	to	uri	of	the	service	call.	For	example	the	procedure	in	above
example	can	be	accessed	as

http://{host}:8080/sample_1/view/g1/123

where	"sample_1"	is	context,	"view"	is	model	name,	"g1"	is	URI,	and	123	is	parameter	{p1}	from	URI.	If	you	defined	a
procedure	that	returns	a	XML	content,	then	REST	service	call	should	be	called	with	"accepts"	HTTP	header	of	"application/xml".
Also,	if	you	defined	a	procedure	that	returns	a	JSON	content	and	PRODUCES	property	is	defined	"json"	then	HTTP	client	call
should	include	the	"accepts"	header	of	"application/json".	In	the	situations	where	"accepts"	header	is	missing,	and	only	one
procedure	is	defined	with	unique	path,	that	procedure	will	be	invoked.	If	there	are	multiple	procedures	with	same	URI	path,	for
example	one	generating	XML	and	another	generating	JSON	content	then	"accepts"	header	directs	the	REST	engine	as	to	which
procedure	should	be	invoked	to	get	the	results.	A	wrong	"accepts"	header	will	result	in	error.

"GET	Methods"

When	designing	the	procedures	that	will	be	invoked	through	GET	based	call,	the	input	parameters	for	procedures	can	be	defined
in	the	PATH	of	the	URI,	as	the	{p1}	example	above,	or	they	can	also	be	defined	as	query	parameter,	or	combination	of	both.	For
example

http://{host}:8080/sample_1/view/g1?p1=123

http://{host}:8080/sample_1/view/g1/123?p2=foo

Make	sure	that	the	number	of	parameters	defined	on	the	URI	and	query	match	to	the	parameters	defined	on	procedure	definition.
If	you	defined	a	default	value	for	a	parameter	on	the	procedure,	and	that	parameter	going	to	be	passed	in	query	parameter	on	URL
then	you	have	choice	to	omit	that	query	parameter,	if	you	defined	as	PATH	you	must	supply	a	value	for	it.

"POST	methods"

'POST'	methods	MUST	not	be	defined	with	URI	with	PATHS	for	parameters	as	in	GET	operations,	the	procedure	parameters	are
automatically	added	as	@FormParam	annotations	on	the	generated	procedure.	A	client	invoking	this	service	must	use	FORM	to
post	the	values	for	the	parameters.	The	FORM	field	names	MUST	match	the	names	of	the	procedure	parameters	names.

REST	Service	Through	VDB

372

If	any	one	of	the	procedure	parameters	are	BLOB,	CLOB	or	XML	type,	then	POST	operation	can	be	only	invoked	using
"multipart/form-data"	RFC-2388	protocol.	This	allows	user	to	upload	large	binary	or	XML	files	efficiently	to	Teiid	using
streaming".

"VARBINARY	type"

If	a	parameter	to	the	procedure	is	VARBINARY	type	then	the	value	of	the	parameter	must	be	properly	BASE64	encoded,
irrespective	of	the	HTTP	method	used	to	execute	the	procedure.	If	this	VARBINARY	has	large	content,	then	consider	using
BLOB.

Security	on	Generated	Services
By	default	all	the	generated	Rest	based	services	are	secured	using	"HTTPBasic"	with	security	domain	"teiid-security"	and	with
security	role	"rest".	However,	these	properties	can	be	customized	by	defining	the	then	in	vdb.xml	file.

Example	vdb.xml	file	security	specification

<vdb	name="sample"	version="1">

				<property	name="{http://teiid.org/rest}auto-generate"	value="true"/>

				<property	name="{http://teiid.org/rest}security-type"	value="HttpBasic"/>

				<property	name="{http://teiid.org/rest}security-domain"	value="teiid-security"/>

				<property	name="{http://teiid.org/rest}security-role"	value="example-role"/>

				...

</vdb>

security-type	-	defines	the	security	type.	allowed	values	are	"HttpBasic"	or	"none".	If	omitted	will	default	to	"HttpBasic"

security-domain	-	defines	JAAS	security	domain	to	be	used	with	HttpBasic.	If	omitted	will	default	to	"teiid-security"

security-role	-	security	role	that	HttpBasic	will	use	to	authorize	the	users.	If	omitted	the	value	will	default	to	"rest"

Note rest-security	-	it	is	our	intention	to	provide	other	types	of	securities	like	Kerberos	and	OAuth2	in	future	releases.

Special	Ad-Hoc	Rest	Services
Apart	from	the	explicitly	defined	procedure	based	rest	services,	the	generated	jax-rs	war	file	can	also	include	a	special	rest	based
service	under	URI	"/query"	that	can	take	any	XML	or	JSON	producing	SQL	as	parameter	and	expose	the	results	of	that	query	as
result	of	the	service.

The	model/schema	must	be	have	the	{http://teiid.org/rest}security-role	property	set	to	true	to	expose	the	procedure.

This	service	is	defined	with	"POST",	accepting	a	Form	Parameter	named	"sql".	For	example,	after	you	deploy	the	VDB	defined	in
above	example,	you	can	issue	a	HTTP	POST	call	as

				http://localhost:8080/sample_1/view/query

				sql=SELECT	XMLELEMENT(NAME	"rows",XMLAGG(XMLELEMENT(NAME	"row",	XMLFOREST(e1,	e2))))	AS	xml_out	FROM	PM1.G1

A	sample	HTTP	Request	from	Java	can	be	made	like	below

			public	static	String	httpCall(String	url,	String	method,	String	params)	throws	Exception	{

								StringBuffer	buff	=	new	StringBuffer();

								HttpURLConnection	connection	=	(HttpURLConnection)	new	URL(url).openConnection();

								connection.setRequestMethod(method);

								connection.setDoOutput(true);

								if	(method.equalsIgnoreCase("post"))	{

												OutputStreamWriter	wr	=	new	OutputStreamWriter(connection.getOutputStream());

REST	Service	Through	VDB

373

https://www.ietf.org/rfc/rfc2388.txt

												wr.write(params);

												wr.flush();

								}

								BufferedReader	serverResponse	=	new	BufferedReader(new	InputStreamReader(connection.getInputStream()));

								String	line;

								while	((line	=	serverResponse.readLine())	!=	null)	{

												buff.append(line);

								}

								return	buff.toString();

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								String	params	=	URLEncoder.encode("sql",	"UTF-8")	+	"="	+	URLEncoder.encode("SELECT	XMLELEMENT(NAME	"ro

ws",XMLAGG(XMLELEMENT(NAME	"row",	XMLFOREST(e1,	e2))))	AS	xml_out	FROM	PM1.G1",	"UTF-8");

								httpCall("http://localhost:8080/sample_1/view/query",	"POST",	params);

				}

REST	Service	Through	VDB

374

VDB	Reuse
VDBs	may	reuse	other	VDBs	deployed	in	the	same	server	instance	by	using	an	"import-vdb"	declaration	in	the	vdb.xml	file.		An
imported	VDB	can	have	it’s	tables	and	procedures	referenced	by	views	and	procedures	in	the	importing	VDB	as	if	they	are	part	of
the	VDB.		Imported	VDBs	are	required	to	exist	before	an	importing	VDB	may	start.		If	an	imported	VDB	is	undeployed,	then	any
importing	VDB	will	be	stopped.

Once	a	VDB	is	imported	it	is	mostly	operationally	independent	from	the	base	VDB.		Only	cost	related	metadata	may	be	updated
for	an	object	from	an	imported	VDB	in	the	scope	of	the	importing	VDB.		All	other	updates	must	be	made	through	the	original
VDB,	but	they	will	be	visible	in	all	imported	VDBs.		Even	materialized	views	are	separately	maintained	for	an	imported	VDB	in
the	scope	of	each	importing	VDB.

Example	reuse	VDB	XML

<vdb	name="reuse"	version="1">

				<property	name="imported-model.visible"	value="false"/>

				<import-vdb	name="common"	version="1"	import-data-policies="false"/>

				<model	visible="true"	type="VIRTUAL"	name="new-model">

									<metadata	type	=	"DDL"><![CDATA[

														CREATE	VIEW	x	(

																y	varchar

)	AS

																		select	*	from	imported-model.tbl;

]]>

									</metadata>

				</model>

</vdb>

In	the	above	example	the	reuse	VDB	will	have	access	to	all	of	the	models	defined	in	the	common	VDB	and	adds	in	the	"new-
model".	The	visibility	of	imported	models	may	be	overridden	via	boolean	vdb	properties	using	the	key	model.visible	-	shown
above	as	imported-model.visible	with	a	value	of	false.

An	imported	VDB	includes	all	of	its	models	and	may	not	conflict	with	any	model,	data	policy,	or	source	already	defined	in	the
importing	VDB.	The	import	logic	though	does	recognize	imported	VDBs	that	perform	nothing	but	imports	and	will	instead	import
only	distinct	imports.

Common	Example

<code>

<vdb	name="OneVDB"	version="1">

				<description>One	VDB</description>

				<import-vdb	name=CommonVDB"	version="1"/>

				<import-vdb	name="OtherVDB"	version="1"/>

</code>

<code>

<vdb	name="TwoVDB"	version="1">

				<description>TwoVDB</description>

				<import-vdb	name=CommonVDB"	version="1"/>

				<import-vdb	name="SomeOtherVDB"	version="1"/>

</code>

<code>

<vdb	name="ThirdVDB"	version="1">

VDB	Reuse

375

				<description>Third	VDB</description>

				<import-vdb	name=OneVDB"	version="1"/>

				<import-vdb	name="TwoVDB"	version="1"/>

</code>

In	the	above	example	CommonVDB	will	only	be	imported	a	single	time	by	ThirdVDB,	since	the	import	logic	recognizes	that	the
importing	VDBs	perform	nothing	but	imports	themselves.

VDB	Reuse

376

SQL	compatibility
Teiid	provides	nearly	all	of	the	functionality	of	SQL-92	DML.	SQL-99	and	later	features	are	constantly	being	added	based	upon
community	need.	The	following	does	not	attempt	to	cover	SQL	exhaustively,	but	rather	highlights	how	SQL	is	used	within	Teiid.
For	details	about	the	exact	form	of	SQL	that	Teiid	accepts,	see	the	BNF	for	SQL	grammar.

SQL	Support

377

Identifiers
SQL	commands	contain	references	to	tables	and	columns.	These	references	are	in	the	form	of	identifiers,	which	uniquely	identify
the	tables	and	columns	in	the	context	of	the	command.	All	queries	are	processed	in	the	context	of	a	virtual	database,	or	VDB.
Because	information	can	be	federated	across	multiple	sources,	tables	and	columns	must	be	scoped	in	some	manner	to	avoid
conflicts.	This	scoping	is	provided	by	schemas,	which	contain	the	information	for	each	data	source	or	set	of	views.

Fully-qualified	table	and	column	names	are	of	the	following	form,	where	the	separate	`parts'	of	the	identifier	are	delimited	by
periods.

TABLE:	<schema_name>.<table_spec>

COLUMN:	<schema_name>.<table_spec>.<column_name>

Syntax	rules
Identifiers	can	consist	of	alphanumeric	characters,	or	the	underscore	(_)	character,	and	must	begin	with	an	alphabetic
character.	Any	Unicode	character	may	be	used	in	an	identifier.

Identifiers	in	double	quotes	can	have	any	contents.	The	double	quote	character	can	be	used	if	is	escaped	with	an	additional
double	quote;	for	example,		"some	""	id"	

Because	different	data	sources	organize	tables	in	different	ways,	with	some	prepending	catalog,	schema,	or	user	information,
Teiid	allows	table	specification	to	be	a	dot-delimited	construct.

Note
When	a	table	specification	contains	a	dot	resolving	will	allow	for	the	match	of	a	partial	name	against	any	number
of	the	end	segments	in	the	name.	e.g.	a	table	with	the	fully-qualified	name
	vdbname."sourceschema.sourcetable"		would	match	the	partial	name		sourcetable	.

Columns,	column	aliases,	and	schemas	cannot	contain	a	dot	(.)	character.

Identifiers,	even	when	quoted,	are	not	case-sensitive	in	Teiid.

Some	examples	of	valid,	fully-qualified	table	identifiers	are:

MySchema.Portfolios

"MySchema.Portfolios"

MySchema.MyCatalog.dbo.Authors

Some	examples	of	valid	fully-qualified	column	identifiers	are:

MySchema.Portfolios.portfolioID

"MySchema.Portfolios"."portfolioID"

MySchema.MyCatalog.dbo.Authors.lastName

Fully-qualified	identifiers	can	always	be	used	in	SQL	commands.	Partially-	or	unqualified	forms	can	also	be	used,	as	long	as	the
resulting	names	are	unambiguous	in	the	context	of	the	command.	Different	forms	of	qualification	can	be	mixed	in	the	same	query.

If	you	use	an	alias	containing	a	period	(.)	character,	it	is	a	known	issue	that	the	alias	name	will	be	treated	the	same	as	a	qualified
name	and	may	conflict	with	fully	qualified	object	names.

Reserved	words
Reserved	words	in	Teiid	include	the	standard	SQL	2003	Foundation,	SQL/MED,	and	SQL/XML	reserved	words,	as	well	as	Teiid
specific	words	such	as	BIGINTEGER,	BIGDECIMAL,	or	MAKEDEP.	For	more	information	about	reserved	words,	see	the
Reserved	Keywords	and	Reserved	Keywords	For	Future	Use	sections	in	BNF	for	SQL	grammar.

Identifiers

378

Identifiers

379

Operator	precedence
Teiid	parses	and	evaluates	operators	with	higher	precedence	before	those	with	lower	precedence.	Operators	with	equal	precedence
are	left-associative	(left-to-right).	The	following	table	lists	operator	precedence	from	high	to	low:

Operator Description

	[]	 array	element	reference

	+	,	-	 positive/negative	value	expression

	*	,	/	 multiplication/division

	+	,	-	 addition/subtraction

	||	 concat

criteria For	information,	see	Criteria.

Operator	Precedence

380

Expressions
Identifiers,	literals,	and	functions	can	be	combined	into	expressions.	Expressions	can	be	used	in	a	query	with	nearly	any	keyword,
including	SELECT,	FROM	(if	specifying	join	criteria),	WHERE,	GROUP	BY,	HAVING,	or	ORDER	BY.

You	can	use	following	types	of	expressions	in	Teiid:

Column	identifiers

Literals

Aggregate	functions

Window	functions

Case	and	searched	case

Scalar	subqueries

Parameter	references

Arrays

Criteria

Scalar	functions

Expressions

381

Column	Identifiers
Column	identifiers	are	used	to	specify	the	output	columns	in	SELECT	statements,	the	columns	and	their	values	for	INSERT	and
UPDATE	statements,	and	criteria	used	in	WHERE	and	FROM	clauses.	They	are	also	used	in	GROUP	BY,	HAVING,	and	ORDER
BY	clauses.	The	syntax	for	column	identifiers	was	defined	in	the	Identifiers	section	above.

Expressions

382

Literals
Literal	values	represent	fixed	values.	These	can	be	any	of	the	'standard'	data	types.	For	information	about	data	types,	see	Data
types.

Syntax	rules
Integer	values	will	be	assigned	an	integral	data	type	big	enough	to	hold	the	value	(integer,	long,	or	biginteger).

Floating	point	values	will	always	be	parsed	as	a	double.

The	keyword	'null'	is	used	to	represent	an	absent	or	unknown	value	and	is	inherently	untyped.	In	many	cases,	a	null	literal
value	will	be	assigned	an	implied	type	based	on	context.	For	example,	in	the	function	'5	+	null',	the	null	value	will	be
assigned	the	type	'integer'	to	match	the	type	of	the	value	'5'.	A	null	literal	used	in	the	SELECT	clause	of	a	query	with	no
implied	context	will	be	assigned	to	type	'string'.

Some	examples	of	simple	literal	values	are:

'abc'

Example:	Escaped	single	tick

'isn"t	true'

5

Example:	Scientific	notation

-37.75e01

Example:	exact	numeric	type	BigDecimal

100.0

true

false

Example:	Unicode	character

'\u0027'

Example:	Binary

X'0F0A'

Date/Time	literals	can	use	either	JDBC	Escaped	literal	syntax:

Example:	Date	literal

{d'...'}

Example:	Time	literal

Expressions

383

{t'...'}

Example:	Timestamp	literal

{ts'...'}

Or	the	ANSI	keyword	syntax:

Example:	Date	literal

DATE	'...'

Example:	Time	literal

TIME	'...'

Example:	Timestamp	literal

TIMESTAMP	'...'

Either	way,	the	string	literal	value	portion	of	the	expression	is	expected	to	follow	the	defined	format	-	"yyyy-MM-dd"	for	date,
"hh:mm:ss"	for	time,	and	"yyyy-MM-dd[hh:mm:ss[.fff…]]"	for	timestamp.

Expressions

384

Aggregate	functions
Aggregate	functions	take	sets	of	values	from	a	group	produced	by	an	explicit	or	implicit	GROUP	BY	and	return	a	single	scalar
value	computed	from	the	group.

You	can	use	the	following	aggregate	functions	in	Teiid:

COUNT(*)
Count	the	number	of	values	(including	nulls	and	duplicates)	in	a	group.	Returns	an	integer	-	an	exception	will	be	thrown	if	a
larger	count	is	computed.

COUNT(x)
Count	the	number	of	values	(excluding	nulls)	in	a	group.	Returns	an	integer	-	an	exception	will	be	thrown	if	a	larger	count	is
computed.

COUNT_BIG(*)
Count	the	number	of	values	(including	nulls	and	duplicates)	in	a	group.	Returns	a	long	-	an	exception	will	be	thrown	if	a
larger	count	is	computed.

COUNT_BIG(x)
Count	the	number	of	values	(excluding	nulls)	in	a	group.	Returns	a	long	-	an	exception	will	be	thrown	if	a	larger	count	is
computed.

SUM(x)
Sum	of	the	values	(excluding	nulls)	in	a	group.

AVG(x)
Average	of	the	values	(excluding	nulls)	in	a	group.

MIN(x)
Minimum	value	in	a	group	(excluding	null).

MAX(x)
Maximum	value	in	a	group	(excluding	null).

ANY(x)/SOME(x)
Returns	TRUE	if	any	value	in	the	group	is	TRUE	(excluding	null).

EVERY(x)
Returns	TRUE	if	every	value	in	the	group	is	TRUE	(excluding	null).

VAR_POP(x)
Biased	variance	(excluding	null)	logically	equals(sum(x^2)	-	sum(x)^2/count(x))/count(x);	returns	a	double;	null	if	count	=	0.

VAR_SAMP(x)
Sample	variance	(excluding	null)	logically	equals(sum(x^2)	-	sum(x)^2/count(x))/(count(x)	-	1);	returns	a	double;	null	if	count
<	2.

STDDEV_POP(x)
Standard	deviation	(excluding	null)	logically	equals	SQRT(VAR_POP(x)).

STDDEV_SAMP(x)
Sample	standard	deviation	(excluding	null)	logically	equals	SQRT(VAR_SAMP(x)).

TEXTAGG(expression	[as	name],	…	[DELIMITER	char]	[QUOTE	char	|	NO	QUOTE]	[HEADER]	[ENCODING	id]
[ORDER	BY	…])
CSV	text	aggregation	of	all	expressions	in	each	row	of	a	group.	When	DELIMITER	is	not	specified,	by	default	comma(,)	is
used	as	delimiter.	All	non-null	values	will	be	quoted.	Double	quotes(")	is	the	default	quote	character.	Use	QUOTE	to	specify	a
different	value,	or	NO	QUOTE	for	no	value	quoting.	If	HEADER	is	specified,	the	result	contains	the	header	row	as	the	first
line	-	the	header	line	will	be	present	even	if	there	are	no	rows	in	a	group.	This	aggregation	returns	a	blob.

Expressions

385

TEXTAGG(col1,	col2	as	name	DELIMITER	'|'	HEADER	ORDER	BY	col1)

XMLAGG(xml_expr	[ORDER	BY	…])	–	XML	concatenation	of	all	XML	expressions	in	a	group	(excluding	null).	The
ORDER	BY	clause	cannot	reference	alias	names	or	use	positional	ordering.

JSONARRAY_AGG(x	[ORDER	BY	…])	–	creates	a	JSON	array	result	as	a	Clob	including	null	value.	The	ORDER	BY
clause	cannot	reference	alias	names	or	use	positional	ordering.	For	more	information,	see	JSONARRAY	function.

Example:	Integer	value	expression

jsonArray_Agg(col1	order	by	col1	nulls	first)

could	return

[null,null,1,2,3]

STRING_AGG(x,	delim)	–	creates	a	lob	results	from	the	concatenation	of	x	using	the	delimiter	delim.	If	either	argument	is
null,	no	value	is	concatenated.	Both	arguments	are	expected	to	be	character	(string/clob)	or	binary	(varbinary,	blob),	and	the
result	will	be	CLOB	or	BLOB	respectively.	DISTINCT	and	ORDER	BY	are	allowed	in	STRING_AGG.

Example:	String	aggregate	expression

string_agg(col1,	','	ORDER	BY	col1	ASC)

could	return

'a,b,c'

LIST_AGG(x	[,	delim])	WITHIN	GROUP	(ORDER	BY	…)	–	a	form	of	STRING_AGG	that	uses	the	same	syntax	as	Oracle.
Here		x		can	be	any	type	that	can	be	converted	to	a	string.	The		delim		value,	if	specified,	must	be	a	literal,	and	the		ORDER
BY		value	is	required.	This	is	only	a	parsing	alias	for	an	equivalent		string_agg		expression.

Example:	List	aggregate	expression

listagg(col1,	',')	WITHIN	GROUP	(ORDER	BY	col1	ASC)

could	return

'a,b,c'

ARRAY_AGG(x	[ORDER	BY	…])	–	Creates	an	array	with	a	base	type	that	matches	the	expression	x.	The	ORDER	BY
clause	cannot	reference	alias	names	or	use	positional	ordering.

agg([DISTINCT|ALL]	arg	…	[ORDER	BY	…])	–	A	user	defined	aggregate	function.

Syntax	rules
Some	aggregate	functions	may	contain	a	keyword	'DISTINCT'	before	the	expression,	indicating	that	duplicate	expression
values	should	be	ignored.	DISTINCT	is	not	allowed	in	COUNT(*)	and	is	not	meaningful	in	MIN	or	MAX	(result	would	be
unchanged),	so	it	can	be	used	in	COUNT,	SUM,	and	AVG.

Aggregate	functions	cannot	be	used	in	FROM,	GROUP	BY,	or	WHERE	clauses	without	an	intervening	query	expression.

Aggregate	functions	cannot	be	nested	within	another	aggregate	function	without	an	intervening	query	expression.

Aggregate	functions	may	be	nested	inside	other	functions.

Expressions

386

Any	aggregate	function	may	take	an	optional	FILTER	clause	of	the	form

FILTER	(WHERE	condition)

The	condition	may	be	any	boolean	value	expression	that	does	not	contain	a	subquery	or	a	correlated	variable.	The	filter	will
logically	be	evaluated	for	each	row	prior	to	the	grouping	operation.	If	false	the	aggregate	function	will	not	accumulate	a	value	for
the	given	row.

For	more	information	on	aggregates,	see	the	sections	on	GROUP	BY	or	HAVING.

Expressions

387

Window	functions
Teiid	provides	ANSI	SQL	2003	window	functions.	A	window	function	allows	an	aggregate	function	to	be	applied	to	a	subset	of
the	result	set,	without	the	need	for	a		GROUP	BY		clause.	A	window	function	is	similar	to	an	aggregate	function,	but	requires	the	use
of	an		OVER		clause	or	window	specification.

Usage:

		aggregate	[FILTER	(WHERE	...)]	OVER	([partition]	[ORDER	BY	...]	[frame])

|	FIRST_VALUE(val)	OVER	([partition]	[ORDER	BY	...]	[frame])

|	LAST_VALUE(val)	OVER	([partition]	[ORDER	BY	...]	[frame])

|	analytical	OVER	([partition]	[ORDER	BY	...])

partition	:=	PARTITION	BY	expression	[,	expression]*

frame	:=	range_or_rows	extent

range_or_rows	:=	RANGE	|	ROWS

extent	:=

				frameBound

		|	BETWEEN	frameBound	AND	frameBound

frameBound	:=

				UNBOUNDED	PRECEDING

		|	UNBOUNDED	FOLLOWING

		|	n	PRECEDING

		|	n	FOLLOWING

		|	CURRENT	ROW

In	the	preceding	syntax,		aggregate		can	refer	to	any	aggregate	function.	Keywords	exist	for	the	following	analytical	functions
ROW_NUMBER,	RANK,	DENSE_RANK,	PERCENT_RANK,	CUME_DIST.	There	are	also	the	FIRST_VALUE,
LAST_VALUE,	LEAD,	LAG,	NTH_VALUE,	and	NTILE	analytical	functions.	For	more	information,	see	Analytical	functions
definitions.

Syntax	rules
Window	functions	can	only	appear	in	the	SELECT	and	ORDER	BY	clauses	of	a	query	expression.

Window	functions	cannot	be	nested	in	one	another.

Partitioning	and	order	by	expressions	cannot	contain	subqueries	or	outer	references.

An	aggregate	ORDER	BY	clause	cannot	be	used	when	windowed.

The	window	specification	ORDER	BY	clause	cannot	reference	alias	names	or	use	positional	ordering.

Windowed	aggregates	may	not	use	DISTINCT	if	the	window	specification	is	ordered.

Analytical	value	functions	may	not	use	DISTINCT	and	require	the	use	of	an	ordering	in	the	window	specification.

RANGE	or	ROWS	requires	the	ORDER	BY	clause	to	be	specified.	The	default	frame	if	not	specified	is	RANGE
UNBOUNDED	PRECEDING.	If	no	end	is	specified	the	default	is	CURRENT	ROW.	No	combination	of	start	and	end	is
allowed	such	that	the	end	is	before	the	start	-	for	example	UNBOUNDED	FOLLOWING	is	not	allow	as	a	start	nor	is
UNBOUNDED	PRECEDING	allowed	as	an	end.

RANGE	cannot	be	used	n	PRECEDING	or	n	FOLLOWING

Analytical	function	definitions

Ranking	functions

Expressions

388

RANK()	–	Assigns	a	number	to	each	unique	ordering	value	within	each	partition	starting	at	1,	such	that	the	next	rank	is
equal	to	the	count	of	prior	rows.

DENSE_RANK()	–	Assigns	a	number	to	each	unique	ordering	value	within	each	partition	starting	at	1,	such	that	the	next
rank	is	sequential.

PERCENT_RANK()	–	Computed	as	(RANK	-	1)	/	(RC	-	1)	where	RC	is	the	total	row	count	of	the	partition.

CUME_DIST()	–	Computed	as	the	PR	/	RC	where	PR	is	the	rank	of	the	row	including	peers	and	RC	is	the	total	row
count	of	the	partition.

By	default	all	values	are	integers	-	an	exception	will	be	thrown	if	a	larger	value	is	needed.	Use	the	system
org.teiid.longRanks	to	have	RANK,	DENSE_RANK,	and	ROW_NUMBER	return	long	values	instead.

Value	functions
FIRST_VALUE(val)	–	Return	the	first	value	in	the	window	frame	with	the	given	ordering.

LAST_VALUE(val)	–	Return	the	last	observed	value	in	the	window	frame	with	the	given	ordering.

LEAD(val	[,	offset	[,	default]])	-	Access	the	ordered	value	in	the	window	that	is	offset	rows	ahead	of	the	current	row.	If
there	is	no	such	row,	then	the	default	value	will	be	returned.	If	not	specified	the	offset	is	1	and	the	default	is	null.

LAG(val	[,	offset	[,	default]])	-	Access	the	ordered	value	in	the	window	that	is	offset	rows	behind	of	the	current	row.	If
there	is	no	such	row,	then	the	default	value	will	be	returned.	If	not	specified	the	offset	is	1	and	the	default	is	null.

NTH_VALUE(val,	n)	-	Returns	the	nth	val	in	window	frame.	The	index	must	be	greater	than	0.	If	no	such	value	exists,
then	null	is	returned.

Row	value	functions
ROW_NUMBER()	–	Sequentially	assigns	a	number	to	each	row	in	a	partition	starting	at		1	.

NTILE(n)	–	Divides	the	partition	into	n	tiles	that	differ	in	size	by	at	most		1	.	Larger	tiles	will	be	created	sequentially
starting	at	the	first.		n		must	be	greater	than		0	.

Processing
Window	functions	are	logically	processed	just	before	creating	the	output	from	the	SELECT	clause.	Window	functions	can	use
nested	aggregates	if	a	GROUP	BY	clause	is	present.	There	is	no	guaranteed	effect	on	the	output	ordering	from	the	presence	of
window	functions.	The	SELECT	statement	must	have	an	ORDER	BY	clause	to	have	a	predictable	ordering.

Note

An	ORDER	BY	in	the	OVER	clause	follows	the	same	rules	pushdown	and	processing	rules	as	a	top	level
ORDER	BY.	In	general	this	means	you	should	specify	NULLS	FIRST/LAST	as	null	handling	may	differ	between
engine	and	pushdown	processing.	Also	see	the	system	properties	controlling	sort	behavior	if	you	different	default
behavior.

Teiid	processes	all	window	functions	with	the	same	window	specification	together.	In	general,	a	full	pass	over	the	row	values
coming	into	the	SELECT	clause	is	required	for	each	unique	window	specification.	For	each	window	specification	the	values	are
grouped	according	to	the	PARTITION	BY	clause.	If	no	PARTITION	BY	clause	is	specified,	then	the	entire	input	is	treated	as	a
single	partition.

The	frame	for	the	output	value	is	determined	based	upon	the	definition	of	the	analytical	function	or	the		ROWS/RANGE		clause.	The
default	frame	is		RANGE	UNBOUNDED	PRECEDING	,	which	also	implies	the	default	end	bound	of		CURRENT	ROW	.		RANGE		computes
over	a	row	and	its	peers	together.		ROWS		computes	over	every	row.	Most	analytical	functions,	such	as		ROW_NUMBER	,	have	an
implicit		RANGE/ROWS		-	which	is	why	a	different	one	cannot	be	specified.	For	example,		ROW_NUMBER()	OVER	(order)`		can	be
expressed	instead	as		count(*)	OVER	(order	ROWS	UNBOUNDED	PRECEDING	AND	CURRENT	ROW)	.	Thus	it	assigns	a	different	value	to
every	row	regardless	of	the	number	of	peers.

Example:	Windowed	results

SELECT	name,	salary,	max(salary)	over	(partition	by	name)	as	max_sal,

										rank()	over	(order	by	salary)	as	rank,	dense_rank()	over	(order	by	salary)	as	dense_rank,

Expressions

389

										row_number()	over	(order	by	salary)	as	row_num	FROM	employees

name salary max_sal rank dense_rank row_num

John 100000 100000 2 2 2

Henry 50000 50000 5 4 5

John 60000 100000 3 3 3

Suzie 60000 150000 3 3 4

Suzie 150000 150000 1 1 1

Expressions

390

Case	and	searched	case
In	Teiid,	to	include	conditional	logic	in	a	scalar	expression,	you	can	use	the	following	two	forms	of	the	CASE	expression:

	CASE	<expr>	(WHEN	<expr>	THEN	<expr>)+	[ELSE	expr]	END	

	CASE	(WHEN	<criteria>	THEN	<expr>)+	[ELSE	expr]	END	

Each	form	allows	for	an	output	based	on	conditional	logic.	The	first	form	starts	with	an	initial	expression	and	evaluates	WHEN
expressions	until	the	values	match,	and	outputs	the	THEN	expression.	If	no	WHEN	is	matched,	the	ELSE	expression	is	output.	If
no	WHEN	is	matched	and	no	ELSE	is	specified,	a	null	literal	value	is	output.	The	second	form	(the	searched	case	expression)
searches	the	WHEN	clauses,	which	specify	an	arbitrary	criteria	to	evaluate.	If	any	criteria	evaluates	to	true,	the	THEN	expression
is	evaluated	and	output.	If	no	WHEN	is	true,	the	ELSE	is	evaluated	or	NULL	is	output	if	none	exists.

Example	case	statements

SELECT	CASE	columnA	WHEN	'10'	THEN	'ten'	WHEN	'20'	THEN	'twenty'	END	AS	myExample

SELECT	CASE	WHEN	columnA	=	'10'	THEN	'ten'	WHEN	columnA	=	'20'	THEN	'twenty'	END	AS	myExample

Expressions

391

Scalar	subqueries
Subqueries	can	be	used	to	produce	a	single	scalar	value	in	the	SELECT,	WHERE,	or	HAVING	clauses	only.	A	scalar	subquery
must	have	a	single	column	in	the	SELECT	clause	and	should	return	either	0	or	1	row.	If	no	rows	are	returned,	null	will	be	returned
as	the	scalar	subquery	value.	For	information	about	other	types	of	subqueries,	see	Subqueries.

Expressions

392

Parameter	references

Expressions

393

Arrays
Example:	Empty	arrays

()

(,)

ARRAY[]

Example:	Single	element	array

(expr,)

ARRAY[expr]

Note A	trailing	comma	is	required	for	the	parser	to	recognize	a	single	element	expression	as	an	array	with	parentheses,
rather	than	a	simple	nested	expression.

Example:	General	array	syntax

(expr,	expr	...	[,])

ARRAY[expr,	...]

If	all	of	the	elements	in	the	array	have	the	same	type,	the	array	will	have	a	matching	base	type.	If	the	element	types	differ	the	array
base	type	will	be	object.

An	array	element	reference	takes	the	form	of:

array_expr[index_expr]

	index_expr		must	resolve	to	an	integer	value.	This	syntax	is	effectively	the	same	as	the		array_get		system	function	and	expects
1-based	indexing.

Expressions

394

Criteria
Criteria	can	be	any	of	the	following	items:

Predicates	that	evaluate	to	true	or	false.

Logical	criteria	that	combine	criteria	(AND,	OR,	NOT).

A	value	expression	of	type	Boolean.

Usage

criteria	AND|OR	criteria

NOT	criteria

(criteria)

expression	(=|<>|!=|<|>|<=|>=)	(expression|((ANY|ALL|SOME)	subquery|(array_expression)))

expression	IS	[NOT]	DISTINCT	FROM	expression

	IS	DISTINCT	FROM		considers	null	values	to	be	equivalent	and	never	produces	an	UNKNOWN	value.

Note Because	the	optimizer	is	not	tuned	to	handle		IS	DISTINCT	FROM	,	if	you	use	it	in	a	join	predicate	that	is	not
pushed	down,	the	resulting	plan	does	not	perform	as	well	a	regular	comparison.

expression	[NOT]	IS	NULL

expression	[NOT]	IN	(expression	[,expression]*)|subquery

expression	[NOT]	LIKE	pattern	[ESCAPE	char]

	LIKE		matches	the	string	expression	against	the	given	string	pattern.	The	pattern	may	contain		%		to	match	any	number	of
characters,	and		_		to	match	any	single	character.	The	escape	character	can	be	used	to	escape	the	match	characters		%		and		_	.

expression	[NOT]	SIMILAR	TO	pattern	[ESCAPE	char]

	SIMILAR	TO		is	a	cross	between	LIKE	and	standard	regular	expression	syntax.		%		and		_		are	still	used,	rather	than		.*		and		.	,
respectively.

Note

Teiid	does	not	exhaustively	validate		SIMILAR	TO		pattern	values.	Instead,	the	pattern	is	converted	to	an
equivalent	regular	expression.	Do	not	rely	on	general	regular	expression	features	when	using		SIMILAR	TO	.	If
additional	features	are	needed,	use		LIKE_REGEX	.	Avoid	the	use	of	non-literal	patterns,	because	Teiid	has	a	limited
ability	to	process	SQL	pushdown	predicates.

expression	[NOT]	LIKE_REGEX	pattern

Criteria

395

You	can	use		LIKE_REGEX		with	standard	regular	expression	syntax	for	matching.	This	differs	from		SIMILAR	TO		and		LIKE		in
that	the	escape	character	is	no	longer	used.		\		is	already	the	standard	escape	mechanism	in	regular	expressions,	and		%`		and		_	
have	no	special	meaning.	The	runtime	engine	uses	the	JRE	implementation	of	regular	expressions.	For	more	information,	see	the
java.util.regex.Pattern	class.

Note

Teiid	does	not	exhaustively	validate		LIKE_REGEX		pattern	values.	It	is	possible	to	use	JRE-only	regular	expression
features	that	are	not	specified	by	the	SQL	specification.	Additionally,	not	all	sources	can	use	the	same	regular
expression	flavor	or	extensions.	In	pushdown	situations,	be	careful	to	ensure	that	the	pattern	that	you	use	has	the
same	meaning	in	Teiid,	and	across	all	applicable	sources.

EXISTS	(subquery)

expression	[NOT]	BETWEEN	minExpression	AND	maxExpression

Teiid	converts		BETWEEN		into	the	equivalent	form		expression	>=	minExpression	AND	expression	⇐	maxExpression	.

expression

Where		expression		has	type	Boolean.

Syntax	rules
The	precedence	ordering	from	lowest	to	highest	is	comparison,	NOT,	AND,	OR.

Criteria	nested	by	parenthesis	will	be	logically	evaluated	prior	to	evaluating	the	parent	criteria.

Some	examples	of	valid	criteria	are:

	(balance	>	2500.0)	

	100*(50	-	x)/(25	-	y)	>	z	

	concat(areaCode,concat('-',phone))	LIKE	'314%1'	

Tip
Comparing	null	values
Null	values	represent	an	unknown	value.	Comparison	with	a	null	value	will	evaluate	to		unknown	,	which	can	never
be	true	even	if		not		is	used.

Criteria	precedence
Teiid	parses	and	evaluates	conditions	with	higher	precedence	before	those	with	lower	precedence.	Conditions	with	equal
precedence	are	left-associative.	The	following	table	lists	condition	precedence	from	high	to	low:

Condition Description

SQL	operators See	Expressions

EXISTS,	LIKE,	SIMILAR	TO,	LIKE_REGEX,
BETWEEN,	IN,	IS	NULL,	IS	DISTINCT,	<,	⇐,	>,	>=,	=,
<>

Comparison

NOT Negation

AND Conjunction

OR Disjunction

To	prevent	lookaheads,	the	parser	does	not	accept	all	possible	criteria	sequences.	For	example,		a	=	b	is	null		is

Criteria

396

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Note not	accepted,	because	by	the	left-associative	parsing	we	first	recognize		a	=	,	then	look	for	a	common	value
expression.		b	is	null		is	not	a	valid	common	value	expression.	Thus,	nesting	must	be	used,	for	example,		(a	=
b)	is	null	.	For	more	information	about	parsing	rules,	see	BNF	for	SQL	grammar.

Criteria

397

Scalar	functions
Teiid	provides	an	extensive	set	of	built-in	scalar	functions.	For	more	information,	see	DML	commands	and	Data	types.	In
addition,	Teiid	provides	the	capability	for	user-defined	functions	or	UDFs.	For	information	about	adding	UDFs,	see	User-defined
functions	in	the	Translator	Development	Guide.	After	you	add	UDFs,	you	can	call	them	in	the	same	way	that	you	call	other
functions.

Scalar	functions

398

Numeric	functions
Numeric	functions	return	numeric	values	(integer,	long,	float,	double,	biginteger,	bigdecimal).	They	generally	take	numeric	values
as	inputs,	though	some	take	strings.

Function Definition Datatype	constraint

+	-	*	/ Standard	numeric	operators
x	in	{integer,	long,	float,	double,
biginteger,	bigdecimal},	return	type
is	same	as	x	[a]

ABS(x) Absolute	value	of	x See	standard	numeric	operators
above

ACOS(x) Arc	cosine	of	x x	in	{double,	bigdecimal},	return
type	is	double

ASIN(x) Arc	sine	of	x x	in	{double,	bigdecimal},	return
type	is	double

ATAN(x) Arc	tangent	of	x x	in	{double,	bigdecimal},	return
type	is	double

ATAN2(x,y) Arc	tangent	of	x	and	y x,	y	in	{double,	bigdecimal},	return
type	is	double

CEILING(x) Ceiling	of	x x	in	{double,	float},	return	type	is
double

COS(x) Cosine	of	x x	in	{double,	bigdecimal},	return
type	is	double

COT(x) Cotangent	of	x x	in	{double,	bigdecimal},	return
type	is	double

DEGREES(x) Convert	x	degrees	to	radians x	in	{double,	bigdecimal},	return
type	is	double

EXP(x) e^x x	in	{double,	float},	return	type	is
double

FLOOR(x) Floor	of	x x	in	{double,	float},	return	type	is
double

FORMATBIGDECIMAL(x,	y) Formats	x	using	format	y x	is	bigdecimal,	y	is	string,	returns
string

FORMATBIGINTEGER(x,	y) Formats	x	using	format	y
x	is	biginteger,	y	is	string,	returns
string

FORMATDOUBLE(x,	y) Formats	x	using	format	y x	is	double,	y	is	string,	returns	string

FORMATFLOAT(x,	y) Formats	x	using	format	y x	is	float,	y	is	string,	returns	string

Scalar	functions

399

FORMATINTEGER(x,	y) Formats	x	using	format	y x	is	integer,	y	is	string,	returns	string

FORMATLONG(x,	y) Formats	x	using	format	y x	is	long,	y	is	string,	returns	string

LOG(x) Natural	log	of	x	(base	e) x	in	{double,	float},	return	type	is
double

LOG10(x) Log	of	x	(base	10) x	in	{double,	float},	return	type	is
double

MOD(x,	y) Modulus	(remainder	of	x	/	y)
x	in	{integer,	long,	float,	double,
biginteger,	bigdecimal},	return	type
is	same	as	x

PARSEBIGDECIMAL(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	bigdecimal

PARSEBIGINTEGER(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	biginteger

PARSEDOUBLE(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	double

PARSEFLOAT(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	float

PARSEINTEGER(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	integer

PARSELONG(x,	y) Parses	x	using	format	y x,	y	are	strings,	returns	long

PI() Value	of	Pi return	is	double

POWER(x,y) x	to	the	y	power
x	in	{double,	bigdecimal,
biginteger},	return	is	the	same	type
as	x

RADIANS(x) Convert	x	radians	to	degrees x	in	{double,	bigdecimal},	return
type	is	double

RAND()

Returns	a	random	number,	using
generator	established	so	far	in	the
query	or	initializing	with	system
clock	if	necessary.

Returns	double.

RAND(x)

Returns	a	random	number,	using	new
generator	seeded	with	x.	This	should
typically	be	called	in	an	initialization
query.	It	will	only	effect	the	random
values	returned	by	the	Teiid	RAND
function	and	not	the	values	from
RAND	functions	evaluated	by
sources.

x	is	integer,	returns	double.

ROUND(x,y)
Round	x	to	y	places;	negative	values
of	y	indicate	places	to	the	left	of	the
decimal	point

x	in	{integer,	float,	double,
bigdecimal}	y	is	integer,	return	is
same	type	as	x.

SIGN(x) 1	if	x	>	0,	0	if	x	=	0,	-1	if	x	<	0
x	in	{integer,	long,	float,	double,
biginteger,	bigdecimal},	return	type
is	integer

Scalar	functions

400

SIN(x) Sine	value	of	x x	in	{double,	bigdecimal},	return
type	is	double

SQRT(x) Square	root	of	x x	in	{long,	double,	bigdecimal},
return	type	is	double

TAN(x) Tangent	of	x x	in	{double,	bigdecimal},	return
type	is	double

BITAND(x,	y) Bitwise	AND	of	x	and	y x,	y	in	{integer},	return	type	is
integer

BITOR(x,	y) Bitwise	OR	of	x	and	y x,	y	in	{integer},	return	type	is
integer

BITXOR(x,	y) Bitwise	XOR	of	x	and	y x,	y	in	{integer},	return	type	is
integer

BITNOT(x) Bitwise	NOT	of	x x	in	{integer},	return	type	is	integer

[a]	The	precision	and	scale	of	non-bigdecimal	arithmetic	function	functions	results	matches	that	of	Java.	The	results	of	bigdecimal
operations	match	Java,	except	for	division,	which	uses	a	preferred	scale	of	max(16,	dividend.scale	+	divisor.precision	+	1),	which
then	has	trailing	zeros	removed	by	setting	the	scale	to	max(dividend.scale,	normalized	scale).

Parsing	numeric	datatypes	from	strings
Teiid	offers	a	set	of	functions	you	can	use	to	parse	numbers	from	strings.	For	each	string,	you	need	to	provide	the	formatting	of
the	string.	These	functions	use	the	convention	established	by	the	java.text.DecimalFormat	class	to	define	the	formats	you	can	use
with	these	functions.	You	can	learn	more	about	how	this	class	defines	numeric	string	formats	by	visiting	the	Sun	Java	Web	site	at
the	following	URL	for	Sun	Java.

For	example,	you	could	use	these	function	calls,	with	the	formatting	string	that	adheres	to	the	java.text.DecimalFormat
convention,	to	parse	strings	and	return	the	datatype	you	need:

Input	String Function	Call	to	Format
String Output	Value Output	Datatype

'$25.30' parseDouble(cost,	'$,0.00;
($,0.00)') 25.3 double

'25%' parseFloat(percent,	',#0%') 25 float

'2,534.1' parseFloat(total,	',0.;-,0.') 2534.1 float

'1.234E3' parseLong(amt,	'0.###E0') 1234 long

'1,234,567' parseInteger(total,	',0;-,0') 1234567 integer

Formatting	numeric	datatypes	as	strings
Teiid	offers	a	set	of	functions	you	can	use	to	convert	numeric	datatypes	into	strings.	For	each	string,	you	need	to	provide	the
formatting.	These	functions	use	the	convention	established	within	the	java.text.DecimalFormat	class	to	define	the	formats	you	can
use	with	these	functions.	You	can	learn	more	about	how	this	class	defines	numeric	string	formats	by	visiting	the	Sun	Java	Web	site
at	the	following	URL	for	Sun	Java	.

For	example,	you	could	use	these	function	calls,	with	the	formatting	string	that	adheres	to	the	java.text.DecimalFormat
convention,	to	format	the	numeric	datatypes	into	strings:

Scalar	functions

401

https://docs.oracle.com/en/java/javase/11/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java/text/DecimalFormat.html

Input	Value Input	Datatype Function	Call	to	Format
String Output	String

25.3 double formatDouble(cost,
'$,0.00;($,0.00)') '$25.30'

25 float formatFloat(percent,
',#0%') '25%'

2534.1 float formatFloat(total,	',0.;-,0.') '2,534.1'

1234 long formatLong(amt,
'0.###E0') '1.234E3'

1234567 integer formatInteger(total,	',0;-
,0') '1,234,567'

Scalar	functions

402

String	functions
String	functions	generally	take	strings	as	inputs	and	return	strings	as	outputs.

Unless	specified,	all	of	the	arguments	and	return	types	in	the	following	table	are	strings	and	all	indexes	are	1-based.	The	0	index	is
considered	to	be	before	the	start	of	the	string.

Function Definition Datatype	constraint

x	||	y Concatenation	operator
x,y	in	{string,	clob},	return	type	is
string	or	character	large	object
(CLOB).

ASCII(x)
Provide	ASCII	value	of	the	left	most
character[1]	in	x.	The	empty	string
will	as	input	will	return		null	.

return	type	is	integer

CHR(x)	CHAR(x) Provide	the	character[1]	for	ASCII
value		x		[a].

x	in	{integer}

[1]	For	the	engine’s
implementations	of	the	ASCII	and
CHR	functions,	characters	are
limited	to	UCS2	values	only.	For
pushdown	there	is	little	consistency
among	sources	for	character	values
beyond	character	code	255.

CONCAT(x,	y)
Concatenates	x	and	y	with	ANSI
semantics.	If	x	and/or	y	is	null,
returns	null.

x,	y	in	{string}

CONCAT2(x,	y)

Concatenates	x	and	y	with	non-
ANSI	null	semantics.	If	x	and	y	is
null,	returns	null.	If	only	x	or	y	is
null,	returns	the	other	value.

x,	y	in	{string}

ENDSWITH(x,	y) Checks	if	y	ends	with	x.	If	x	or	y	is
null,	returns	null. x,	y	in	{string},	returns	boolean

INITCAP(x)
Make	first	letter	of	each	word	in
string	x	capital	and	all	others
lowercase.

x	in	{string}

INSERT(str1,	start,	length,	str2) Insert	string2	into	string1 str1	in	{string},	start	in	{integer},
length	in	{integer},	str2	in	{string}

LCASE(x) Lowercase	of	x x	in	{string}

LEFT(x,	y) Get	left	y	characters	of	x x	in	{string},	y	in	{integer},	return
string

LENGTH(x)	CHAR_LENGTH(x)
CHARACTER_LENGTH(x) Length	of	x return	type	is	integer

LOCATE(x,	y)	POSITION(x	IN	y) Find	position	of	x	in	y	starting	at
beginning	of	y.

x	in	{string},	y	in	{string},	return
integer

LOCATE(x,	y,	z) Find	position	of	x	in	y	starting	at	z. x	in	{string},	y	in	{string},	z	in

Scalar	functions

403

LOCATE(x,	y,	z) Find	position	of	x	in	y	starting	at	z. x	in	{string},	y	in	{string},	z	in
{integer},	return	integer

LPAD(x,	y) Pad	input	string	x	with	spaces	on	the
left	to	the	length	of	y.

x	in	{string},	y	in	{integer},	return
string

LPAD(x,	y,	z) Pad	input	string	x	on	the	left	to	the
length	of	y	using	character	z.

x	in	{string},	y	in	{string},	z	in
{character},	return	string

LTRIM(x) Left	trim	x	of	blank	chars. x	in	{string},	return	string

QUERYSTRING(path	[,	expr	[AS
name]	…])

Returns	a	properly	encoded	query
string	appended	to	the	given	path.
Null	valued	expressions	are	omitted,
nd	a	null	path	is	treated	as	".	Names
are	optional	for	column	reference
expressions.	For	example,
	QUERYSTRING('path',	'value'	as

"&x",	'	&	'	as	y,	null	as	z)

returns	'path?

%26x=value&y=%20%26%20'	

path,	expr	in	{string}.	name	is	an
identifier.

REPEAT(str1,instances) Repeat	string1	a	specified	number	of
times

str1	in	{string},	instances	in
{integer}	return	string.

RIGHT(x,	y) Get	right	y	characters	of	x x	in	{string},	y	in	{integer},	return
string

RPAD(input	string	x,	pad	length	y) Pad	input	string	x	with	spaces	on	the
right	to	the	length	of	y

x	in	{string},	y	in	{integer},	return
string

RPAD(x,	y,	z) Pad	input	string	x	on	the	right	to	the
length	of	y	using	character	z

x	in	{string},	y	in	{string},	z	in
{character},	return	string

RTRIM(x) Right	trim	x	of	blank	chars x	is	string,	return	string

SPACE(x) Repeat	the	space	character	x	number
of	times x	is	integer,	return	string

SUBSTRING(x,	y)	SUBSTRING(x
FROM	y)

[b]	Get	substring	from	x,	from
position	y	to	the	end	of	x y	in	{integer}

SUBSTRING(x,	y,	z)	SUBSTRING(x
FROM	y	FOR	z)

[b]	Get	substring	from	x	from
position	y	with	length	z y,	z	in	{integer}

TRANSLATE(x,	y,	z)
Translate	string	x	by	replacing	each
character	in	y	with	the	character	in	z
at	the	same	position.

x	in	{string}

TRIM([[LEADING|TRAILING|BOTH]
[x]	FROM]	y)

Trim	the	leading,	trailing,	or	both
ends	of	a	string	y	of	character	x.	If
LEADING/TRAILING/BOTH	is
not	specified,	BOTH	is	used.	If	no
trim	character	x	is	specified,	then	the
blank	space	’	is	used.

x	in	{character},	y	in	{string}

UCASE(x) Uppercase	of	x x	in	{string}

Scalar	functions

404

UNESCAPE(x)

Unescaped	version	of	x.	Possible
escape	sequences	are	\b	-	backspace,
\t	-	tab,	\n	-	line	feed,	\f	-	form	feed,
\r	-	carriage	return.	\uXXXX,	where
X	is	a	hex	value,	can	be	used	to
specify	any	unicode	character.
\XXX,	where	X	is	an	octal	digit,	can
be	used	to	specify	an	octal	byte
value.	If	any	other	character	appears
after	an	escape	character,	that
character	will	appear	in	the	output
and	the	escape	character	will	be
ignored.

x	in	{string}

[a]	Non-ASCII	range	characters	or	integers	used	in	these	functions	may	produce	different	results	or	exceptions	depending	on
where	the	function	is	evaluated	(Teiid	vs.	source).	Teiid’s	uses	Java	default	int	to	char	and	char	to	int	conversions,	which	operates
over	UTF16	values.

[b]	The	substring	function	depending	upon	the	source	does	not	have	consistent	behavior	with	respect	to	negative	from/length
arguments	nor	out	of	bounds	from/length	arguments.	The	default	Teiid	behavior	is:

Return	a	null	value	when	the	from	value	is	out	of	bounds	or	the	length	is	less	than	0

A	zero	from	index	is	effective	the	same	as	1.

A	negative	from	index	is	first	counted	from	the	end	of	the	string.

Some	sources,	however,	can	return	an	empty	string	instead	of		null	,	and	some	sources	are	not	compatible	with	negative
indexing.

TO_CHARS
Return	a	CLOB	from	the	binary	large	object	(BLOB)	with	the	given	encoding.

TO_CHARS(x,	encoding	[,	wellformed])

BASE64,	HEX,	UTF-8-BOM	and	the	built-in	Java	Charset	names	are	valid	values	for	the	encoding	[b].	x	is	a	BLOB,	encoding	is
a	string,	wellformed	is	a	boolean,	and	returns	a	CLOB.	The	two	argument	form	defaults	to	wellformed=true.	If	wellformed	is
false,	the	conversion	function	will	immediately	validate	the	result	such	that	an	unmappable	character	or	malformed	input	will	raise
an	exception.

TO_BYTES
Return	a	BLOB	from	the	CLOB	with	the	given	encoding.

TO_BYTES(x,	encoding	[,	wellformed])

BASE64,	HEX,	UTF-8-BOM	and	the	builtin	Java	Charset	names	are	valid	values	for	the	encoding	[b].	x	in	a	CLOB,	encoding	is	a
string,	wellformed	is	a	boolean	and	returns	a	BLOB.	The	two	argument	form	defaults	to	wellformed=true.	If	wellformed	is	false,
the	conversion	function	will	immediately	validate	the	result	such	that	an	unmappable	character	or	malformed	input	will	raise	an
exception.	If	wellformed	is	true,	then	unmappable	characters	will	be	replaced	by	the	default	replacement	character	for	the
character	set.	Binary	formats,	such	as	BASE64	and	HEX,	will	be	checked	for	correctness	regardless	of	the	wellformed	parameter.

[b]	For	more	information	about	Charset	names,	see	the	Charset	docs.

REPLACE
Replace	all	occurrences	of	a	given	string	with	another.

REPLACE(x,	y,	z)

Scalar	functions

405

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

Replace	all	occurrences	of	y	with	z	in	x.	x,	y,	z	are	strings	and	the	return	value	is	a	string.

REGEXP_REPLACE
Replace	one	or	all	occurrences	of	a	given	pattern	with	another	string.

REGEXP_REPLACE(str,	pattern,	sub	[,	flags])

Replace	one	or	more	occurrences	of	pattern	with	sub	in	str.	All	arguments	are	strings	and	the	return	value	is	a	string.

The	pattern	parameter	is	expected	to	be	a	valid	Java	regular	expression

The	flags	argument	can	be	any	concatenation	of	any	of	the	valid	flags	with	the	following	meanings:

Flag Name Meaning

g Global Replace	all	occurrences,	not	just	the
first.

m Multi-line Match	over	multiple	lines.

i Case	insensitive Match	without	case	sensitivity.

Usage:
The	following	will	return	"xxbye	Wxx"	using	the	global	and	case	insensitive	options.

Example	regexp_replace

regexp_replace('Goodbye	World',	'[g-o].',	'x',	'gi')

Scalar	functions

406

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Date	and	time	functions
Date	and	time	functions	return	or	operate	on	dates,	times,	or	timestamps.

Date	and	time	functions	use	the	convention	established	within	the	java.text.SimpleDateFormat	class	to	define	the	formats	you	can
use	with	these	functions.	You	can	learn	more	about	how	this	class	defines	formats	by	visiting	the	Javadocs	for	SimpleDateFormat.

Function Definition Datatype	constraint

CURDATE()
CURRENT_DATE[()]

Return	current	date	-	will	return	the
same	value	for	all	invocations	in	the
user	command.

returns	date.

CURTIME()

Return	current	time	-	will	return	the
same	value	for	all	invocations	in	the
user	command.	See	also
CURRENT_TIME.

returns	time

NOW()

Return	current	timestamp	(date	and
time	with	millisecond	precision)	-
will	return	the	same	value	for	all
invocations	in	the	user	command	or
procedure	instruction.	See	also
CURRENT_TIMESTAMP.

returns	timestamp

CURRENT_TIME[(precision)]

Return	current	time	-	will	return	the
same	value	for	all	invocations	in	the
user	command.	The	Teiid	time	type
does	not	track	fractional	seconds,	so
the	precision	argument	is	effectively
ignored.	Without	a	precision	is	the
same	as	CURTIME().

returns	time

CURRENT_TIMESTAMP[(precision)]

Return	current	timestamp	(date	and
time	with	millisecond	precision)	-
will	return	the	same	value	for	all
invocations	with	the	same	precision
in	the	user	command	or	procedure
instruction.	Without	a	precision	is
the	same	as	NOW().	Since	the
current	timestamp	has	only
millisecond	precision	by	default
setting	the	precision	to	greater	than	3
will	have	no	effect.

returns	timestamp

DAYNAME(x) Return	name	of	day	in	the	default
locale

x	in	{date,	timestamp},	returns
string

DAYOFMONTH(x) Return	day	of	month
x	in	{date,	timestamp},	returns
integer

DAYOFWEEK(x) Return	day	of	week	(Sunday=1,
Saturday=7)

x	in	{date,	timestamp},	returns
integer

DAYOFYEAR(x) Return	day	number	in	year x	in	{date,	timestamp},	returns
integer

EPOCH(x) Return	seconds	since	the	unix	epoch x	in	{date,	timestamp},	returns

Scalar	functions

407

https://docs.oracle.com/en/java/javase/11/docs/api/java/text/SimpleDateFormat.html

EXTRACT(FIELD	FROM	x)

Return	the	given	FIELD	value	from
the	date	value	x.	Valid	fields	are
YEAR,	MONTH,	DAYOFMONTH,
HOUR,	MINUTE,	SECOND,
QUARTER,	EPOCH,
DAYOFWEEK,	and	DAYOFYEAR.
The	extract	behaves	exactly	like	the
function	call	FIELD(x)	-	and	will
return	same	results	as	the	respective
function.	The	SQL	specification	also
allows	for	TIMEZONE_HOUR	and
TIMEZONE_MINUTE	as	extraction
targets,	but	those	are	not	currently
implemented.	In	Teiid	all	date	values
are	in	the	timezone	of	the	server.

x	in	{date,	time,	timestamp},	epoch
returns	double,	the	others	return
integer

FORMATDATE(x,	y) Format	date	x	using	format	y. x	is	date,	y	is	string,	returns	string

FORMATTIME(x,	y) Format	time	x	using	format	y. x	is	time,	y	is	string,	returns	string

FORMATTIMESTAMP(x,	y) Format	timestamp	x	using	format	y. x	is	timestamp,	y	is	string,	returns
string

FROM_MILLIS	(millis) Return	the	Timestamp	value	for	the
given	milliseconds.

long	UTC	timestamp	in
milliseconds

FROM_UNIXTIME	(unix_timestamp)
Return	the	Unix	timestamp	as	a
String	value	with	the	default	format
of	yyyy/mm/dd	hh:mm:ss.

long	Unix	timestamp	(in	seconds)

HOUR(x) Return	hour	(in	military	24-hour
format).

x	in	{time,	timestamp},	returns
integer

MINUTE(x) Return	minute. x	in	{time,	timestamp},	returns
integer

MODIFYTIMEZONE	(timestamp,
startTimeZone,	endTimeZone)

Returns	a	timestamp	based	upon	the
incoming	timestamp	adjusted	for	the
differential	between	the	start	and	end
time	zones.	If	the	server	is	in	GMT-
6,	then	modifytimezone({ts	'2006-
01-10	04:00:00.0'},'GMT-7',	'GMT-
8')	will	return	the	timestamp	{ts
'2006-01-10	05:00:00.0'}	as	read	in
GMT-6.	The	value	has	been	adjusted
1	hour	ahead	to	compensate	for	the
difference	between	GMT-7	and
GMT-8.

startTimeZone	and	endTimeZone
are	strings,	returns	a	timestamp

MODIFYTIMEZONE	(timestamp,
endTimeZone)

Return	a	timestamp	in	the	same
manner	as
modifytimezone(timestamp,
startTimeZone,	endTimeZone),	but
will	assume	that	the	startTimeZone
is	the	same	as	the	server	process.

Timestamp	is	a	timestamp;
endTimeZone	is	a	string,	returns	a
timestamp

MONTH(x) Return	month. x	in	{date,	timestamp},	returns
integer

MONTHNAME(x)

Scalar	functions

408

MONTHNAME(x) Return	name	of	month	in	the	default
locale.

x	in	{date,	timestamp},	returns
string

PARSEDATE(x,	y) Parse	date	from	x	using	format	y. x,	y	in	{string},	returns	date

PARSETIME(x,	y) Parse	time	from	x	using	format	y. x,	y	in	{string},	returns	time

PARSETIMESTAMP(x,y) Parse	timestamp	from	x	using
format	y. x,	y	in	{string},	returns	timestamp

QUARTER(x) Return	quarter. x	in	{date,	timestamp},	returns
integer

SECOND(x) Return	seconds. x	in	{time,	timestamp},	returns
integer

TIMESTAMPCREATE(date,	time) Create	a	timestamp	from	a	date	and
time.

date	in	{date},	time	in	{time},
returns	timestamp

TO_MILLIS	(timestamp) Return	the	UTC	timestamp	in
milliseconds. timestamp	value

UNIX_TIMESTAMP
(unix_timestamp)

Return	the	long	Unix	timestamp	(in
seconds).

unix_timestamp	String	in	the	default
format	of	yyyy/mm/dd	hh:mm:ss

WEEK(x)

Return	week	in	year	1-53.	For
customization	information,	see
System	Properties	in	the
Administrator’s	Guide.

x	in	{date,	timestamp},	returns
integer

YEAR(x) Return	four-digit	year x	in	{date,	timestamp},	returns
integer

Timestampadd
Add	a	specified	interval	amount	to	the	timestamp.

Syntax

TIMESTAMPADD(interval,	count,	timestamp)

Arguments

Name Description

interval

A	datetime	interval	unit,	can	be	one	of	the	following	keywords:

SQL_TSI_FRAC_SECOND	-	fractional	seconds	(billionths	of	a	second)

SQL_TSI_SECOND	-	seconds

SQL_TSI_MINUTE	-	minutes

SQL_TSI_HOUR	-	hours

SQL_TSI_DAY	-	days

SQL_TSI_WEEK	-	weeks	using	Sunday	as	the	first	day

SQL_TSI_MONTH	-	months

SQL_TSI_QUARTER	-	quarters	(3	months)	where	the	first	quarter	is	months	1-3,	etc.

Scalar	functions

409

SQL_TSI_YEAR	-	years

count
A	long	or	integer	count	of	units	to	add	to	the	timestamp.	Negative	values	will	subtract	that	number	of
units.	Long	values	are	allowed	for	symmetry	with	TIMESTAMPDIFF	-	but	the	effective	range	is	still
limited	to	integer	values.

timestamp A	datetime	expression.

Example

SELECT	TIMESTAMPADD(SQL_TSI_MONTH,	12,'2016-10-10')

SELECT	TIMESTAMPADD(SQL_TSI_SECOND,	12,'2016-10-10	23:59:59')

Timestampdiff
Calculates	the	number	of	date	part	intervals	crossed	between	the	two	timestamps	return	a	long	value.

Syntax

TIMESTAMPDIFF(interval,	startTime,	endTime)

Arguments

Name Description

interval A	datetime	interval	unit,	the	same	as	keywords	used	by
Timestampadd.

startTime A	datetime	expression.

endTime A	datetime	expression.

Example

SELECT	TIMESTAMPDIFF(SQL_TSI_MONTH,'2000-01-02','2016-10-10')

SELECT	TIMESTAMPDIFF(SQL_TSI_SECOND,'2000-01-02	00:00:00','2016-10-10	23:59:59')

SELECT	TIMESTAMPDIFF(SQL_TSI_FRAC_SECOND,'2000-01-02	00:00:00.0','2016-10-10	23:59:59.999999')

Note
If	(endTime	>	startTime),	a	non-negative	number	will	be	returned.	If	(endTime	<	startTime),	a	non-positive
number	will	be	returned.	The	date	part	difference	difference	is	counted	regardless	of	how	close	the	timestamps
are.	For	example,	'2000-01-02	00:00:00.0'	is	still	considered	1	hour	ahead	of	'2000-01-01	23:59:59.999999'.

Compatibility	issues

In	SQL,	Timestampdiff	typically	returns	an	integer.	However	the	Teiid	implementation	returns	a	long.	You	might	receive	an
exception	if	you	expect	a	value	out	of	the	integer	range	from	a	pushed	down	timestampdiff.

The	implementation	of	timestamp	diff	in	Teiid	8.2	and	earlier	versions	returned	values	based	on	the	number	of	whole
canonical	interval	approximations	(365	days	in	a	year,	91	days	in	a	quarter,	30	days	in	a	month,	etc.)	crossed.	For	example
the	difference	in	months	between	2013-03-24	and	2013-04-01	was	0,	but	based	upon	the	date	parts	crossed	is	1.	For
information	about	backwards	compatibility,	see	System	Properties	in	the	Adminstrator’s	Guide.

Parsing	date	datatypes	from	strings
Teiid	does	not	implicitly	convert	strings	that	contain	dates	presented	in	different	formats,	such	as	'19970101'	and	'31/1/1996'	to
date-related	datatypes.	You	can,	however,	use	the	parseDate,	parseTime,	and	parseTimestamp	functions,	described	in	the	next
section,	to	explicitly	convert	strings	with	a	different	format	to	the	appropriate	datatype.	These	functions	use	the	convention

Scalar	functions

410

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

established	within	the	java.text.SimpleDateFormat	class	to	define	the	formats	you	can	use	with	these	functions.	For	more
information	about	how	this	class	defines	date	and	time	string	formats,	see	Javadocs	for	SimpleDateFormat.	Note	that	the	format
strings	are	specific	to	your	Java	default	locale.

For	example,	you	could	use	these	function	calls,	with	the	formatting	string	that	adheres	to	the	java.text.SimpleDateFormat
convention,	to	parse	strings	and	return	the	datatype	you	need:

String Function	call	to	parse	string

'1997010' parseDate(myDateString,	'yyyyMMdd')

'31/1/1996' parseDate(myDateString,	'dd''/''MM''/''yyyy')

'22:08:56	CST' parseTime	(myTime,	'HH:mm:ss	z')

'03.24.2003	at	06:14:32' parseTimestamp(myTimestamp,
'MM.dd.yyyy''at''hh:mm:ss')

Specifying	time	zones
Time	zones	can	be	specified	in	several	formats.	Common	abbreviations	such	as	EST	for	"Eastern	standard	time"	are	allowed	but
discouraged,	as	they	can	be	ambiguous.	Unambiguous	time	zones	are	defined	in	the	form	continent	or	ocean/largest	city.	For
example,	America/New_York,	America/Buenos_Aires,	or	Europe/London.	sAdditionally,	you	can	specify	a	custom	time	zone	by
GMT	offset:	GMT[+/-]HH:MM.

For	example:	GMT-05:00

Scalar	functions

411

Type	conversion	functions
Within	your	queries,	you	can	convert	between	datatypes	using	the	CONVERT	or	CAST	keyword.	For	more	information,	see	Type
conversions

Function Definition

CONVERT(x,	type) Convert	x	to	type,	where	type	is	a	Teiid	Base	Type

CAST(x	AS	type) Convert	x	to	type,	where	type	is	a	Teiid	Base	Type

These	functions	are	identical	other	than	syntax;	CAST	is	the	standard	SQL	syntax,	CONVERT	is	the	standard	JDBC/ODBC
syntax.

Important Options	that	are	specified	on	the	type,	such	as	length,	precision,	scale,	etc.,	are	effectively	ignored	-	the
runtime	is	simply	converting	from	one	object	type	to	another.

Scalar	functions

412

Choice	functions
Choice	functions	provide	a	way	to	select	from	two	values	based	on	some	characteristic	of	one	of	the	values.

Function Definition Datatype	constraint

COALESCE(x,y+) Returns	the	first	non-null	parameter. x	and	all	y’s	can	be	any	compatible
types.

IFNULL(x,y) If	x	is	null,	return	y;	else	return	x. x,	y,	and	the	return	type	must	be	the
same	type	but	can	be	any	type.

NVL(x,y) If	x	is	null,	return	y;	else	return	x. x,	y,	and	the	return	type	must	be	the
same	type	but	can	be	any	type.

NULLIF(param1,	param2) Equivalent	to	case	when	(param1	=
param2)	then	null	else	param1.

param1	and	param2	must	be
compatable	comparable	types.

IFNULL	and	NVL	are	aliases	of	each	other.	They	are	the	same	function.

Scalar	functions

413

Decode	functions
Decode	functions	allow	you	to	have	the	Teiid	server	examine	the	contents	of	a	column	in	a	result	set	and	alter,	or	decode,	the
value	so	that	your	application	can	better	use	the	results.

Function Definition Datatype	constraint

DECODESTRING(x,	y	[,
z])

Decode	column		x		using	string	of	value	pairs	y	with	optional
delimiter		z		and	return	the	decoded	column	as	a	string.	If	a
delimiter	is	not	specified,	a	comma	(,)	is	used.		y		has	the
format
	SearchDelimResultDelimSearchDelimResult[DelimDefault]	.
Returns	Default	if	specified	or		x		if	there	are	no	matches.
Deprecated.	Use	a	CASE	expression	instead.

all	string

DECODEINTEGER(x,	y	[,
z])

Decode	column		x		using	string	of	value	pairs		y		with
optional	delimiter	z	and	return	the	decoded	column	as	an
integer.	If	a	delimiter	is	not	specified,	a	comma(,)	is	used.
	y		has	the	format
	SearchDelimResultDelimSearchDelimResult[DelimDefault]	.
Returns	Default	if	specified	or		x		if	there	are	no	matches.
Deprecated.	Use	a	CASE	expression	instead.

all	string	parameters,
return	integer

Within	each	function	call,	you	include	the	following	arguments:

1.	 	x		is	the	input	value	for	the	decode	operation.	This	will	generally	be	a	column	name.

2.	 	y		is	the	literal	string	that	contains	a	delimited	set	of	input	values	and	output	values.

3.	 	z		is	an	optional	parameter	on	these	methods	that	allows	you	to	specify	what	delimiter	the	string	specified	in	y	uses.

For	example,	your	application	might	query	a	table	called		PARTS		that	contains	a	column	called		IS_IN_STOCK	,	which	contains	a
Boolean	value	that	you	need	to	change	into	an	integer	for	your	application	to	process.	In	this	case,	you	can	use	the
	DECODEINTEGER		function	to	change	the	Boolean	values	to	integers:

SELECT	DECODEINTEGER(IS_IN_STOCK,	'false,	0,	true,	1')	FROM	PartsSupplier.PARTS;

When	the	Teiid	system	encounters	the	value		false		in	the	result	set,	it	replaces	the	value	with	0.

If,	instead	of	using	integers,	your	application	requires	string	values,	you	can	use	the		DECODESTRING		function	to	return	the	string
values	you	need:

SELECT	DECODESTRING(IS_IN_STOCK,	'false,	no,	true,	yes,	null')	FROM	PartsSupplier.PARTS;

In	addition	to	two	input/output	value	pairs,	this	sample	query	provides	a	value	to	use	if	the	column	does	not	contain	any	of	the
preceding	input	values.	If	the	row	in	the	IS_IN_STOCK	column	does	not	contain	true	or	false,	the	Teiid	server	inserts	a	null	into
the	result	set.

When	you	use	these	DECODE	functions,	you	can	provide	as	many	input/output	value	pairs	if	you	want	within	the	string.	By
default,	the	Teiid	system	expects	a	comma	delimiter,	but	you	can	add	a	third	parameter	to	the	function	call	to	specify	a	different
delimiter:

SELECT	DECODESTRING(IS_IN_STOCK,	'false:no:true:yes:null',':')	FROM	PartsSupplier.PARTS;

Scalar	functions

414

You	can	use	keyword		null		in	the	DECODE	string	as	either	an	input	value	or	an	output	value	to	represent	a	null	value.	However,
if	you	need	to	use	the	literal	string		null		as	an	input	or	output	value	(which	means	the	word	null	appears	in	the	column	and	not	a
null	value)	you	can	put	the	word	in	quotes:		"null"	.

SELECT	DECODESTRING(IS_IN_STOCK,	'null,no,"null",no,nil,no,false,no,true,yes')	FROM	PartsSupplier.PARTS;

If	the	DECODE	function	does	not	find	a	matching	output	value	in	the	column	and	you	have	not	specified	a	default	value,	the
DECODE	function	will	return	the	original	value	the	Teiid	server	found	in	that	column.

Scalar	functions

415

Lookup	function
The	Lookup	function	provides	a	way	to	speed	up	access	to	values	from	a	reference	table.	The	Lookup	function	automatically
caches	all	key	and	return	column	pairs	declared	in	the	function	for	the	referenced	table.	Subsequent	lookups	against	the	same	table
using	the	same	key	and	return	columns	will	use	the	cached	values.	This	caching	accelerates	response	time	to	queries	that	use
lookup	tables,	also	known	in	business	terminology	as	code	or	reference	tables.

LOOKUP(codeTable,	returnColumn,	keyColumn,	keyValue)

In	the	lookup	table	codeTable,	find	the	row	where	keyColumn	has	the	value	keyValue	and	return	the	associated	returnColumn
value	or	null,	if	no	matching	keyValue	is	found.	codeTable	must	be	a	string	literal	that	is	the	fully-qualified	name	of	the	target
table.	returnColumn	and	keyColumn	must	also	be	string	literals	and	match	corresponding	column	names	in	the	codeTable.	The
keyValue	can	be	any	expression	that	must	match	the	datatype	of	the	keyColumn.	The	return	datatype	matches	that	of
returnColumn.

Country	code	lookup

lookup('ISOCountryCodes',	'CountryCode',	'CountryName',	'United	States')

An	ISOCountryCodes	table	is	used	to	translate	a	country	name	to	an	ISO	country	code.	One	column,	CountryName,	represents	the
keyColumn.	A	second	column,	CountryCode,	represents	the	returnColumn,	containing	the	ISO	code	of	the	country.	Hence,	the
usage	of	the	lookup	function	here	will	provide	a	CountryName,	shown	above	as	`United	States',	and	expect	a	CountryCode	value
in	response.

When	you	call	this	function	for	any	combination	of	codeTable,	returnColumn,	and	keyColumn	for	the	first	time,	the	Teiid	System
caches	the	result.	The	Teiid	System	uses	this	cache	for	all	queries,	in	all	sessions,	that	later	access	this	lookup	table.	You	should
generally	not	use	the	lookup	function	for	data	that	is	subject	to	updates	or	may	be	session/user	specific,	including	row-based
security	and	column	masking	effects.	For	more	information	about	caching	in	the	Lookup	function,	see	the	Caching	Guide	.

The	keyColumn	is	expected	to	contain	unique	values	for	its	corresponding	codeTable.	If	the	keyColumn	contains	duplicate	values,
an	exception	will	be	thrown.

Scalar	functions

416

System	functions
System	functions	provide	access	to	information	in	the	Teiid	system	from	within	a	query.

COMMANDPAYLOAD
Retrieve	a	string	from	the	command	payload	or	null	if	no	command	payload	was	specified.	The	command	payload	is	set	by	the
	TeiidStatement.setPayload		method	on	the	Teiid	JDBC	API	extensions	on	a	per-query	basis.

COMMANDPAYLOAD([key])

If	the	key	parameter	is	provided,	the	command	payload	object	is	cast	to	a	java.util.Properties	object,	and	the	corresponding
property	value	for	the	key	is	returned.	If	the	key	is	not	specified,	the	return	value	is	the	command	payload	object	toString	value.

key,	return	value	are	strings

ENV
Retrieve	a	system	property.	This	function	was	misnamed	and	is	included	for	legacy	compatibility.	See	ENV_VAR	and	SYS_PROP
for	more	appropriately	named	functions.

ENV(key)

To	prevent	untrusted	access	to	system	properties,	this	function	is	not	enabled	by	default.	Use	the	CLI:

/subsystem=teiid:write-attribute(name=allow-env-function,value=true)

or	edit	the	standalone-teiid.xml	file	and	add	following	to	the	"teiid"	subsystem

<allow-env-function>true</allow-env-function>

call	using	ENV('KEY'),	which	returns	value	as	string.	Ex:	ENV('PATH').	If	a	value	is	not	found	with	the	key	passed	in,	a	lower
cased	version	of	the	key	is	tried	as	well.	This	function	is	treated	as	deterministic,	even	though	it	is	possible	to	set	system
properties	at	runtime.

ENV_VAR
Retrieve	an	environment	variable.

ENV_VAR(key)

To	prevent	untrusted	access	to	environment	variables,	this	function	is	not	enabled	by	default.	Use	the	CLI:

/subsystem=teiid:write-attribute(name=allow-env-function,value=true)

or	edit	the	standalone-teiid.xml	file	and	add	following	to	the	"teiid"	subsystem

<allow-env-function>true</allow-env-function>

call	using	ENV_VAR('KEY'),	which	returns	value	as	string.	Ex:	ENV_VAR('USER').	The	behavior	of	this	function	is	platform
dependent	with	respect	to	case-sensitivity.	This	function	is	treated	as	deterministic,	even	though	it	is	possible	for	environment
variables	to	change	at	runtime.

SYS_PROP
Retrieve	an	system	property.

Scalar	functions

417

SYS_PROP(key)

To	prevent	untrusted	access	to	environment	variables,	this	function	is	not	enabled	by	default.	Use	the	CLI:

/subsystem=teiid:write-attribute(name=allow-env-function,value=true)

or	edit	the	standalone-teiid.xml	file	and	add	following	to	the	"teiid"	subsystem

<allow-env-function>true</allow-env-function>

call	using	SYS_PROP('KEY'),	which	returns	value	as	string.	Ex:	SYS_PROP('USER').	This	function	is	treated	as	deterministic,
even	though	it	is	possible	for	system	properties	to	change	at	runtime.

NODE_ID
Retrieve	the	node	id	-	typically	the	System	property	value	for	"jboss.node.name"	which	will	not	be	set	for	Teiid	embedded.

NODE_ID()

return	value	is	string.

SESSION_ID
Retrieve	the	string	form	of	the	current	session	id.

SESSION_ID()

return	value	is	string.

SESSION_USER
Retrieve	the	current	user	name,	an	alias	for	USER(false).

SESSION_USER

return	value	is	string.

USER

Retrieve	the	name	of	the	user	executing	the	query.

USER([includeSecurityDomain])

includeSecurityDomain	is	a	boolean.	return	value	is	string.

If	includeSecurityDomain	is	omitted	or	true,	then	the	user	name	will	be	returned	with	@security-domain	appended.

CURRENT_DATABASE
Retrieve	the	catalog	name	of	the	database.	The	VDB	name	is	always	the	catalog	name.

CURRENT_DATABASE()

return	value	is	string.

TEIID_SESSION_GET
Retrieve	the	session	variable.

TEIID_SESSION_GET(name)

name	is	a	string	and	the	return	value	is	an	object.

A	null	name	will	return	a	null	value.	Typically	you	will	use	the	a	get	wrapped	in	a	CAST	to	convert	to	the	desired	type.

TEIID_SESSION_SET

Scalar	functions

418

Set	the	session	variable.

TEIID_SESSION_SET(name,	value)

name	is	a	string,	value	is	an	object,	and	the	return	value	is	an	object.

The	previous	value	for	the	key	or	null	will	be	returned.	A	set	has	no	effect	on	the	current	transaction	and	is	not	affected	by
commit/rollback.

GENERATED_KEY
Get	a	column	value	from	the	generated	keys	of	the	last	insert	statement	of	this	session	returning	a	generated	key.

Typically	this	function	will	only	be	used	within	the	scope	of	procedure	to	determine	a	generated	key	value	from	an	insert.	Not	all
inserts	provide	generated	keys,	because	not	all	sources	return	generated	keys.

	GENERATED_KEY()	

The	return	value	is	long.

Returns	the	first	column	of	the	last	generated	key	as	a	long	value.	Null	is	returned	if	there	is	no	such	generated	key.

	GENERATED_KEY(column_name)`	

	column_name		is	a	string.	The	return	value	is	of	type	object.

A	more	general	form	of		GENERATED_KEY		that	can	be	used	if	there	are	more	than	one	generated	column	or	a	type	other	than	long.
Null	is	returned	if	there	is	no	such	generated	key	nor	matching	key	column.

Scalar	functions

419

XML	functions
XML	functions	provide	functionality	for	working	with	XML	data.	For	more	information,	see	JSONTOXML	in	JSON	functions.

Sample	data	for	examples
Examples	provided	with	XML	functions	use	the	following	table	structure

TABLE		Customer	(

				CustomerId	integer	PRIMARY	KEY,

				CustomerName	varchar(25),

				ContactName	varchar(25)

				Address	varchar(50),

				City	varchar(25),

				PostalCode	varchar(25),

				Country	varchar(25),

);

with	Data

CustomerID CustomerName ContactName Address City PostalCode Country

87 Wartian	Herkku Pirkko
Koskitalo

Torikatu
38 Oulu 90110 Finland

88 Wellington
Importadora Paula	Parente

Rua	do
Mercado,
12

Resende 08737-363 Brazil

89 White	Clover
Markets Karl	Jablonski

305	-	14th
Ave.	S.
Suite	3B

Seattle 98128 USA

XMLCAST
Cast	to	or	from	XML.

XMLCAST(expression	AS	type)

Expression	or	type	must	be	XML.	The	return	value	will	be	typed	as		type	.	This	is	the	same	functionality	that		XMLTABLE		uses	to
convert	values	to	the	desired	runtime	type,	except	that		XMLCAST		does	not	work	with	array	type	targets.

XMLCOMMENT
Returns	an	XML	comment.

XMLCOMMENT(comment)

Comment	is	a	string.	Return	value	is	XML.

XMLCONCAT
Returns	an	XML	with	the	concatenation	of	the	given	XML	types.

XMLCONCAT(content	[,	content]*)

Content	is	XML.	Return	value	is	XML.

Scalar	functions

420

If	a	value	is	null,	it	will	be	ignored.	If	all	values	are	null,	null	is	returned.

Concatenate	two	or	more	XML	fragments

SELECT	XMLCONCAT(

									XMLELEMENT("name",	CustomerName),

									XMLPARSE(CONTENT	'<a>b'	WELLFORMED)

)

FROM			Customer	c

WHERE		c.CustomerID	=	87;

==

<name>Wartian	Herkku</name><a>b

XMLELEMENT
Returns	an	XML	element	with	the	given	name	and	content.

XMLELEMENT([NAME]	name	[,	<NSP>]	[,	<ATTR>][,	content]*)

ATTR:=XMLATTRIBUTES(exp	[AS	name]	[,	exp	[AS	name]]*)

NSP:=XMLNAMESPACES((uri	AS	prefix	|	DEFAULT	uri	|	NO	DEFAULT))+

If	the	content	value	is	of	a	type	other	than	XML,	it	will	be	escaped	when	added	to	the	parent	element.	Null	content	values	are
ignored.	Whitespace	in	XML	or	the	string	values	of	the	content	is	preserved,	but	no	whitespace	is	added	between	content	values.

XMLNAMESPACES	is	used	provide	namespace	information.	NO	DEFAULT	is	equivalent	to	defining	the	default	namespace	to
the	null	uri	-	xmlns="".	Only	one	DEFAULT	or	NO	DEFAULT	namespace	item	may	be	specified.	The	namespace	prefixes	xmlns
and	xml	are	reserved.

If	a	attribute	name	is	not	supplied,	the	expression	must	be	a	column	reference,	in	which	case	the	attribute	name	will	be	the	column
name.	Null	attribute	values	are	ignored.

Name,	prefix	are	identifiers.	uri	is	a	string	literal.	content	can	be	any	type.	Return	value	is	XML.	The	return	value	is	valid	for	use
in	places	where	a	document	is	expected.

Simple	example

SELECT	XMLELEMENT("name",	CustomerName)

FROM			Customer	c

WHERE		c.CustomerID	=	87;

==

<name>Wartian	Herkku</name>

Multiple	columns

SELECT	XMLELEMENT("customer",

										XMLELEMENT("name",	c.CustomerName),

										XMLELEMENT("contact",	c.ContactName))

FROM			Customer	c

WHERE		c.CustomerID	=	87;

==

<customer><name>Wartian	Herkku</name><contact>Pirkko	Koskitalo</contact></customer>

Columns	as	attributes

SELECT	XMLELEMENT("customer",

										XMLELEMENT("name",	c.CustomerName,

												XMLATTRIBUTES(

																		"contact"	as	c.ContactName,

Scalar	functions

421

																		"id"	as	c.CustomerID

)

)

)

FROM			Customer	c

WHERE		c.CustomerID	=	87;

==

<customer><name	contact="Pirkko	Koskitalo"	id="87">Wartian	Herkku</name></customer>

XMLFOREST
Returns	an	concatenation	of	XML	elements	for	each	content	item.

XMLFOREST(content	[AS	name]	[,	<NSP>]	[,	content	[AS	name]]*)

For	the	definition	of	NSP	-	XMLNAMESPACES,	see	See	XMLELEMENT	in	XML	functions.

Name	is	an	identifier.	Content	can	be	any	type.	Return	value	is	XML.

If	a	name	is	not	supplied	for	a	content	item,	the	expression	must	be	a	column	reference,	in	which	case	the	element	name	will	be	a
partially	escaped	version	of	the	column	name.

You	can	use	the	XMLFOREST	to	simplify	the	declaration	of	multiple	XMLELEMENTS.	The	XMLFOREST	function	allows	you
to	process	multiple	columns	at	once.

Example

SELECT	XMLELEMENT("customer",

										XMLFOREST(

													c.CustomerName	AS	"name",

													c.ContactName	AS	"contact"

))

FROM			Customer	c

WHERE		c.CustomerID	=	87;

==

<customer><name>Wartian	Herkku</name><contact>Pirkko	Koskitalo</contact></customer>

XMLAGG
XMLAGG	is	an	aggregate	function,	that	takes	a	collection	of	XML	elements	and	returns	an	aggregated	XML	document.

XMLAGG(xml)

From	above	example	in	XMLElement,	each	row	in	the	Customer	table	table	will	generate	row	of	XML	if	there	are	multiple	rows
matching	the	criteria.	That	will	generate	a	valid	XML,	but	it	will	not	be	well	formed,	because	it	lacks	the	root	element.	XMLAGG
can	used	to	correct	that

Example

SELECT	XMLELEMENT("customers",

									XMLAGG(

											XMLELEMENT("customer",

													XMLFOREST(

															c.CustomerName	AS	"name",

															c.ContactName	AS	"contact"

)))

FROM			Customer	c

==

<customers>

<customer><name>Wartian	Herkku</name><contact>Pirkko	Koskitalo</contact></customer>

Scalar	functions

422

<customer><name>Wellington	Importadora</name><contact>Paula	Parente</contact></customer>

<customer><name>White	Clover	Markets</name><contact>Karl	Jablonski</contact></customer>

</customers>

XMLPARSE
Returns	an	XML	type	representation	of	the	string	value	expression.

XMLPARSE((DOCUMENT|CONTENT)	expr	[WELLFORMED])

expr	in	{string,	clob,	blob,	varbinary}.	Return	value	is	XML.

If	DOCUMENT	is	specified	then	the	expression	must	have	a	single	root	element	and	may	or	may	not	contain	an	XML	declaration.

If	WELLFORMED	is	specified	then	validation	is	skipped;	this	is	especially	useful	for	CLOB	and	BLOB	known	to	already	be
valid.

SELECT	XMLPARSE(CONTENT	'<customer><name>Wartian	Herkku</name><contact>Pirkko	Koskitalo</contact></customer>'	W

ELLFORMED);

Will	return	a	SQLXML	with	contents

===

<customer><name>Wartian	Herkku</name><contact>Pirkko	Koskitalo</contact></customer>

XMLPI
Returns	an	XML	processing	instruction.

XMLPI([NAME]	name	[,	content])

Name	is	an	identifier.	Content	is	a	string.	Return	value	is	XML.

XMLQUERY
Returns	the	XML	result	from	evaluating	the	given	xquery.

XMLQUERY([<NSP>]	xquery	[<PASSING>]	[(NULL|EMPTY)	ON	EMPTY]]

PASSING:=PASSING	exp	[AS	name]	[,	exp	[AS	name]]*

For	the	definition	of	NSP	-	XMLNAMESPACES,	see	XMLELEMENT	in	XML	functions.

Namespaces	may	also	be	directly	declared	in	the	xquery	prolog.

The	optional	PASSING	clause	is	used	to	provide	the	context	item,	which	does	not	have	a	name,	and	named	global	variable	values.
If	the	xquery	uses	a	context	item	and	none	is	provided,	then	an	exception	will	be	raised.	Only	one	context	item	may	be	specified
and	should	be	an	XML	type.	All	non-context	non-XML	passing	values	will	be	converted	to	an	appropriate	XML	type.	Null	will	be
returned	if	the	context	item	evaluates	to	null.

The	ON	EMPTY	clause	is	used	to	specify	the	result	when	the	evaluted	sequence	is	empty.	EMPTY	ON	EMPTY,	the	default,
returns	an	empty	XML	result.	NULL	ON	EMPTY	returns	a	null	result.

xquery	in	string.	Return	value	is	XML.

XMLQUERY	is	part	of	the	SQL/XML	2006	specification.

For	more	information,	see	XMLTABLE	in	FROM	clause.

Note See	also	XQuery	optimization.

XMLEXISTS

Scalar	functions

423

Returns	true	if	a	non-empty	sequence	would	be	returned	by	evaluating	the	given	xquery.

XMLEXISTS([<NSP>]	xquery	[<PASSING>]]

PASSING:=PASSING	exp	[AS	name]	[,	exp	[AS	name]]*

For	the	definition	of	NSP	-	XMLNAMESPACES,	see	XMLELEMENT	in	XML	functions.

Namespaces	can	also	be	directly	declared	in	the	xquery	prolog.

The	optional	PASSING	clause	is	used	to	provide	the	context	item,	which	does	not	have	a	name,	and	named	global	variable	values.
If	the	xquery	uses	a	context	item	and	none	is	provided,	then	an	exception	will	be	raised.	Only	one	context	item	may	be	specified
and	should	be	an	XML	type.	All	non-context	non-XML	passing	values	will	be	converted	to	an	appropriate	XML	type.
Null/Unknown	will	be	returned	if	the	context	item	evaluates	to	null.

xquery	in	string.	Return	value	is	boolean.

XMLEXISTS	is	part	of	the	SQL/XML	2006	specification.

Note See	also	XQuery	optimization.

XMLSERIALIZE
Returns	a	character	type	representation	of	the	XML	expression.

XMLSERIALIZE([(DOCUMENT|CONTENT)]	xml	[AS	datatype]	[ENCODING	enc]	[VERSION	ver]	[(INCLUDING|EXCLUDING)	XMLDECL

ARATION])

Return	value	matches	datatype.	If	no	datatype	is	specified,	then	clob	will	be	assumed.

The	type	may	be	character	(string,	varchar,	clob)	or	binary	(blob,	varbinar).	CONTENT	is	the	default.	If	DOCUMENT	is	specified
and	the	XML	is	not	a	valid	document	or	fragment,	then	an	exception	is	raised.

The	encoding	enc	is	specified	as	an	identifier.	A	character	serialization	may	not	specify	an	encoding.	The	version	ver	is	specified
as	a	string	literal.	If	a	particular	XMLDECLARATION	is	not	specified,	then	the	result	will	have	a	declaration	only	if	performing	a
non	UTF-8/UTF-16,	or	non	version	1.0	document	serialization	or	the	underlying	XML	has	an	declaration.	If	CONTENT	is	being
serialized,	then	the	declaration	will	be	omitted	if	the	value	is	not	a	document	or	element.

See	the	following	example	that	produces	a	BLOB	of	XML	in	UTF-16	including	the	appropriate	byte	order	mark	of	FE	FF	and
XML	declaration.

Sample	Binary	Serialization

XMLSERIALIZE(DOCUMENT	value	AS	BLOB	ENCODING	"UTF-16"	INCLUDING	XMLDECLARATION)

XMLTEXT
Returns	XML	text.

XMLTEXT(text)

text	is	a	string.	Return	value	is	XML.

XSLTRANSFORM
Applies	an	XSL	stylesheet	to	the	given	document.

XSLTRANSFORM(doc,	xsl)

Doc,	XSL	in	{string,	clob,	xml}.	Return	value	is	a	clob.

Scalar	functions

424

If	either	argument	is	null,	the	result	is	null.

XPATHVALUE
Applies	the	XPATH	expression	to	the	document	and	returns	a	string	value	for	the	first	matching	result.	For	more	control	over	the
results	and	XQuery,	use	the	XMLQUERY	function.	For	more	information,	see	XMLQUERY	in	XML	functions.

XPATHVALUE(doc,	xpath)

Doc	in	{string,	clob,	blob,	xml}.	xpath	is	string.	Return	value	is	a	string.

Matching	a	non-text	node	will	still	produce	a	string	result,	which	includes	all	descendant	text	nodes.	If	a	single	element	is	matched
that	is	marked	with	xsi:nil,	then	null	will	be	returned.

When	the	input	document	utilizes	namespaces,	it	is	sometimes	necessary	to	specify	XPATH	that	ignores	namespaces:

Sample	XML	for	xpathValue	Ignoring	Namespaces

<?xml	version="1.0"	?>

		<ns1:return	xmlns:ns1="http://com.test.ws/exampleWebService">Hello<x>	World</x></return>

Function:

Sample	xpathValue	Ignoring	Namespaces

xpathValue(value,	'/*[local-name()="return"]')

Results	in		Hello	World	

Example:	Generating	hierarchical	XML	from	flat	data	structure
With	following	table	and	its	contents

Table	{

	x	string,

	y	integer

}

data	like	['a',	1],	['a',	2],	['b',	3],	['b',	4],	if	you	want	generate	a	XML	that	looks	like

<root>

			<x>

							a

							<y>1</y>

							<y>2</y>

			</x>

			<x>

							b

							<y>3</y>

							<y>4</y>

			</x>

</root>

use	the	SQL	statement	in	Teiid	as	below

select	xmlelement(name	"root",	xmlagg(p))

			from	(select	xmlelement(name	"x",	x,	xmlagg(xmlelement(name	"y",	y))	as	p	from	tbl	group	by	x))	as	v

For	more	examples,	see	http://oracle-base.com/articles/misc/sqlxml-sqlx-generating-xml-content-using-sql.php

Scalar	functions

425

http://oracle-base.com/articles/misc/sqlxml-sqlx-generating-xml-content-using-sql.php

Scalar	functions

426

JSON	functions
JSON	functions	provide	functionality	for	working	with	JSON	(JavaScript	Object	Notation)	data.

Sample	data	for	examples
Examples	provided	with	XML	functions	use	the	following	table	structure:

TABLE		Customer	(

				CustomerId	integer	PRIMARY	KEY,

				CustomerName	varchar(25),

				ContactName	varchar(25)

				Address	varchar(50),

				City	varchar(25),

				PostalCode	varchar(25),

				Country	varchar(25),

);

with	Data

CustomerID CustomerName ContactName Address City PostalCode Country

87 Wartian	Herkku Pirkko
Koskitalo

Torikatu
38 Oulu 90110 Finland

88 Wellington
Importadora Paula	Parente

Rua	do
Mercado,
12

Resende 08737-363 Brazil

89 White	Clover
Markets Karl	Jablonski

305	-	14th
Ave.	S.
Suite	3B

Seattle 98128 USA

JSONARRAY
Returns	a	JSON	array.

JSONARRAY(value...)

	value		is	any	object	that	can	be	converted	to	a	JSON	value.	For	more	information,	see	JSON	functions.	Return	value	is	JSON.

Null	values	will	be	included	in	the	result	as	null	literals.

mixed	value	example

jsonArray('a"b',	1,	null,	false,	{d'2010-11-21'})

Would	return

["a\"b",1,null,false,"2010-11-21"]

Using	JSONARRAY	on	a	Table

SELECT	JSONARRAY(CustomerId,	CustomerName)

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

[88,"Wellington	Importadora"]

Scalar	functions

427

http://www.json.org/

[89,"White	Clover	Markets"]

JSONOBJECT
Returns	a	JSON	object.

JSONARRAY(value	[as	name]	...)

	value		is	any	object	that	can	be	converted	to	a	JSON	value.	For	more	information,	see	JSON	functions.	Return	value	is	JSON.

Null	values	will	be	included	in	the	result	as	null	literals.

If	a	name	is	not	supplied	and	the	expression	is	a	column	reference,	the	column	name	will	be	used	otherwise	exprN	will	be	used
where	N	is	the	1-based	index	of	the	value	in	the	JSONARRAY	expression.

mixed	value	example

jsonObject('a"b'	as	val,	1,	null	as	"null")

Would	return

{"val":"a\"b","expr2":1,"null":null}

Using	JSONOBJECT	on	a	Table

SELECT	JSONOBJECT(CustomerId,	CustomerName)

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

{"CustomerId":88,	"CustomerName":"Wellington	Importadora"}

{"CustomerId":89,	"CustomerName":"White	Clover	Markets"}

Another	example

SELECT	JSONOBJECT(JSONOBJECT(CustomerId,	CustomerName)	as	Customer)

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

{"Customer":{"CustomerId":88,	"CustomerName":"Wellington	Importadora"}}

{"Customer":{"CustomerId":89,	"CustomerName":"White	Clover	Markets"}}

Another	example

SELECT	JSONOBJECT(JSONARRAY(CustomerId,	CustomerName)	as	Customer)

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

{"Customer":[88,	"Wellington	Importadora"]}

{"Customer":[89,	"White	Clover	Markets"]}

JSONPARSE
Validates	and	returns	a	JSON	result.

JSONPARSE(value,	wellformed)

	value		is	blob	with	an	appropriate	JSON	binary	encoding	(UTF-8,	UTF-16,	or	UTF-32)	or	a	clob.	wellformed	is	a	boolean
indicating	that	validation	should	be	skipped.	Return	value	is	JSON.

Scalar	functions

428

A	null	for	either	input	will	return	null.

JSON	parse	of	a	simple	literal	value

jsonParse('{"Customer":{"CustomerId":88,	"CustomerName":"Wellington	Importadora"}}',	true)

JSONARRAY_AGG
creates	a	JSON	array	result	as	a	Clob	including	null	value.	This	is	similar	to	JSONARRAY	but	aggregates	its	contents	into	single
object

SELECT	JSONARRAY_AGG(JSONOBJECT(CustomerId,	CustomerName))

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

[{"CustomerId":88,	"CustomerName":"Wellington	Importadora"},	{"CustomerId":89,	"CustomerName":"White	Clover	Mar

kets"}]

You	can	also	wrap	array	as

SELECT	JSONOBJECT(JSONARRAY_AGG(JSONOBJECT(CustomerId	as	id,	CustomerName	as	name))	as	Customer)

FROM			Customer	c

WHERE		c.CustomerID	>=	88;

==

{"Customer":[{"id":89,"name":"Wellington	Importadora"},{"id":100,"name":"White	Clover	Markets"}]}

Conversion	to	JSON
A	straight-forward,	specification-compliant	conversion	is	used	for	converting	values	into	their	appropriate	JSON	document	form.

Null	values	are	included	as	the	null	literal.

Values	parsed	as	JSON	or	returned	from	a	JSON	construction	function	(JSONPARSE,	JSONARRAY,	JSONARRAY_AGG)
will	be	directly	appended	into	a	JSON	result.

Boolean	values	are	included	as	true/false	literals.

Numeric	values	are	included	as	their	default	string	conversion	-	in	some	circumstances	if	not	a	number	or	+-infinity	results
are	allowed,	invalid	JSON	may	be	obtained.

String	values	are	included	in	their	escaped/quoted	form.

Binary	values	are	not	implicitly	convertable	to	JSON	values	and	require	a	specific	prior	to	inclusion	in	JSON.

All	other	values	will	be	included	as	their	string	conversion	in	the	appropriate	escaped/quoted	form.

JSONTOXML
Returns	an	XML	document	from	JSON.

JSONTOXML(rootElementName,	json)

	rootElementName		is	a	string,		json		is	in	{clob,	blob}.	Return	value	is	XML.

The	appropriate	UTF	encoding	(8,	16LE.	16BE,	32LE,	32BE)	will	be	detected	for	JSON	blobs.	If	another	encoding	is	used,	see
the	TO_CHARS	function	in	String	functions.

The	result	is	always	a	well-formed	XML	document.

The	mapping	to	XML	uses	the	following	rules:

Scalar	functions

429

The	current	element	name	is	initially	the	rootElementName,	and	becomes	the	object	value	name	as	the	JSON	structure	is
traversed.

All	element	names	must	be	valid	XML	1.1	names.	Invalid	names	are	fully	escaped	according	to	the	SQLXML	specification.

Each	object	or	primitive	value	will	be	enclosed	in	an	element	with	the	current	name.

Unless	an	array	value	is	the	root,	it	will	not	be	enclosed	in	an	additional	element.

Null	values	will	be	represented	by	an	empty	element	with	the	attribute	xsi:nil="true"

Boolean	and	numerical	value	elements	will	have	the	attribute	xsi:type	set	to	boolean	and	decimal	respectively.

JSON:

Sample	JSON	to	XML	for	jsonToXml(’person’,	x)

{"firstName"	:	"John"	,	"children"	:	["Randy",	"Judy"]}

XML:

Sample	JSON	to	XML	for	jsonToXml(’person’,	x)

<?xml	version="1.0"	?>

			<person>

						<firstName>John</firstName>

						<children>Randy</children>

						<children>Judy<children>

			</person>

JSON:

Sample	JSON	to	XML	for	jsonToXml('person',	x)	with	a	root	array

[{"firstName"	:	"George"	},	{	"firstName"	:	"Jerry"	}]

XML	(Notice	there	is	an	extra	"person"	wrapping	element	to	keep	the	XML	well-formed):

Sample	JSON	to	XML	for	jsonToXml(’person’,	x)	with	a	root	array

<?xml	version="1.0"	?>

<person>

		<person>

				<firstName>George</firstName>

		</person>

		<person>

				<firstName>Jerry</firstName>

		</person>

</person>

JSON:

Sample	JSON	to	XML	for	jsonToXml(’root’,	x)	with	an	invalid	name

{"/invalid"	:	"abc"	}

XML:

Sample	JSON	to	XML	for	jsonToXml(’root’,	x)	with	an	invalid	name

<?xml	version="1.0"	?>

<root>

Scalar	functions

430

		<_x002F_invalid>abc</_x002F_invalid>

</root>

Note prior	releases	defaulted	incorrectly	to	using	uXXXX	escaping	rather	than	xXXXX.	If	you	need	to	rely	on	that
behavior	see	the	org.teiid.useXMLxEscape	system	property.

JsonPath
Processing	of	JsonPath	expressions	is	provided	by	Jayway	JsonPath.	Please	note	that	it	uses	0-based	indexing,	rather	than	1-based
indexing.	Be	sure	that	you	are	familiar	with	the	expected	returns	for	various	path	expressions.	For	example,	if	a	row	JsonPath
expression	is	expected	to	provide	an	array,	make	sure	that	it’s	the	array	that	you	want,	and	not	an	array	that	would	be	returned
automatically	by	an	indefinite	path	expression.

If	you	encounter	a	situation	where	path	names	use	reserved	characters,	such	as	'.',	then	you	must	use	the	bracketed	JsonPath
notation	as	that	allows	for	any	key,	e.g.	$['.key'].

For	more	information,	see	JSONTABLE.

JSONPATHVALUE
Extracts	a	single	JSON	value	as	a	string.

JSONPATHVALUE(value,	path	[,	nullLeafOnMissing])

	value		is	a	clob	JSON	document,		path		is	a	JsonPath	string,	and		nullLeafOnMissing		is	a	Boolean.	Return	value	is	a	string
value	of	the	resulting	JSON.

If		nullLeafOnMissing		is	false	(the	default),	then	a	path	that	evaluates	to	a	leaf	that	is	missing	will	throw	an	exception.	If
	nullLeafOnMissing		is	true,	then	a	null	value	will	be	returned.

If	the	value	is	an	array	produced	by	an	indefinite	path	expression,	then	only	the	first	value	will	be	returned.

jsonPathValue('{"key":"value"}'	'$.missing',	true)

Would	return

null

jsonPathValue('[{"key":"value1"},	{"key":"value2"}]'	'$..key')

Would	return

value1

JSONQUERY
Evaluate	a	JsonPath	expression	against	a	JSON	document	and	return	the	JSON	result.

JSONQUERY(value,	path	[,	nullLeafOnMissing])

	value		is	a	clob	JSON	document,		path		is	a	JsonPath	string,	and		nullLeafOnMissing		is	a	Boolean.	Return	value	is	a	JSON
value.

If		nullLeafOnMissing		is	false	(the	default),	then	a	path	that	evaluates	to	a	leaf	that	is	missing	will	throw	an	exception.	If
	nullLeafOnMissing		is	true,	then	a	null	value	will	be	returned.

Scalar	functions

431

https://github.com/json-path/JsonPath

jsonPathValue('[{"key":"value1"},	{"key":"value2"}]'	'$..key')

Would	return

["value1","value2"]

Scalar	functions

432

Security	functions
Security	functions	provide	the	ability	to	interact	with	the	security	system	or	to	hash/encrypt	values.

HASROLE
Whether	the	current	caller	has	the	Teiid	data	role		roleName	.

hasRole([roleType,]	roleName)

roleName	must	be	a	string,	the	return	type	is	Boolean.

The	two	argument	form	is	provided	for	backwards	compatibility.		roleType		is	a	string	and	must	be	`data'.

Role	names	are	case-sensitive	and	only	match	Teiid	Data	roles.	Foreign/JAAS	roles/groups	names	are	not	valid	for	this	function,
unless	there	is	corresponding	data	role	with	the	same	name.

MD5
Computes	the	MD5	hash	of	the	value.

MD5(value)

	value		must	be	a	string	or	varbinary,	the	return	type	is	varbinary.	String	values	are	first	converted	to	their	UTF-8	byte
representation.

SHA1
Computes	the	SHA-1	hash	of	the	value.

SHA1(value)

	value		must	be	a	string	or	varbinary,	the	return	type	is	varbinary.	String	values	are	first	converted	to	their	UTF-8	byte
representation.

SHA2_256
Computes	the	SHA-2	256	bit	hash	of	the	value.

SHA2_256(value)

	value		must	be	a	string	or	varbinary,	the	return	type	is	varbinary.	String	values	are	first	converted	to	their	UTF-8	byte
representation.

SHA2_512
Computes	the	SHA-2	512	bit	hash	of	the	value.

SHA2_512(value)

	value		must	be	a	string	or	varbinary,	the	return	type	is	varbinary.	String	values	are	first	converted	to	their	UTF-8	byte
representation.

AES_ENCRYPT

aes_encrypt(data,	key)

Scalar	functions

433

	AES_ENCRYPT()		allow	encryption	of	data	using	the	official	AES	(Advanced	Encryption	Standard)	algorithm,	16	bytes(128	bit)
key	length,	and	AES/CBC/PKCS5Padding	cipher	algorithm	with	an	explicit	initialization	vector.

The		AES_ENCRYPT()		will	return	a	BinaryType	encrypted	data.	The	argument		data		is	the	BinaryType	data	to	encrypt,	and	the
argument		key		is	a	BinaryType	used	in	encryption.

AES_DECRYPT

aes_decrypt(data,	key)

	AES_DECRYPT()		allow	decryption	of	data	using	the	official	AES	(Advanced	Encryption	Standard)	algorithm,	16	bytes(128	bit)
key	length,	and	AES/CBC/PKCS5Padding	cipher	algorithm	expecting	an	explicit	initialization	vector.

The		AES_DECRYPT()		will	return	a	BinaryType	decrypted	data.	The	argument		data		is	the	BinaryType	data	to	decrypt,	and	the
argument		key		is	a	BinaryType	used	in	decryption.

Scalar	functions

434

Spatial	functions
Spatial	functions	provide	functionality	for	working	with	geospatial	data.	Teiid	relies	on	the	JTS	Topology	Suite	to	provide	partial
compatibility	with	the	OpenGIS	Simple	Features	Specification	For	SQL	Revision	1.1.	For	more	information	about	particular
functions,	see	the	Open	GIS	specification	or	the	PostGIS	manual.

Most	Geometry	capabilities	is	limited	to	two	dimensions	due	to	the	WKB	and	WKT	formats.

Note There	might	be	minor	differences	between	Teiid	and	pushdown	results	that	will	need	to	be	further	refined.

ST_GeomFromText
Returns	a	geometry	from	a	Clob	in	WKT	format.

ST_GeomFromText(text	[,	srid])

	text		is	a	CLOB,		srid		is	an	optional	integer	that	represents	a	spatial	reference	identifier	(SRID).	Return	value	is	a	geometry.

ST_GeogFromText
Returns	a	geography	from	a	Clob	in	(E)WKT	format.

ST_GeogFromText(text)

	text		is	a	CLOB,		srid		is	an	optional	integer.	Return	value	is	a	geography.

ST_GeomFromWKB/ST_GeomFromBinary
Returns	a	geometry	from	a	BLOB	in	WKB	format.

ST_GeomFromWKB(bin	[,	srid])

	bin		is	a	BLOB,		srid		is	an	optional	integer.	Return	value	is	a	geometry.

ST_GeomFromEWKB
Returns	a	geometry	from	a	BLOB	in	EWKB	format.

ST_GeomFromEWKB(bin)

	bin		is	a	BLOB.	Return	value	is	a	geometry.	This	version	of	the	translator	works	with	two	dimensions	only.

ST_GeogFromWKB
Returns	a	geography	from	a	BLOB	in	(E)WKB	format.

ST_GeomFromEWKB(bin)

	bin		is	a	BLOB.	Return	value	is	a	geography.	This	version	of	the	translator	works	with	two	dimensions	only.

ST_GeomFromEWKT
Returns	a	geometry	from	a	character	large	object	(CLOB)	in	EWKT	format.

ST_GeomFromEWKT(text)

	text		is	a	CLOB.	Return	value	is	a	geometry.	This	version	of	the	translator	works	with	two	dimensions	only.

Scalar	functions

435

http://www.opengeospatial.org/
http://www.vividsolutions.com/jts/JTSHome.htm
https://portal.opengeospatial.org/files/?artifact_id=829
http://postgis.net/docs/manual-2.0/

ST_GeomFromGeoJSON
Returns	a	geometry	from	a	CLOB	in	GeoJSON	format.

ST_GeomFromGeoJson(`text`	[,	srid])

	text		is	a	CLOB,		srid		is	an	optional	integer.	Return	value	is	a	geometry.

ST_GeomFromGML
Returns	a	geometry	from	a	CLOB	in	GML2	format.

ST_GeomFromGML(text	[,	srid])

	text		is	a	CLOB,		srid		is	an	optional	integer.	Return	value	is	a	geometry.

ST_AsText

ST_AsText(geom)

	geom		is	a	geometry.	Return	value	is	CLOB	in	WKT	format.

ST_AsBinary

ST_AsBinary(geo)

geo	is	a	geometry	or	geography.	Return	value	is	a	binary	large	object	(BLOB)	in	WKB	format.

ST_AsEWKB

ST_AsEWKB(geom)

	geom		is	a	geometry.	Return	value	is	BLOB	in	EWKB	format.

ST_AsGeoJSON

ST_AsGeoJSON(geom)

	geom		is	a	geometry.	Return	value	is	a	CLOB	with	the	GeoJSON	value.

ST_AsGML

ST_AsGML(geom)

	geom		is	a	geometry.	Return	value	is	a	CLOB	with	the	GML2	value.

ST_AsEWKT

ST_AsEWKT(geo)

	geo		is	a	geometry	or	geography.	Return	value	is	a	CLOB	with	the	EWKT	value.	The	EWKT	value	is	the	WKT	value	with	the
SRID	prefix.

ST_AsKML

ST_AsKML(geom)

	geom		is	a	geometry.	Return	value	is	a	CLOB	with	the	KML	value.	The	KML	value	is	effectively	a	simplified	GML	value	and
projected	into	SRID	4326.

Scalar	functions

436

&&
Returns	true	if	the	bounding	boxes	of		geom1		and		geom2		intersect.

geom1	&&	geom2

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Contains
Returns	true	if		geom1		contains		geom2	.

ST_Contains(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Crosses
Returns	true	if	the	geometries	cross.

ST_Crosses(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Disjoint
Returns	true	if	the	geometries	are	disjoint.

ST_Disjoint(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Distance
Returns	the	distance	between	two	geometries.

ST_Distance(geo1,	geo2)

	geo1	,		geo2		are	both	geometries	or	geographies.	Return	value	is	a	double.	The	geography	variant	must	be	pushed	down	for
evaluation.

ST_DWithin
Returns	true	if	the	geometries	are	within	a	given	distance	of	one	another.

ST_DWithin(geom1,	geom2,	dist)

	geom1	,		geom2		are	geometries.		dist		is	a	double.	Return	value	is	a	Boolean.

ST_Equals
Returns	true	if	the	two	geometries	are	spatially	equal.	The	points	and	order	can	differ,	but	neither	geometry	lies	outside	of	the
other.

ST_Equals(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Intersects
Returns	true	if	the	geometries	intersect.

Scalar	functions

437

ST_Intersects(geo1,	geo2)

	geo1	,		geo2		are	both	geometries	or	geographies.	Return	value	is	a	Boolean.	The	geography	variant	must	be	pushed	down	for
evaluation.

ST_OrderingEquals
Returns	true	if		geom1		and		geom2		have	the	same	structure	and	the	same	ordering	of	points.

ST_OrderingEquals(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Overlaps
Returns	true	if	the	geometries	overlap.

ST_Overlaps(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Relate
Test	or	return	the	intersection	of	geom1	and	geom2.

ST_Relate(geom1,	geom2,	pattern)

	geom1	,		geom2		are	geometries.		pattern		is	a	nine	character	DE-9IM	pattern	string.	Return	value	is	a	Boolean.

ST_Relate(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	the	nine	character	DE-9IM	intersection	string.

ST_Touches
Returns	true	if	the	geometries	touch.

ST_Touches(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Within
Returns	true	if		geom1		is	completely	inside		geom2	.

ST_Within(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	Boolean.

ST_Area
Returns	the	area	of	geom.

ST_Area(geom)

	geom		is	a	geometry.	Return	value	is	a	double.

ST_CoordDim
Returns	the	coordinate	dimensions	of	geom.

Scalar	functions

438

ST_CoordDim(geom)

	geom		is	a	geometry.	Return	value	is	an	integer	between	0	and	3.

ST_Dimension
Returns	the	dimension	of	geom.

ST_Dimension(geom)

	geom		is	a	geometry.	Return	value	is	an	integer	between	0	and	3.

ST_EndPoint
Returns	the	end	Point	of	the	LineString	geom.	Returns	null	if		geom		is	not	a	LineString.

ST_EndPoint(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_ExteriorRing
Returns	the	exterior	ring	or	shell	LineString	of	the	polygon	geom.	Returns	null	if		geom		is	not	a	polygon.

ST_ExteriorRing(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_GeometryN
Returns	the	nth	geometry	at	the	given	1-based	index	in	geom.	Returns	null	if	a	geometry	at	the	given	index	does	not	exist.	Non-
collection	types	return	themselves	at	the	first	index.

ST_GeometryN(geom,	index)

	geom		is	a	geometry.	index	is	an	integer.	Return	value	is	a	geometry.

ST_GeometryType
Returns	the	type	name	of		geom		as	ST_name.	Where	name	will	be	LineString,	Polygon,	Point	etc.

ST_GeometryType(geom)

	geom		is	a	geometry.	Return	value	is	a	string.

ST_HasArc
Tests	if	the	geometry	has	a	circular	string.	Reports		false	,	because	the	translator	does	not	work	with	curved	geometry	types.

ST_HasArc(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_InteriorRingN
Returns	the	nth	interior	ring	LinearString	geometry	at	the	given	1-based	index	in	geom.	Returns	null	if	a	geometry	at	the	given
index	does	not	exist,	or	if		geom		is	not	a	polygon.

ST_InteriorRingN(geom,	index)

Scalar	functions

439

	geom		is	a	geometry.	index	is	an	integer.	Return	value	is	a	geometry.

ST_IsClosed
Returns	true	if	LineString		geom		is	closed.	Returns	false	if		geom		is	not	a	LineString

ST_IsClosed(geom)

	geom		is	a	geometry.	Return	value	is	a	Boolean.

ST_IsEmpty
Returns	true	if	the	set	of	points	is	empty.

ST_IsEmpty(geom)

	geom		is	a	geometry.	Return	value	is	a	Boolean.

ST_IsRing
Returns	true	if	the	LineString		geom		is	a	ring.	Returns	false	if		geom		is	not	a	LineString.

ST_IsRing(geom)

	geom		is	a	geometry.	Return	value	is	a	Boolean.

ST_IsSimple
Returns	true	if	the		geom		is	simple.

ST_IsSimple(geom)

	geom		is	a	geometry.	Return	value	is	a	Boolean.

ST_IsValid
Returns		true		if	the		geom		is	valid.

ST_IsValid(geom)

	geom		is	a	geometry.	Return	value	is	a	Boolean.

ST_Length
Returns	the	length	of	a	(Multi)LineString,	otherwise	returns	0.

ST_Length(geo)

	geo		is	a	geometry	or	a	geography.	Return	value	is	a	double.	The	geography	variant	must	be	pushed	down	for	evaluation.

ST_NumGeometries
Returns	the	number	of	geometries	in		geom	.	Will	return	1	if	not	a	geometry	collection.

ST_NumGeometries(geom)

	geom		is	a	geometry.	Return	value	is	an	integer.

ST_NumInteriorRings
Returns	the	number	of	interior	rings	in	the	polygon	geometry.	Returns	null	if		geom		is	not	a	polygon.

Scalar	functions

440

ST_NumInteriorRings(geom)

	geom		is	a	geometry.	Return	value	is	an	integer.

ST_NunPoints
Returns	the	number	of	points	in		geom	.

ST_NunPoints(geom)

	geom		is	a	geometry.	Return	value	is	an	integer.

ST_PointOnSurface
Returns	a	point	that	is	guaranteed	to	be	on	the	surface	of	geom.

ST_PointOnSurface(geom)

	geom		is	a	geometry.	Return	value	is	a	point	geometry.

ST_Perimeter
Returns	the	perimeter	of	the	(Multi)Polygon	geom.	Will	return	0	if		geom		is	not	a	(Multi)Polygon

ST_Perimeter(geom)

	geom		is	a	geometry.	Return	value	is	a	double.

ST_PointN
Returns	the	nth	point	at	the	given	1-based	index	in	geom.	Returns	null	if	a	point	at	the	given	index	does	not	exist	or	if		geom		is
not	a	LineString.

ST_PointN(geom,	index)

	geom		is	a	geometry.	index	is	an	integer.	Return	value	is	a	geometry.

ST_SRID
Returns	the	SRID	for	the	geometry.

ST_SRID(geo)

	geo		is	a	geometry	or	geography.	Return	value	is	an	integer.	A	0	value	rather	than	null	will	be	returned	for	an	unknown	SRID	on
a	non-null	geometry.

ST_SetSRID
Set	the	SRID	for	the	given	geometry.

ST_SetSRID(geo,	srid)

	geo		is	a	geometry	or	geography.		srid		is	an	integer.	Return	value	is	the	same	as	the	value	of		geo	.	Only	the	SRID	metadata	of
is	modified.	No	transformation	is	performed.

ST_StartPoint
Returns	the	start	Point	of	the	LineString	geom.	Returns	null	if		geom		is	not	a	LineString.

ST_StartPoint(geom)

Scalar	functions

441

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_X
Returns	the	X	ordinate	value,	or	null	if	the	point	is	empty.	Throws	an	exception	if	the	geometry	is	not	a	point.

ST_X(geom)

	geom		is	a	geometry.	Return	value	is	a	double.

ST_Y
Returns	the	Y	ordinate	value,	or	null	if	the	point	is	empty.	Throws	an	exception	if	the	geometry	is	not	a	point.

ST_Y(geom)

	geom		is	a	geometry.	Return	value	is	a	double.

ST_Z
Returns	the	Z	ordinate	value,	or	null	if	the	point	is	empty.	Throws	an	exception	if	the	geometry	is	not	a	point.	Typically	returns
	null		because	the	translator	does	not	work	with	more	than	two	dimensions.

ST_Z(geom)

	geom		is	a	geometry.	Return	value	is	a	double.

ST_Boundary
Computes	the	boundary	of	the	given	geometry.

ST_Boundary(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_Buffer
Computes	the	geometry	that	has	points	within	the	given	distance	of		geom	.

ST_Buffer(geom,	distance)

	geom		is	a	geometry.		distance		is	a	double.	Return	value	is	a	geometry.

ST_Centroid
Computes	the	geometric	center	point	of	geom.

ST_Centroid(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_ConvexHull
Return	the	smallest	convex	polygon	that	contains	all	of	the	points	in	geometry.

ST_ConvexHull(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_CurveToLine
Converts	a	CircularString/CurvedPolygon	to	a	LineString/Polygon.	Not	currently	implemented	in	Teiid.

Scalar	functions

442

ST_CurveToLine(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_Difference
Computes	the	closure	of	the	point	set	of	the	points	contained	in		geom1		that	are	not	in		geom2	.

ST_Difference(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	geometry.

ST_Envelope
Computes	the	2D	bounding	box	of	the	given	geometry.

ST_Envelope(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_Force_2D
Removes	the	z	coordinate	value	if	present.

ST_Force_2D(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_Intersection
Computes	the	point	set	intersection	of	the	points	contained	in		geom1		and	in		geom2	.

ST_Intersection(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	geometry.

ST_Simplify
Simplifies	a	geometry	using	the	Douglas-Peucker	algorithm,	but	may	oversimplify	to	an	invalid	or	empty	geometry.

ST_Simplify(geom,	distanceTolerance)

	geom		is	a	geometry.		distanceTolerance		is	a	double.	Return	value	is	a	geometry.

ST_SimplifyPreserveTopology
Simplifies	a	geometry	using	the	Douglas-Peucker	algorithm.	Will	always	return	a	valid	geometry.

ST_SimplifyPreserveTopology(geom,	distanceTolerance)

	geom		is	a	geometry.		distanceTolerance		is	a	double.	Return	value	is	a	geometry.

ST_SnapToGrid
Snaps	all	points	in	the	geometry	to	grid	of	given	size.

ST_SnapToGrid(geom,	size)

	geom		is	a	geometry.	size	is	a	double.	Return	value	is	a	geometry.

ST_SymDifference

Scalar	functions

443

Return	the	part	of	geom1	that	does	not	intersect	with	geom2	and	vice	versa.

ST_SymDifference(geom1,	geom2)

	geom1	,		geom2		are	geometry.	Return	value	is	a	geometry.

ST_Transform
Transforms	the	geometry	value	from	one	coordinate	system	to	another.

ST_Transform(geom,	srid)

	geom		is	a	geometry.		srid		is	an	integer.	Return	value	is	a	geometry.	The		srid		value	and	the	SRID	of	the	geometry	value	must
exist	in	the	SPATIAL_REF_SYS	view.

ST_Union
Return	a	geometry	that	represents	the	point	set	containing	all	of		geom1		and		geom2	.

ST_Union(geom1,	geom2)

	geom1	,		geom2		are	geometries.	Return	value	is	a	geometry.

ST_Extent
Computes	the	2D	bounding	box	around	all	of	the	geometry	values.	All	values	should	have	the	same	SRID.

ST_Extent(geom)

	geom		is	a	geometry.	Return	value	is	a	geometry.

ST_Point
Retuns	the	Point	for	the	given	coordinates.

ST_Point(x,	y)

x	and	y	are	doubles.	Return	value	is	a	Point	geometry.

ST_Polygon
Returns	the	Polygon	with	the	given	shell	and	SRID.

ST_Polygon(geom,	srid)

	geom		is	a	linear	ring	geometry	and		srid		is	an	integer.	Return	value	is	a	Polygon	geometry.

Scalar	functions

444

Miscellaneous	functions
Documents	additional	functions	and	those	contributed	by	other	projects.

array_get
Returns	the	object	value	at	a	given	array	index.

array_get(array,	index)

	array		is	the	object	type,		index		must	be	an	integer,	and	the	return	type	is	an	object.

1-based	indexing	is	used.	The	actual	array	value	should	be	a	java.sql.Array	or	java	array	type.	A	null	is	returned	if	either	argument
is	null,	or	if	the	index	is	out	of	bounds.

array_length
Returns	the	length	for	a	given	array.

array_length(array)

	array		is	the	object	type,	and	the	return	type	is	integer.

The	actual	array	value	should	be	a	java.sql.Array	or	java	array	type.	An	exception	is	thrown	if	the	array	value	is	the	wrong	type.

uuid
Returns	a	universally	unique	identifier.

uuid()

The	return	type	is	string.

Generates	a	type	4	(pseudo	randomly	generated)	UUID	using	a	cryptographically	strong	random	number	generator.	The	format	is
XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX	where	each	X	is	a	hex	digit.

Data	quality	functions
Data	Quality	functions	are	contributed	by	the	ODDQ	Project.	The	functions	are	prefixed	with		osdq.	,	but	can	be	called	without
the	prefix.

osdq.random
Returns	the	randomized	string.	For	example,		jboss	teiid		may	randomize	to		jtids	soibe	.

random(sourceValue)

The		sourceValue		is	the	string	to	be	randomized.

osdq.digit
Returns	digit	characters	of	the	string.	For	example,		a1	b2	c3	d4		becomes		1234	.

digit(sourceValue)

The		sourceValue		is	the	string	from	which	you	want	to	extract	digit	characters.

osdq.whitespaceIndex
Returns	the	index	of	the	first	whitespace.	For	example,		jboss	teiid		will	return		5	.

Scalar	functions

445

https://sourceforge.net/projects/dataquality/

whitespaceIndex(sourceValue)

The	sourceValue	is	the	string	from	which	you	want	to	find	the	whitespace	index.

osdq.validCreditCard
Check	whether	a	credit	card	number	is	valid.	Returns		true		if	it	matches	credit	card	logic	and	checksum.

validCreditCard(cc)

	cc		is	the	credit	card	number	string	to	check.

osdq.validSSN
Check	whether	a	social	security	number	(SSN)	is	valid.	Returns		true		if	it	matches	SSN	logic.

validSSN(ssn)

	ssn		is	the	social	security	number	string	to	check.

osdq.validPhone
Check	whether	a	phone	number	is	valid.	Returns		true		if	the	number	matches	phone	logic.	Numbers	must	contain	more	than	8,
but	less	than	12	characters,	and	cannot	start	with		000	.

validPhone(phone)

	̀ phone		is	the	phone	number	string	need	to	check.

osdq.validEmail
Check	whether	an	email	address	is	valid.	Returns		true		if	valid.

validEmail(email)

	email		is	the	email	address	string	to	check.

osdq.cosineDistance
Returns	the	float	distance	between	two	strings	based	on	the	Cosine	Similarity	algorithm.

cosineDistance(a,	b)

	a		and		b		are	strings	for	which	you	want	to	calculate	the	distance.

osdq.jaccardDistance
Returns	the	float	distance	between	two	strings,	based	on	the	Jaccard	similarity	algorithm.

jaccardDistance(a,	b)

The		a		and		b		are	strings	for	which	you	want	to	calculate	the	distance.

osdq.jaroWinklerDistance
Returns	the	float	distance	between	two	strings	based	on	the	Jaro-Winkler	algorithm.

jaroWinklerDistance(a,	b)

The		a		and		b		are	strings	for	which	you	want	to	calculate	the	distance.

Scalar	functions

446

osdq.levenshteinDistance
Returns	the	float	distance	between	two	strings	based	on	the	Levenshtein	algorithm.

levenshteinDistance(a,	b)

The		a		and		b		are	strings	for	which	you	want	to	calculate	the	distance.

osdq.intersectionFuzzy
Returns	the	set	of	unique	elements	from	the	first	set	with	cosine	distance	less	than	the	specified	value	to	every	member	of	the
second	set.

intersectionFuzzy(a,	b)

	a		and		b		are	string	arrays.		c		is	a	float	representing	the	distance,	such	that	0.0	or	less	will	match	any	and	>	1.0	will	match
exact.

osdq.minusFuzzy
Returns	the	set	of	unique	elements	from	the	first	set	with	cosine	distance	less	than	the	specified	value	to	every	member	of	the
second	set.

minusFuzzy(a,	b,	c)

	a		and		b		are	string	arrays.		c		is	a	float	representing	the	distance,	such	that	0.0	or	less	will	match	any	and	>	1.0	will	match
exact.

osdq.unionFuzzy
Returns	the	set	of	unique	elements	that	contains	members	from	the	first	set	and	members	of	the	second	set	that	have	a	cosine
distance	less	than	the	specified	value	to	every	member	of	the	first	set.

unionFuzzy(a,	b,	c)

	a		and		b		are	string	arrays.		c		is	a	float	representing	the	distance,	such	that	0.0	or	less	will	match	any	and	>	1.0	will	match
exact.

Scalar	functions

447

Nondeterministic	function	handling
Teiid	categorizes	functions	by	varying	degrees	of	determinism.	When	a	function	is	evaluated	and	to	what	extent	the	result	can	be
cached	are	based	upon	its	determinism	level.

Deterministic
The	function	always	returns	the	same	result	for	the	given	inputs.	Deterministic	functions	are	evaluated	by	the	engine	as	soon
as	all	input	values	are	known,	which	may	occur	as	soon	as	the	rewrite	phase.	Some	functions,	such	as	the	lookup	function,	are
not	truly	deterministic,	but	are	treated	as	such	for	performance.	All	functions	that	are	not	categorized	according	to	the
remaining	items	in	this	list	are	considered	deterministic.

User	Deterministic
The	function	returns	the	same	result	for	the	given	inputs	for	the	same	user.	This	includes	the		hasRole		and		user		functions.
User	deterministic	functions	are	evaluated	by	the	engine	as	soon	as	all	input	values	are	known,	which	may	occur	as	soon	as
the	rewrite	phase.	If	a	user	deterministic	function	is	evaluated	during	the	creation	of	a	prepared	processing	plan,	then	the
resulting	plan	will	be	cached	only	for	the	user.

Session	Deterministic
The	function	returns	the	same	result	for	the	given	inputs	under	the	same	user	session.	This	category	includes	the		env	
function.	Session	deterministic	functions	are	evaluated	by	the	engine	as	soon	as	all	input	values	are	known,	which	may	occur
as	soon	as	the	rewrite	phase.	If	a	session	deterministic	function	is	evaluated	during	the	creation	of	a	prepared	processing	plan,
then	the	resulting	plan	will	be	cached	only	for	the	user’s	session.

Command	Deterministic
The	result	of	function	evaluation	is	only	deterministic	within	the	scope	of	the	user	command.	This	category	include	the
	curdate	,		curtime	,		now	,	and		commandpayload		functions.	Command	deterministic	functions	are	delayed	in	evaluation
until	processing	to	ensure	that	even	prepared	plans	utilizing	these	functions	will	be	executed	with	relevant	values.	Command
deterministic	function	evaluation	will	occur	prior	to	pushdown.	However,	multiple	occurrences	of	the	same	command
deterministic	time	function	are	not	guaranteed	to	evaluate	to	the	same	value.

Nondeterministic
The	result	of	function	evaluation	is	fully	nondeterministic.	This	category	includes	the		rand		function	and	UDFs	marked	as
	nondeterministic	.	Nondeterministic	functions	are	delayed	in	evaluation	until	processing	with	a	preference	for	pushdown.	If
the	function	is	not	pushed	down,	then	it	may	be	evaluated	for	every	row	in	it’s	execution	context	(for	example,	if	the	function
is	used	in	the	select	clause).

Note Uncorrelated	subqueries	will	be	treated	as	deterministic	regardless	of	the	functions	used	within	them.

Scalar	functions

448

DML	commands
You	can	use	SQL	in	Teiid	to	issue	queries	and	define	view	transformations.	For	more	information	about	how	SQL	is	used	in
virtual	procedures	and	update	procedures,	see	Procedure	language.	Nearly	all	these	features	follow	standard	SQL	syntax	and
functionality,	so	you	can	use	any	SQL	reference	for	more	information.

There	are	4	basic	commands	for	manipulating	data	in	SQL,	corresponding	to	the	create,	read,	update,	and	delete	(CRUD)
operations:	INSERT,	SELECT,	UPDATE,	and	DELETE.	A	MERGE	statement	acts	as	a	combination	of	INSERT	and	UPDATE.

You	can	also	execute	procedures	by	using	the	EXECUTE	command,	procedural	relational	command.	For	more	information,	see
Procedural	relational	command,	or	Anonymous	procedure	block.

DML	commands

449

Set	operations
You	can	use	the	SQL		UNION	,		UNION	ALL	,		INTERSECT	,	and		EXCEPT		set	operations	in	Teiid	to	combine	the	results	of	query
expressions.

Usage:

queryExpression	(UNION|INTERSECT|EXCEPT)	[ALL]	queryExpression	[ORDER	BY...]

Syntax	Rules:
The	output	columns	will	be	named	by	the	output	columns	of	the	first	set	operation	branch.

Each		SELECT		must	have	the	same	number	of	output	columns	and	compatible	data	types	for	each	relative	column.	Data	type
conversion	is	performed	if	data	types	are	inconsistent	and	implicit	conversions	exist.

If		UNION	,		INTERSECT	,	or		EXCEPT		is	specified	without		all	,	then	the	output	columns	must	be	comparable	types.

You	cannot	use	the	SQL		INTERSECT	ALL		or		EXCEPT	ALL		operators.

DML	commands

450

SELECT	command
The	SELECT	command	is	used	to	retrieve	records	for	any	number	of	relations.

A	SELECT	command	can	contain	the	following	clauses:

WITH	…

SELECT	…

FROM	…

WHERE	…

GROUP	BY	…

HAVING	…

ORDER	BY	…

(LIMIT	…)	|	([OFFSET	…]	[FETCH	…])

OPTION	…

Except	for	the	OPTION	clause,	all	of	the	preceding	clauses	are	defined	by	the	SQL	specification.	The	specification	also	specifies
the	order	in	which	these	clauses	are	logically	processed.	Processing	occurs	in	stages,	with	each	stage	passing	a	set	of	rows	to	the
following	stage.	The	processing	model	is	logical,	and	does	not	represent	the	way	that	a	database	engine	performs	the	processing,
but	it	is	a	useful	model	for	understanding	how	SQL	works.	The	SELECT	command	processes	clauses	in	the	following	stages:

Stage	1:	WITH	clause
Gathers	all	rows	from	all	with	items	in	the	order	listed.	Subsequent	WITH	items	and	the	main	query	can	reference	a	WITH
item	as	if	it	were	a	table.

Stage	2:	FROM	clause
Gathers	all	rows	from	all	tables	involved	in	the	query	and	logically	joins	them	with	a	Cartesian	product	to	produce	a	single
large	table	with	all	columns	from	all	tables.	Joins	and	join	criteria	are	then	applied	to	filter	rows	that	do	not	match	the	join
structure.

Stage	3:	WHERE	clause
Applies	a	criteria	to	every	output	row	from	the	FROM	stage,	further	reducing	the	number	of	rows.

Stage	4:	GROUP	BY	clause
Groups	sets	of	rows	with	matching	values	in	the	GROUP	BY	columns.

Stage	5:	HAVING	clause
Applies	criteria	to	each	group	of	rows.	Criteria	can	only	be	applied	to	columns	that	will	have	constant	values	within	a	group
(those	in	the	grouping	columns	or	aggregate	functions	applied	across	the	group).

Stage	6:	SELECT	clause
Specifies	the	column	expressions	that	should	be	returned	from	the	query.	Expressions	are	evaluated,	including	aggregate
functions	that	are	based	on	the	groups	of	rows,	which	will	no	longer	exist	after	this	point.	The	output	columns	are	named
using	either	column	aliases	or	an	implicit	name	determined	by	the	engine.	If	SELECT	DISTINCT	is	specified,	duplicate
removal	is	performed	on	the	rows	being	returned	from	the	SELECT	stage.

Stage	7:	ORDER	BY	clause
Sorts	the	rows	returned	from	the	SELECT	stage	as	desired.	Supports	sorting	on	multiple	columns	in	specified	order,	ascending
or	descending.	The	output	columns	will	be	identical	to	those	columns	returned	from	the	SELECT	stage	and	will	have	the	same
name.

DML	commands

451

Stage	8:	LIMIT	clause
Returns	only	the	specified	rows	(with	skip	and	limit	values).

The	preceding	model	helps	to	understand	how	SQL	works.	For	example,	given	that	the	SELECT	clause	assigns	aliases	to
columns,	it	makes	sense	that	the	subsequent	ORDER	BY	clause	must	use	those	aliases	to	reference	columns.	Without	knowledge
of	the	processing	model,	this	can	be	somewhat	confusing.	Seen	in	light	of	the	model,	it	is	clear	that	the	ORDER	BY	stage	is	the
only	stage	occurring	after	the	SELECT	stage,	which	is	where	the	columns	are	named.	Because	the	WHERE	clause	is	processed
before	the	SELECT,	the	columns	have	not	yet	been	named	and	the	aliases	are	not	yet	known.

Tip The	explicit	table	syntax		TABLE	x		may	be	used	as	a	shortcut	for		SELECT	*	FROM	x	.

DML	commands

452

VALUES	command
The	VALUES	command	is	used	to	construct	a	simple	table.

Example	syntax

VALUES	(value,...)

VALUES	(value,...),	(valueX,...)	...

A	VALUES	command	with	a	single	value	set	is	equivalent	to		SELECT	value,	…	.	A	VALUES	command	with	multiple	values	sets
is	equivalent	to	a	UNION	ALL	of	simple	SELECTs,	for	example		SELECT	value,	….	UNION	ALL	SELECT	valueX,	…	.

DML	commands

453

Update	commands
Update	commands	report	integer	update	counts.	Update	commands	can	report	a	maximum	integer	value	of	(2^31	-1).	If	you
update	a	greater	number	of	rows,	the	commands	report	the	maximum	integer	value.

DML	commands

454

INSERT	command
The	INSERT	command	is	used	to	add	a	record	to	a	table.

Example	syntax

INSERT	INTO	table	(column,...)	VALUES	(value,...)

INSERT	INTO	table	(column,...)	query

DML	commands

455

UPDATE	command
The	UPDATE	command	is	used	to	modify	records	in	a	table.	The	operation	results	in	1	or	more	records	being	updated,	or	in	no
records	being	updated	if	none	match	the	criteria.

Example	syntax

UPDATE	table	[[AS]	alias]	SET	(column=value,...)	[WHERE	criteria]

DML	commands

456

DELETE	command
The	DELETE	command	is	used	to	remove	records	from	a	table.	The	operation	results	in	1	or	more	records	being	deleted,	or	in	no
records	being	deleted	if	none	match	the	criteria.

Example	syntax

DELETE	FROM	table	[[AS]	alias]	[WHERE	criteria]

DML	commands

457

UPSERT	(MERGE)	command
The		UPSERT		(or		MERGE)	command	is	used	to	add	or	update	records.	The	non-ANSI	version	of		UPSERT		that	is	implemented	in
Teiid	is	a	modified	INSERT	statement	that	requires	that	the	target	table	has	a	primary	key,	and	that	the	target	columns	cover	the
primary	key.	Before	it	performs	an		INSERT	,	the		UPSERT		operation	checks	whether	a	row	exists,	and	if	it	does,		UPSERT		updates
the	current	row	rather	than	inserting	a	new	one.

Example	syntax

UPSERT	INTO	table	[[AS]	alias]	(column,...)	VALUES	(value,...)

UPSERT	INTO	table	(column,...)	query

Note

UPSERT	pushdown
If	an		UPSERT		statement	is	not	pushed	to	the	source,	it	is	broken	down	into	the	respective	INSERT	and	UPDATE
operations.	The	target	database	system	must	support	extended	architecture	(XA)	to	guarantee	transaction
atomicity.

DML	commands

458

EXECUTE	command
The	EXECUTE	command	is	used	to	execute	a	procedure,	such	as	a	virtual	procedure	or	a	stored	procedure.	Procedures	can	have
zero	or	more	scalar	input	parameters.	The	return	value	from	a	procedure	is	a	result	set,	or	the	set	of	inout/out/return	scalars.

You	can	use	the	following	short	forms	of	the	EXECUTE	command:

EXEC

CALL

Example	syntax

EXECUTE	proc()

CALL	proc(value,	...)

Named	parameter	syntax

EXECUTE	proc(name1=>value1,name4=>param4,	...)

Syntax	rules
The	default	order	of	parameter	specification	is	the	same	as	how	they	are	defined	in	the	procedure	definition.

You	can	specify	the	parameters	in	any	order	by	name.	Parameters	that	have	default	values,	or	that	are	nullable	in	the
metadata,	can	be	omitted	from	the	named	parameter	call,	and	will	have	the	appropriate	value	passed	at	runtime.

Positional	parameters	that	have	default	values	or	that	are	nullable	in	the	metadata,	can	be	omitted	from	the	end	of	the
parameter	list	and	will	have	the	appropriate	value	passed	at	runtime.

If	the	procedure	does	not	return	a	result	set,	the	values	from	the	RETURN,	OUT,	and	IN_OUT	parameters	are	returned	as	a
single	row	when	used	as	an	inline	view	query.

A	VARIADIC	parameter	may	be	repeated	0	or	more	times	as	the	last	positional	argument.

DML	commands

459

Procedural	relational	command
Procedural	relational	commands	use	the	syntax	of	a	SELECT	to	emulate	an	EXEC.	In	a	procedural	relational	command,	a
procedure	group	name	is	used	in	a	FROM	clause	in	place	of	a	table.	That	procedure	is	executed	in	place	of	a	normal	table	access	if
all	of	the	necessary	input	values	can	be	found	in	criteria	against	the	procedure.	Each	combination	of	input	values	that	is	found	in
the	criteria	results	in	the	execution	of	the	procedure.

Example	syntax

select	*	from	proc

select	output_param1,	output_param2	from	proc	where	input_param1	=	'x'

select	output_param1,	output_param2	from	proc,	table	where	input_param1	=	table.col1	and	input_param2	=	table.c

ol2

Syntax	rules
The	procedure	as	a	table	projects	the	same	columns	as	an	EXEC	with	the	addition	of	the	input	parameters.	For	procedures
that	do	not	return	a	result	set,	IN_OUT	columns	are	projected	as	two	columns:

One	to	represents	the	output	value.

One	with	the	name	{column	name}_IN	that	represents	the	input	of	the	parameter.

Input	values	are	passed	via	criteria.	Values	can	be	passed	by		=	,		is	null	,	or	as		in		predicates.	Disjuncts	are	not	allowed.
It	is	also	not	possible	to	pass	the	value	of	a	non-comparable	column	through	an	equality	predicate.

The	procedure	view	automatically	has	an	access	pattern	on	its	IN	and	IN_OUT	parameters.	The	access	pattern	allows	the
procedure	view	to	be	planned	correctly	as	a	dependent	join	when	necessary,	or	to	fail	when	sufficient	criteria	cannot	be
found.

Procedures	that	contain	duplicate	names	between	the	parameters	(IN,	IN_OUT,	OUT,	RETURN)	and	the	result	set	columns
cannot	be	used	in	a	procedural	relational	command.

If	there	is	already	a	table	or	view	with	the	same	name	as	the	procedure,	then	it	cannot	be	invoked	via	procedural	relational
syntax.

Default	values	for	IN	or	IN_OUT	parameters	are	not	used	if	there	is	no	criteria	present	for	a	given	input.	Default	values	are
only	valid	for	named	procedure	syntax.	For	more	information,	see	EXECUTE.

Note The	preceding	issues	do	not	apply	when	you	use	a	nested	table	reference.	For	more	information,	see	Nested	table
reference	in	FROM	clause.

Multiple	execution
The	use	of		in		or	join	criteria	can	result	in	a	procedure	being	executed	multiple	times.

DML	commands

460

Anonymous	procedure	block
You	can	execute	a	procedure	language	block	as	a	user	command.	This	can	be	an	advantage	in	situations	in	which	a	virtual
procedure	does	not	exist,	but	a	set	of	processes	can	be	carried	out	on	the	server	side.	For	more	information	about	the	language	for
defining	virtual	procedures,	see	Procedure	language.

Example	syntax

begin	insert	into	pm1.g1	(e1,	e2)	select	?,	?;	select	rowcount;	end;

Syntax	rules
You	can	use		in		parameters	with	prepared/callable	statement	parameters,	as	shown	in	the	preceding	example,	which	uses
	?		parameter.

You	cannot	use		out		parameters	in	an	anonymous	procedure	block.	As	a	workaround,	you	can	use	session	variables	as
needed.

Anonymous	procedure	blocks	do	not	return	data	as	output	parameters.

A	single	result	is	returned	if	any	of	the	statements	returns	a	result	set.	All	returnable	result	sets	must	have	a	matching	number
of	columns	and	types.	To	indicate	that	a	statement	is	not	intended	to	provide	a	result	set,	use	the	WITHOUT	RETURN
clause.

DML	commands

461

Subqueries
A	subquery	is	a	SQL	query	embedded	within	another	SQL	query.	The	query	containing	the	subquery	is	the	outer	query.

Subquery	types:
Scalar	subquery	-	a	subquery	that	returns	only	a	single	column	with	a	single	value.	Scalar	subqueries	are	a	type	of	expression
and	can	be	used	where	single	valued	expressions	are	expected.

Correlated	subquery	-	a	subquery	that	contains	a	column	reference	to	from	the	outer	query.

Uncorrelated	subquery	-	a	subquery	that	contains	no	references	to	the	outer	sub-query.

Inline	views
Subqueries	in	the	FROM	clause	of	the	outer	query	(also	known	as	"inline	views")	can	return	any	number	of	rows	and	columns.
This	type	of	subquery	must	always	be	given	an	alias.	An	inline	view	is	nearly	identical	to	a	traditional	view.	See	also	WITH
Clause.

Example	subquery	in	FROM	clause	(inline	view)

SELECT	a	FROM	(SELECT	Y.b,	Y.c	FROM	Y	WHERE	Y.d	=	'3')	AS	X	WHERE	a	=	X.c	AND	b	=	X.b

Subqueries	can	appear	anywhere	where	an	expression	or	criteria	is	expected.
You	can	use	subqueries	in	quantified	criteria,	the		EXISTS		predicate,	the		IN		predicate,	and	as	Scalar	subqueries.

Example	subquery	in	WHERE	using	EXISTS

SELECT	a	FROM	X	WHERE	EXISTS	(SELECT	1	FROM	Y	WHERE	c=X.a)

Example	quantified	comparison	subqueries

SELECT	a	FROM	X	WHERE	a	>=	ANY	(SELECT	b	FROM	Y	WHERE	c=3)

SELECT	a	FROM	X	WHERE	a	<	SOME	(SELECT	b	FROM	Y	WHERE	c=4)

SELECT	a	FROM	X	WHERE	a	=	ALL	(SELECT	b	FROM	Y	WHERE	c=2)

Example	IN	subquery

SELECT	a	FROM	X	WHERE	a	IN	(SELECT	b	FROM	Y	WHERE	c=3)

See	also	Subquery	Optimization.

DML	commands

462

WITH	clause
Teiid	provides	access	to	common	table	expressions	via	the		WITH		clause.	You	can	reference		WITH		clause	items	as	tables	in
subsequent	WITH	clause	items,	and	in	the	main	query.	You	can	think	of	the		WITH		clause	as	providing	query-scoped	temporary
tables.

Usage

WITH	name	[(column,	...)]	AS	[/*+	no_inline|materialize	*/]	(query	expression)	...

Syntax	rules
All	of	the	projected	column	names	must	be	unique.	If	they	are	not	unique,	then	the	column	name	list	must	be	provided.

If	the	columns	of	the	WITH	clause	item	are	declared,	then	they	must	match	the	number	of	columns	projected	by	the	query
expression.

Each	WITH	clause	item	must	have	a	unique	name.

The	optional		no_inline		hint	indicates	to	the	optimizer	that	the	query	expression	should	not	be	substituted	as	an	inline	view
where	referenced.	It	is	possible	with	no_inline	for	multiple	evaluations	of	the	common	table	as	needed	by	source	queries.

The	optional		materialize		hint	requires	that	the	common	table	be	created	as	a	temporary	table	in	Teiid.	This	forces	a	single
evaluation	of	the	common	table.

Note The	WITH	clause	is	also	subject	to	optimization	and	its	entries	might	not	be	processed	if	they	are	not	needed	in
the	subsequent	query.

Note

Common	tables	are	aggressively	inlined	to	enhance	the	possibility	of	pushdown.	If	a	common	table	is	only
referenced	a	single	time	in	the	main	query,	it	is	likely	to	be	inlined.	In	some	situations,	such	as	when	you	use	a
common	table	to	prevent	n-many-processing	of	a	non-pushdown,	correlated	subquery,	you	might	need	to	include
the		no_inline		or		materialize		hint.

Examples

WITH	n	(x)	AS	(select	col	from	tbl)	select	x	from	n,	n	as	n1

WITH	n	(x)	AS	/*+	no_inline	*/	(select	col	from	tbl)	select	x	from	n,	n	as	n1

Recursive	common	table	expressions
A	recursive	common	table	expression	is	a	special	form	of	a	common	table	expression	that	is	allowed	to	refer	to	itself	to	build	the
full	common	table	result	in	a	recursive	or	iterative	fashion.

Usage

WITH	name	[(column,	...)]	AS	(anchor	query	expression	UNION	[ALL]	recursive	query	expression)	...

The	recursive	query	expression	is	allowed	to	refer	to	the	common	table	by	name.	The	anchor	query	expression	is	executed	first
during	processing.	Results	are	added	to	the	common	table	and	are	referenced	for	the	execution	of	the	recursive	query	expression.
The	process	is	repeated	against	the	new	results	until	there	are	no	more	intermediate	results.

Important Non-terminating,	recursive	common	table	expressions	can	lead	to	excessive	processing.

DML	commands

463

By	default,	to	prevent	runaway	processing	of	a	recursive	common	table	expression,	processing	is	limited	to	10000	iterations.
Recursive	common	table	expressions	that	are	pushed	down	are	not	subject	to	this	limit,	but	could	be	subject	to	other	source-
specific	limits.	You	can	modify	the	limit	by	setting	the	session	variable		teiid.maxRecursion		to	a	larger	integer	value.	After	the
limit	is	exceeded,	an	exception	is	thrown.

The	following	example	fails,	because	the	recursion	limit	is	reached	before	processing	completes.

SELECT	teiid_session_set('teiid.maxRecursion',	25);

WITH	n	(x)	AS	(values('a')	UNION	select	chr(ascii(x)+1)	from	n	where	x	<	'z')	select	*	from	n

DML	commands

464

SELECT	clause
SQL	queries	that	start	with	the		SELECT		keyword	and	are	often	referred	to	as	SELECT	statements.	YOu	can	use	most	of	the
standard	SQL	query	constructs	in	Teiid.

Usage

SELECT	[DISTINCT|ALL]	((expression	[[AS]	name])|(group	identifier.STAR))*|STAR	...

Syntax	Rules
Aliased	expressions	are	only	used	as	the	output	column	names	and	in	the	ORDER	BY	clause.	They	cannot	be	used	in	other
clauses	of	the	query.

DISTINCT	may	only	be	specified	if	the	SELECT	symbols	are	comparable.

DML	commands

465

FROM	clause
The	FROM	clause	specifies	the	target	tables	for	SELECT,	UPDATE,	and	DELETE	statements.

Example	Syntax:
FROM	table	[[AS]	alias]

FROM	table1	[INNER|LEFT	OUTER|RIGHT	OUTER|FULL	OUTER]	JOIN	table2	ON	join-criteria

FROM	table1	CROSS	JOIN	table2

FROM	(subquery)	[AS]	alias

FROM	TABLE(subquery)	[AS]	alias.	For	more	information,	see	Nested	tables

FROM	table1	JOIN	/*+	MAKEDEP	*/	table2	ON	join-criteria

FROM	table1	JOIN	/*+	MAKENOTDEP	*/	table2	ON	join-criteria

FROM	/*+	MAKEIND	*/	table1	JOIN	table2	ON	join-criteria

FROM	/*+	NO_UNNEST	*/	vw1	JOIN	table2	ON	join-criteria

FROM	table1	left	outer	join	/*+	optional	*/	table2	ON	join-criteria.	For	more	information,	see	Optional	join	in	Federated
optimizations.

FROM	TEXTTABLE…	For	more	information,	see	TEXTTABLE.

FROM	XMLTABLE…	For	more	information,	see	XMLTABLE.

FROM	ARRAYTABLE…	For	more	information,	see	ARRAYTABLE.

FROM	OBJECTTABLE…	For	more	information,	see	OBJECTTABLE.

FROM	JSONTABLE…	For	more	information,	see	JSONTABLE.

FROM	SELECT…	For	more	information,	see	Inline	views	in	Subqueries.

From	clause	hints
From	clause	hints	are	typically	specified	in	a	comment	block	preceding	the	affected	clause.	MAKEDEP	and	MAKENOTDEP	may
also	appear	after	in	non-comment	form	after	the	affected	clause.	If	multiple	hints	apply	to	that	clause,	the	hints	should	be	placed	in
the	same	comment	block.

Example	hint

FROM	/*+	MAKEDEP	PRESERVE	*/	(tbl1	inner	join	tbl2	inner	join	tbl3	on	tbl2.col1	=	tbl3.col1	on	tbl1.col1	=	tbl2

.col1),	tbl3	WHERE	tbl1.col1	=	tbl2.col1

Dependent	join	hints
	MAKEIND	,		MAKEDEP	,	and		MAKENOTDEP		are	hints	that	you	can	use	to	control	dependent	join	behavior.	Use	them	only	in	situations
where	the	optimizer	does	not	choose	the	most	optimal	plan	based	upon	query	structure,	metadata,	and	costing	information.	The
hints	can	appear	in	a	comment	that	follows	the		FROM		keyword.	The	hints	can	be	specified	against	any		FROM		clause,	not	just	a
named	table.

MAKEIND
Indicates	that	the	clause	should	be	the	independent	(feeder)	side	of	a	dependent	join.

MAKEDEP
Indicates	that	the	clause	should	be	the	dependent	(filtered)	side	of	a	join.

DML	commands

466

MAKENOTDEP
Prevents	the	clause	from	being	the	dependent	(filtered)	side	of	a	join.

You	can	use	the	following	optional		MAX		and		JOIN		arguments	with		MAKEDEP		and		MAKEIND	:

MAKEDEP(JOIN)
Indicates	that	the	entire	join	should	be	pushed.

MAKEDEP(NO	JOIN)
Indicates	that	the	entire	join	should	not	be	pushed.

MAKEDEP(MAX:val)
Indicates	that	the	dependent	join	should	only	be	performed	if	there	are	less	than	the	maximum	number	of	values	from	the
independent	side.

Other	hints
NO_UNNEST	can	be	specified	against	a	subquery	FROM	clause	or	view	to	instruct	the	planner	to	not	to	merge	the	nested	SQL	in
the	surrounding	query.	This	process	is	known	as	view	flattening.	This	hint	only	applies	to	Teiid	planning	and	is	not	passed	to
source	queries.	NO_UNNEST	can	appear	in	a	comment	that	follows	the	FROM	keyword.

The	PRESERVE	hint	can	be	used	against	an	ANSI	join	tree	to	preserve	the	structure	of	the	join,	rather	than	allowing	the	Teiid
optimizer	to	reorder	the	join.	This	is	similar	in	function	to	the	Oracle	ORDERED	or	MySQL	STRAIGHT_JOIN	hints.

Example	PRESERVE	hint

FROM	/*+	PRESERVE	*/	(tbl1	inner	join	tbl2	inner	join	tbl3	on	tbl2.col1	=	tbl3.col1	on	tbl1.col1	=	tbl2.col1)

DML	commands

467

Nested	tables
Nested	tables	can	appear	in	a		FROM		clause	with	the		TABLE		keyword.	They	are	an	alternative	to	using	a	view	with	normal	join
semantics.	The	columns	projected	from	a	command	contained	in	a	nested	table	can	be	used	in	join	criteria,	WHERE	clauses,	and
other	contexts	where	you	can	use	FROM	clause	projected	columns.

A	nested	table	can	have	correlated	references	to	preceding		FROM		clause	column	references	as	long	as		INNER		and		LEFT	OUTER	
joins	are	used.	This	is	especially	useful	in	cases	where	then	nested	expression	is	a	procedure	or	function	call.

Valid	nested	table	example

select	*	from	t1,	TABLE(call	proc(t1.x))	t2

Invalid	nested	table	example
The	following	nested	table	example	is	invalid,	because		t1		appears	after	the	nested	table	in	the	FROM	clause:

select	*	from	TABLE(call	proc(t1.x))	t2,	t1

Note
Multiple	execution
Using	a	correlated	nested	table	can	result	in	multiple	executions	of	the	table	expression — one	for	each	correlated
row.

DML	commands

468

XMLTABLE
The	XMLTABLE	function	uses	XQuery	to	produce	tabular	output.	The	XMLTABLE	function	is	implicitly	a	nested	table	and	it
can	be	used	within	FROM	clauses.	XMLTABLE	is	part	of	the	SQL/XML	2006	specification.

Usage

XMLTABLE([<NSP>,]	xquery-expression	[<PASSING>]	[COLUMNS	<COLUMN>,	...])	AS	name

COLUMN	:=	name	(FOR	ORDINALITY	|	(datatype	[DEFAULT	expression]	[PATH	string]))

For	the	definition	of	NSP	-	XMLNAMESPACES,	see	XMLELEMENT	in	XML	functions.	For	the	definition	of	PASSING,	see
XMLQUERY	in	XML	functions.

Note See	also	XQuery	optimization.

Parameters
The	optional	XMLNAMESPACES	clause	specifies	the	namepaces	that	you	can	use	in	the	XQuery	and	COLUMN	path
expressions.

The	xquery-expression	must	be	a	valid	XQuery.	Each	sequence	item	returned	by	the	xquery	is	used	to	create	a	row	of	values
as	defined	by	the	COLUMNS	clause.

If	COLUMNS	is	not	specified,	that	is	equivalent	to	a	COLUMNS	clause	that	returns	the	entire	item	as	an	XML	value,	as	in
the	following	example:

"COLUMNS	OBJECT_VALUE	XML	PATH	'."'

FOR	ORDINALITY	columns	are	typed	as	integers	and	return	1-based	item	numbers	as	their	value.

Each	non-ordinality	column	specifies	a	type,	and	optionally	specifies	a	PATH	and	a	DEFAULT	expression.

If	PATH	is	not	specified,	then	the	path	is	the	same	as	the	column	name.

Syntax	Rules
You	can	specify	only	1	FOR	ORDINALITY	column.

Columns	names	must	not	contain	duplicates.

You	can	use	binary	large	object	(BLOB)	datatypes,	but	there	is	built-in	compatibility	only	for		xs:hexBinary		values.	For
xs:base64Binary,	use	a	workaround	of	a	PATH	that	uses	the	following	explicit	value	constructor:
	xs:base64Binary(<path>)	.

The	column	expression	must	evaluate	to	a	single	value	if	a	non-array	type	is	expected.

If	an	array	type	is	specified,	then	an	array	is	returned,	unless	there	are	no	elements	in	the	sequence,	in	which	case	a	null	value
is	returned.

An	empty	element	is	not	a	valid	null	value,	because	its	value	is	effectively	an	empty	string.	Use	the		xsi:nil		attribute	to
specify	a	null	value	for	an	element.

XMLTABLE	examples

Use	of	PASSING,	returns	1	row	[1]

select	*	from	xmltable('/a'	PASSING	xmlparse(document	'')	COLUMNS	id	integer	PATH	'@id')	x

DML	commands

469

As	a	nested	table

select	x.*	from	t,	xmltable('/x/y'	PASSING	t.doc	COLUMNS	first	string,	second	FOR	ORDINALITY)	x

Invalid	multi-value

select	*	from	xmltable('/a'	PASSING	xmlparse(document	'<a><b	id="1"/><b	id="2"/>')	COLUMNS	id	integer	PATH	

'b/@id')	x

Array	multi-value

select	*	from	xmltable('/a'	PASSING	xmlparse(document	'<a><b	id="1"/><b	id="2"/>')	COLUMNS	id	integer[]	PATH

	'b/@id')	x

Nil	element

select	*	from	xmltable('/a'	PASSING	xmlparse(document	'<a	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

><b	xsi:nil="true"/>')	COLUMNS	id	integer	PATH	'b')	x

Note In	the	preceding	example,	an	exception	would	be	thrown	if	the		nil		attribute	(xsi:nil="true")	were	not
specified,	converting		b		to	an	integer	value.

DML	commands

470

ARRAYTABLE
The	ARRAYTABLE	function	processes	an	array	input	to	produce	tabular	output.	The	function	itself	defines	what	columns	it
projects.	The	ARRAYTABLE	function	is	implicitly	a	nested	table	and	can	be	used	within	FROM	clauses.

Usage

ARRAYTABLE([ROW|ROWS]	expression	COLUMNS	<COLUMN>,	...)	AS	name

COLUMN	:=	name	datatype

Parameters

expression
The	array	to	process,	which	should	be	a	java.sql.Array	or	java	array	value.

ROW|ROWS
If	ROW	(the	default)	is	specified,	then	only	a	single	row	is	produced	from	the	given	array	(typically	a	one	dimensional	array).
If	ROWS	is	specified,	then	multiple	rows	are	produced.	A	multidimensional	array	is	expected,	and	one	row	is	produced	for
every	non-null	element	of	the	outer	array.

If	the	expression	is	null,	no	rows	are	produced.

Syntax	rules
Columns	names	cannot	contain	duplicates.

Array	table	examples
As	a	nested	table:

select	x.*	from	(call	source.invokeMDX('some	query'))	r,	arraytable(r.tuple	COLUMNS	first	string,	second	bigdec

imal)	x

ARRAYTABLE	is	effectively	a	shortcut	for	using	the		array_get		function	in	a	nested	table.

For	example,	the	following	ARRAYTABLE	function:

ARRAYTABLE(val	COLUMNS	col1	string,	col2	integer)	AS	X

is	the	same	as	the	following	statement	which	uses	an		array_get		function:

TABLE(SELECT	cast(array_get(val,	1)	AS	string)	AS	col1,	cast(array_get(val,	2)	AS	integer)	AS	col2)	AS	X

DML	commands

471

OBJECTTABLE
The	OBJECTTABLE	function	processes	an	object	input	to	produce	tabular	output.	The	function	itself	defines	what	columns	it
projects.	The	OBJECTTABLE	function	is	implicitly	a	nested	table	and	can	be	used	within	FROM	clauses.

Usage

OBJECTTABLE([LANGUAGE	lang]	rowScript	[PASSING	val	AS	name	...]	COLUMNS	colName	colType	colScript	[DEFAULT	defa

ultExpr]	...)	AS	id

Parameters

lang
An	optional	string	literal	that	is	the	case	sensitive	language	name	of	the	scripts	to	be	processed.	The	script	engine	must	be
available	via	a	JSR-223	ScriptEngineManager	lookup.

In	some	instances	this	may	mean	making	additional	modules	available	to	your	vdb,	which	can	be	done	via	the	same	process	as
adding	modules/libraries	for	UDFs.

If	a	LANGUAGE	is	not	specified,	the	default	'teiid_script'	is	used.	name::	An	identifier	that	binds	the		val		expression	value	into
the	script	context.	rowScript::	A	string	literal	that	specifies	the	script	to	create	the	row	values.	For	each	non-null	item	that	the
Iterator	produces,	the	columns	are	evaluated.	colName/colType::	ID/data	type	of	the	column,	which	can	optionally	be	defaulted
with	the	DEFAULT	clause	expression		defaultExpr	.	colScript::	A	string	literal	that	specifies	the	script	that	evaluates	to	the
column	value.

Syntax	rules
Columns	names	cannot	contain	duplicates.

Teiid	places	several	special	variables	in	the	script	execution	context.	The	CommandContext	is	available	as		teiid_context	.
Additionally	the		colScripts		may	access		teiid_row		and		teiid_row_number	.		teiid_row		is	the	current	row	object
produced	by	the	row	script.		teiid_row_number		is	the	current	1-based	row	number.

	rowScript		is	evaluated	to	an	Iterator.	If	the	results	is	already	an	Iterator,	it	is	used	directly.	If	the	evaluation	result	is	an
Iteratable,	Array,	or	Array	type,	then	an	Iterator	is	obtained.	Any	other	Object	will	be	treated	as	an	Iterator	of	a	single	item.	In
all	cases	null	row	values	are	skipped.

Note Although	there	are	no	restrictions	on	naming	PASSING	variables,	it	is	best	to	choose	names	that	you	can
reference	as	identifiers	in	the	target	language.

OBJECTTABLE	examples
Accessing	special	variables:

SELECT	x.*	FROM	OBJECTTABLE('teiid_context'	COLUMNS	"user"	string	'teiid_row.userName',	row_number	integer	'tei

id_row_number')	AS	x

The	result	would	be	a	row	with	two	columns	containing	the	user	name	and	1	respectively.

Note

Languages	other	than	teiid_script	generally	permit	unrestricted	access	to	Java	functionality.	As	a	result,	by
default,	their	use	is	restricted.	You	can	override	the	restrictions	by	declaring	allowable	languages	by	name	in	the
	allowed-languages		property.	To	use	OBJECTTABLE,	even	from	within	view	definitions	that	are	not	normally
subject	to	permission	checks,	you	must	define	the		allowed-languages		property.	You	must	also	set	language
access	rights	for	user	accounts	to	enable	users	to	process	OBJECTTABLE	functions.

For	more	information	about	about	teiid_script,	see	the	next	section.

For	more	information	about	enabling	the	use	of	languages	other	than	teiid_script,	see	allowed-languages	in
Virtual	database	properties.

DML	commands

472

For	more	information	about	setting	user	account	permission,	see	User	query	permissions	in	Permissions.

teiid_script

teiid_script	is	a	simple	scripting	expression	language	that	allows	access	to	passing	and	special	variables,	and	to	non-void	0-
argument	methods	on	objects	and	indexed	values	on	arrays/lists.	A	teiid_script	expression	begins	by	referencing	the	passing	or
special	variable.	Then,	any	number	of		.		accessors	can	be	chained	to	evaluate	the	expression	to	a	different	value.	Methods	may
be	accessed	by	their	property	names,	for	example,	foo	rather	than	getFoo.	If	the	object	includes	both	a		getFoo()		and		foo()	
method,	then	the	accessor		foo		references		foo	()	,	and		getFoo		should	be	used	to	call	the	getter.	An	array	or	list	index	is
accessed	using	a	1-based	positive	integral	value,	using	the	same		.		accessor	syntax.	The	same	logic	as	the	system	function
	array_get		is	used.	That	is,	if	the	index	is	out	of	bounds,		null		is	returned,	rather	than	an	exception.

teiid_script	is	effectively	dynamically	typed	as	typing	is	performed	at	runtime.	If	an	accessor	does	not	exist	on	the	object,	or	if	the
method	is	not	accessible,	then	an	exception	is	raised.	If	any	point	in	the	accessor	chain	evaluates	to	a	null	value,	then	null	will	be
returned.

teiid_script	examples
To	get	the	VDB	description	string:

teiid_context.session.vdb.description

To	get	the	first	character	of	the	VDB	description	string:

teiid_context.session.vdb.description.toCharArray.1

DML	commands

473

TEXTTABLE
The	TEXTTABLE	function	processes	character	input	to	produce	tabular	output.	It	provides	both	fixed	and	delimited	file	format
parsing.	The	function	itself	defines	what	columns	it	projects.	The	TEXTTABLE	function	is	implicitly	a	nested	table	and	can	be
used	within	FROM	clauses.

Usage

TEXTTABLE(expression	[SELECTOR	string]	COLUMNS	<COLUMN>,	...	[NO	ROW	DELIMITER	|	ROW	DELIMITER	char]	[DELIMITER

	char]	[(QUOTE|ESCAPE)	char]	[HEADER	[integer]]	[SKIP	integer]	[NO	TRIM])	AS	name

Where	<COLUMN>

COLUMN	:=	name	(FOR	ORDINALITY	|	([HEADER	string]	datatype	[WIDTH	integer	[NO	TRIM]]	[SELECTOR	string	integer]))

Parameters

expression
The	text	content	to	process,	which	should	be	convertible	to	a	character	large	object	(CLOB).

SELECTOR
Used	with	files	containing	multiple	types	of	rows	(example:	order	header,	detail,	summary).	A	TEXTTABLE	SELECTOR
specifies	which	lines	to	include	in	the	output.	Matching	lines	must	begin	with	the	selector	string.	The	selector	in	column
delimited	files	must	be	followed	by	the	column	delimiter.

If	a	TEXTTABLE	SELECTOR	is	specified,	a	SELECTOR	may	also	be	specified	for	column	values.	A	column	SELECTOR
argument	will	select	the	nearest	preceding	text	line	with	the	given	SELECTOR	prefix,	and	select	the	value	at	the	given	1-
based	integer	position	(which	includes	the	selector	itself).	If	no	such	text	line	or	position	with	a	given	line	exists,	a	null	value
will	be	produced.	A	column	SELECTOR	is	not	valid	with	fixed	width	parsing.

NO	ROW	DELIMITER
Specifies	that	fixed	parsing	should	not	assume	the	presence	of	newline	row	delimiters.

ROW	DELIMITER
Sets	the	row	delimiter	/	newline	to	an	alternate	character.	Defaults	to	the	new-line	character	-	with	built-in	handling	for
treating	carriage	return	newline	as	a	single	character.	If	ROW	DELIMITER	is	specified,	carriage	return	is	given	no	special
treatment.

DELIMITER
Sets	the	field	delimiter	character	to	use.	Defaults	to		,	.

QUOTE
Sets	the	quote,	or	qualifier,	character	used	to	wrap	field	values.	Defaults	to		"	.

ESCAPE
Sets	the	escape	character	to	use	if	no	quoting	character	is	in	use.	This	is	used	in	situations	where	the	delimiter	or	new	line
characters	are	escaped	with	a	preceding	character,	e.g.		\	.

HEADER
Specifies	the	text	line	number	(counting	every	new	line)	on	which	the	column	names	occur.	If	the	HEADER	option	for	a
column	is	specified,	then	that	will	be	used	as	the	expected	header	name.	All	lines	prior	to	the	header	will	be	skipped.	If
HEADER	is	specified,	then	the	header	line	will	be	used	to	determine	the	TEXTTABLE	column	position	by	case-insensitive

DML	commands

474

name	matching.	This	is	especially	useful	in	situations	where	only	a	subset	of	the	columns	are	needed.	If	the	HEADER	value	is
not	specified,	it	defaults	to	1.	If	HEADER	is	not	specified,	then	columns	are	expected	to	match	positionally	with	the	text
contents.

SKIP
Specifies	the	number	of	text	lines	(counting	every	new	line)	to	skip	before	parsing	the	contents.	HEADER	can	be	specified
with	SKIP.

FOR	ORDINALITY
Column	that	is	typed	as	integer	and	returns	a	1-based	item	number	as	its	value.

WIDTH
Indicates	the	fixed-width	length	of	a	column	in	characters,	not	bytes.	With	the	default	ROW	DELIMITER,	a	CR	NL	sequence
counts	as	a	single	character.

NO	TRIM
When	specified	on	a	TEXTTABLE,	it	affects	all	column	and	header	values.	When	NO	TRIM	is	specified	on	a	column,	the
fixed	or	unqualified	text	value	is	not	trimmed	of	leading	and	trailing	white	space.

Syntax	Rules
If	width	is	specified	for	one	column	it	must	be	specified	for	all	columns	and	be	a	non-negative	integer.

If	width	is	specified,	then	fixed	width	parsing	is	used,	and	ESCAPE,	QUOTE,	column	SELECTOR,	nor	HEADER	should
not	be	specified.

If	width	is	not	specified,	then	NO	ROW	DELIMITER	cannot	be	used.

Columns	names	must	not	contain	duplicates.

The	characters	specified	for	QUOTE,	DELIMITER,	and	ROW	DELIMITER	must	all	be	different.

TEXTTABLE	examples
Use	of	the	HEADER	parameter,	returns	1	row	['b']:

SELECT	*	FROM	TEXTTABLE(UNESCAPE('col1,col2,col3\na,b,c')	COLUMNS	col2	string	HEADER)	x

Use	of	fixed	width,	returns	2	rows	['a',	'b',	'c'],	['d',	'e',	'f']:

SELECT	*	FROM	TEXTTABLE(UNESCAPE('abc\ndef')	COLUMNS	col1	string	width	1,	col2	string	width	1,	col3	string	widt

h	1)	x

Use	of	fixed	width	without	a	row	delimiter,	returns	3	rows	['a'],	['b'],	['c']:

SELECT	*	FROM	TEXTTABLE('abc'	COLUMNS	col1	string	width	1	NO	ROW	DELIMITER)	x

Use	of	ESCAPE	parameter,	returns	1	row	['a,',	'b']:

SELECT	*	FROM	TEXTTABLE('a:,,b'	COLUMNS	col1	string,	col2	string	ESCAPE	':')	x

As	a	nested	table:

SELECT	x.*	FROM	t,	TEXTTABLE(t.clobcolumn	COLUMNS	first	string,	second	date	SKIP	1)	x

Use	of	SELECTORs,	returns	2	rows	['c',	'd',	'b'],	['c',	'f',	'b']:

SELECT	*	FROM	TEXTTABLE('a,b\nc,d\nc,f'	SELECTOR	'c'	COLUMNS	col1	string,	col2	string	col3	string	SELECTOR	'a'	2

DML	commands

475

)	x

DML	commands

476

JSONTABLE
The	JSONTABLE	function	uses	JsonPath	to	produce	tabular	output.	The	JSONTABLE	function	is	implicitly	a	nested	table	and
can	be	used	within	FROM	clauses.

Usage

JSONTABLE(value,	path	[,	nullLeafOnMissing]	COLUMNS	<COLUMN>,	...)	AS	name

COLUMN	:=	name	(FOR	ORDINALITY	|	(datatype	[PATH	string]))

See	also	JsonPath

Parameters

value
A	clob	containing	a	valid	JSON	document.

nullLeafOnMissing
If	false	(the	default),	then	a	path	that	evaluates	to	a	leaf	that	is	missing	will	throw	an	exception.	If	nullLeafOnMissing	is	true,
then	a	null	value	will	be	returned.

PATH
String	should	be	a	valid	JsonPath.	If	an	array	value	is	returned,	then	each	non-null	element	will	be	used	to	generate	a	row.
Otherwise	a	single	non-null	item	will	be	used	to	create	a	single	row.

FOR	ORDINALITY
Column	typed	as	integer.	Returns	a	1-based	item	number	as	its	value.

Each	non-ordinality	column	specifies	a	type	and	optionally	a	PATH.

If	PATH	is	not	specified,	then	the	path	will	be	generated	from	the	column	name:	@['name'],	which	will	look	for	an	object
key	value	matching	name.	If	PATH	is	specified,	it	must	begin	with	@,	which	means	that	the	path	will	be	processed
relative	the	the	current	row	context	item.

Syntax	Rules
Columns	names	must	not	contain	duplicates.

You	cannot	use	array	types	with	the	JSONTABLE	function.

JSONTABLE	examples
Use	of	passing,	returns	1	row	[1]:

select	*	from	jsontable('{"a":	{"id":1}}}',	'$.a'	COLUMNS	id	integer)	x

As	a	nested	table:

select	x.*	from	t,	jsontable(t.doc,	'$.x.y'	COLUMNS	first	string,	second	FOR	ORDINALITY)	x

With	more	complicated	paths:

select	x.*	from	jsontable('[{"firstName":	"John",	"lastName":	"Wayne",	"children":	[]},	{"firstName":	"John",	"

lastName":	"Adams",	"children":["Sue","Bob"]}]',	'$.*'	COLUMNS	familyName	string	path	'@.lastName',	children	in

teger	path	'@.children.length()')	x

DML	commands

477

https://github.com/json-path/JsonPath

Differences	with	XMLTABLE
Processing	of	JSON	to	tabular	results	was	previously	recommended	through	the	use	of	XMLTABLE	with	JSONTOXML.	For
most	tasks,	JSONTABLE	provides	a	simpler	syntax.	However,	there	are	some	differences	to	consider:

JSONTABLE	parses	the	JSON	completely,	the	processes	it.	XMLTABLE	uses	streaming	processing	to	reduce	the	memory
overhead.

JsonPath	is	not	as	powerful	as	XQuery.	There	are	a	lot	of	functions	and	operations	available	in	XQuery/XPath	that	are	not
available	in	JsonPath.

JsonPath	does	not	allow	for	parent	references	in	the	column	paths.	There	is	no	ability	to	reference	the	root	or	any	part	of	the
parent	hierarchy	(..	in	XPath).

DML	commands

478

WHERE	clause
The	WHERE	clause	defines	the	criteria	to	limit	the	records	affected	by	SELECT,	UPDATE,	and	DELETE	statements.

The	general	form	of	the	WHERE	is:

WHERE	Criteria

DML	commands

479

GROUP	BY	clause
The	GROUP	BY	clause	denotes	that	rows	should	be	grouped	according	to	the	specified	expression	values.	One	row	is	returned	for
each	group,	after	optionally	filtering	those	aggregate	rows	based	on	a	HAVING	clause.

The	general	form	of	the	GROUP	BY	is:

GROUP	BY	expression	[,expression]*

GROUP	BY	ROLLUP(expression	[,expression]*)

Syntax	Rules
Column	references	in	the	group	by	cannot	be	made	to	alias	names	in	the	SELECT	clause.

Expressions	used	in	the	group	by	must	appear	in	the	select	clause.

Column	references	and	expressions	in	the	SELECT/HAVING/ORDER	BY	clauses	that	are	not	used	in	the	group	by	clause
must	appear	in	aggregate	functions.

If	an	aggregate	function	is	used	in	the	SELECT	clause	and	no	GROUP	BY	is	specified,	an	implicit	GROUP	BY	will	be
performed	with	the	entire	result	set	as	a	single	group.	In	this	case,	every	column	in	the	SELECT	must	be	an	aggregate
function	as	no	other	column	value	will	be	fixed	across	the	entire	group.

The	GROUP	BY	columns	must	be	of	a	comparable	type.

Rollups
Just	like	normal	grouping,	ROLLUP	processing	logically	occurs	before	the	HAVING	clause	is	processed.	A	ROLLUP	of
expressions	will	produce	the	same	output	as	a	regular	grouping	with	the	addition	of	aggregate	values	computed	at	higher
aggregation	levels.	For	N	expressions	in	the	ROLLUP,	aggregates	will	be	provided	over	(),	(expr1),	(expr1,	expr2),	etc.	up	to
(expr1,	…	exprN-1),	with	the	other	grouping	expressions	in	the	output	as	null	values.	The	following	example	uses	a	normal
aggregation	query:

SELECT	country,	city,	sum(amount)	from	sales	group	by	country,	city

The	query	returns	the	following	data:

Table	1.	Data	returned	by	a	normal	aggregation	query

country city sum(amount)

US St.	Louis 10000

US Raleigh 150000

US Denver 20000

UK Birmingham 50000

UK London 75000

In	contrast,	the	following	example	uses	a	rollup	query:

Data	returned	from	a	rollup	query

DML	commands

480

SELECT	country,	city,	sum(amount)	from	sales	group	by	rollup(country,	city)

would	return:

country city sum(amount)

US St.	Louis 10000

US Raleigh 150000

US Denver 20000

US <null> 180000

UK Birmingham 50000

UK London 75000

UK <null> 125000

<null> <null> 305000

Note Not	all	sources	are	compatible	with	ROLLUPs,	and	compared	to	normal	aggregate	processing,	some
optimizations	might	be	inhibited	by	the	use	of	a	ROLLUP.

The	use	of	ROLLUPs	in	Teiid	is	currently	limited	in	comparison	to	the	SQL	specification.

DML	commands

481

HAVING	Clause
The		HAVING		clause	operates	exactly	as	a		WHERE		clause,	although	it	operates	on	the	output	of	a		GROUP	BY	.	You	can	use	the
same	syntax	with	the		HAVING		clause	as	with	the		WHERE		clause.

Syntax	Rules
Expressions	used	in	the	GROUP	BY	clause	must	contain	either	an	aggregate	function	(COUNT	,		AVG	,		SUM	,		MIN	,		MAX),
or	be	one	of	the	grouping	expressions.

DML	commands

482

ORDER	BY	clause
The	ORDER	BY	clause	specifies	how	records	are	sorted.	The	options	are	ASC	(ascending)	or	DESC	(descending).

Usage

ORDER	BY	expression	[ASC|DESC]	[NULLS	(FIRST|LAST)],	...

Syntax	rules
Sort	columns	can	be	specified	positionally	by	a	1-based	positional	integer,	by	SELECT	clause	alias	name,	by	SELECT	clause
expression,	or	by	an	unrelated	expression.

Column	references	can	appear	in	the	SELECT	clause	as	the	expression	for	an	aliased	column,	or	can	reference	columns	from
tables	in	the	FROM	clause.	If	the	column	reference	is	not	in	the	SELECT	clause,	the	query	cannot	be	a	set	operation,	specify
SELECT	DISTINCT,	or	contain	a	GROUP	BY	clause.

Unrelated	expressions,	expressions	not	appearing	as	an	aliased	expression	in	the	select	clause,	are	allowed	in	the	ORDER	BY
clause	of	a	non-set	QUERY.	The	columns	referenced	in	the	expression	must	come	from	the	from	clause	table	references.	The
column	references	cannot	be	to	alias	names	or	positional.

The	ORDER	BY	columns	must	be	of	a	comparable	type.

If	an	ORDER	BY	is	used	in	an	inline	view	or	view	definition	without	a	LIMIT	clause,	it	is	removed	by	the	Teiid	optimizer.

If	NULLS	FIRST/LAST	is	specified,	then	nulls	are	guaranteed	to	be	sorted	either	first	or	last.	If	the	null	ordering	is	not
specified,	then	results	will	typically	be	sorted	with	nulls	as	low	values,	which	is	the	default	internal	sorting	behavior	for
Teiid.	However,	not	all	sources	return	results	with	nulls	sorted	as	low	values	by	default,	and	Teiid	might	return	results	with
different	null	orderings.

Warning The	use	of	positional	ordering	is	no	longer	supported	by	the	ANSI	SQL	standard	and	is	a	deprecated	feature	in
Teiid.	It	is	best	to	use	alias	names	in	the	ORDER	BY	clause.

DML	commands

483

LIMIT	clause
The	LIMIT	clause	specifies	a	limit	on	the	number	of	records	returned	from	the	SELECT	command.	YOu	can	specify	an	optional
offset	(the	number	of	rows	to	skip).	The	LIMIT	clause	can	also	be	specified	using	the	SQL	2008	OFFSET/FETCH	FIRST	clauses.
If	an	ORDER	BY	is	also	specified,	it	will	be	applied	before	the	OFFSET/LIMIT	are	applied.	If	an	ORDER	BY	is	not	specified
there	is	generally	no	guarantee	what	subset	of	rows	will	be	returned.

Usage

LIMIT	[offset,]	limit

LIMIT	limit	OFFSET	offset

[OFFSET	offset	ROW|ROWS]	[FETCH	FIRST|NEXT	[limit]	ROW|ROWS	ONLY]

Syntax	rules
The	LIMIT/OFFSET	expressions	must	be	a	non-negative	integer	or	a	parameter	reference	(?).	An	offset	of		0		is	ignored.
A	limit	of		0		returns	no	rows.

The	terms	FIRST/NEXT	are	interchangeable	as	well	as	ROW/ROWS.

The	LIMIT	clause	can	take	an	optional	preceding	NON_STRICT	hint	to	indicate	that	push	operations	should	not	be
inhibited,	even	if	the	results	will	not	be	consistent	with	the	logical	application	of	the	limit.	The	hint	is	only	needed	on
unordered	limits,	for	example,		"SELECT	*	FROM	VW	/*+	NON_STRICT	*/	LIMIT	2"	.

LIMIT	clause	examples
	LIMIT	100		returns	the	first	100	records	(rows	1-100).

	LIMIT	500,	100		skips	500	records	and	returns	the	next	100	records(rows	501-600).

	OFFSET	500	ROWS		skips	500	records.

	OFFSET	500	ROWS	FETCH	NEXT	100	ROWS	ONLY		skips	500	records	and	returns	the	next	100	records	(rows	501-600).

	FETCH	FIRST	ROW	ONLY		returns	only	the	first	record.

DML	commands

484

INTO	clause

Warning Usage	of	the	INTO	Clause	for	inserting	into	a	table	has	been	been	deprecated.	An	INSERT	with	a	query
command	should	be	used	instead.	For	information	about	using	INSERT,	see	INSERT	command.

When	the	into	clause	is	specified	with	a	SELECT,	the	results	of	the	query	are	inserted	into	the	specified	table.	This	is	often	used	to
insert	records	into	a	temporary	table.	The	INTO	clause	immediately	precedes	the	FROM	clause.

Usage

INTO	table	FROM	...

Syntax	rules
The		INTO		clause	is	logically	applied	last	in	processing,	after	the		ORDER	BY		and		LIMIT		clauses.

Teiid’s	support	for		SELECT	INTO		is	similar	to	Microsoft	SQL	Server.	The	target	of	the		INTO		clause	is	a	table	where	the
result	of	the		SELECT		command	will	be	inserted.

For	example,	the	following	statement:

SELECT	col1,	col2	INTO	targetTable	FROM	sourceTable

inserts		col1		and		col2		from	the		sourceTable		into	the		targetTable	.

You	cannot	combine	SELECT	INTO	with	a	UNION	query.

That	is,	you	cannot	select	the	results	from	a		sourceTable	UNION		query	for	insertion	into	a		targetTable	.

DML	commands

485

OPTION	clause
The	OPTION	keyword	denotes	options	that	a	user	can	pass	in	with	a	command.	These	options	are	specific	to	Teiid	and	are	not
covered	by	any	SQL	specification.

Usage

OPTION	option	(,	option)*

Supported	options

	MAKEDEP	table	(,table)*	

Specifies	source	tables	that	should	be	made	dependent	in	the	join.

	MAKEIND	table	(,table)*	

Specifies	source	tables	that	should	be	made	independent	in	the	join.

	MAKENOTDEP	table	(,table)*	

Prevents	a	dependent	join	from	being	used.

	NOCACHE	[table	(,table)*]	

Prevents	cache	from	being	used	for	all	tables	or	for	the	given	tables.

Examples

OPTION	MAKEDEP	table1

OPTION	NOCACHE

All	tables	specified	in	the	OPTION	clause	should	be	fully	qualified.	However,	the	table	name	can	match	either	the	fully	qualified
name	or	an	alias	name.

The	MAKEDEP	and	MAKEIND	hints	can	take	optional	arguments	to	control	the	dependent	join.	The	extended	hint	form	is:

MAKEDEP	tbl([max:val]	[[no]	join])

	tbl(JOIN)		means	that	the	entire	join	should	be	pushed.

	tbl(NO	JOIN)		means	that	the	entire	join	should	not	be	pushed.

	tbl(MAX:val)		means	that	the	dependent	join	should	only	be	performed	if	there	are	less	than	the	maximum	number	of
values	from	the	independent	side.

Tip Teiid	does	not	accept	PLANONLY,	DEBUG,	and	SHOWPLAN	arguments	in	the	OPTION	clause.	For	information
about	how	to	perform	the	functions	formerly	provided	by	these	options,	see	the	Client	Developer’s	Guide.

Note
MAKEDEP	and	MAKENOTDEP	hints	can	take	table	names	in	the	form	of		@view1.view2…table	.	For	example,
with	an	inline	view		"SELECT	*	FROM	(SELECT	*	FROM	tbl1,	tbl2	WHERE	tbl1.c1	=	tbl2.c2)	AS	v1	OPTION
MAKEDEP	@v1.tbl1"		the	hint	will	now	be	understood	as	applying	under	the	v1	view.

DML	commands

486

DDL	Commands
Teiid	is	compatible	with	a	subset	of	the	DDL	commands	for	creating	or	dropping	temporary	tables	and	manipulating	procedure
and	view	definitions	at	runtime.	It	is	not	currently	possible	to	arbitrarily	drop	or	create	non-temporary	metadata	entries.	For
information	about	the	DDL	statements	that	you	can	use	to	define	schemas	in	a	virtual	database,	see	DDL	metadata.

To	make	non-temporary	metadata	updates	persistent,	you	must	configure	a		MetadataRepository	.	For	more	information,	see
Runtime	Metadata	Updates	in	the	Developer’s	Guide.

DDL	commands

487

Temporary	Tables
You	can	create	and	use	temporary	(temp)	tables	in	Teiid.	Temporary	tables	are	created	dynamically,	but	are	treated	as	any	other
physical	table.

DDL	commands

488

Local	temporary	tables
Local	temporary	tables	can	be	defined	implicitly	by	referencing	them	in	a	INSERT	statement	or	explicitly	with	a	CREATE
TABLE	statement.	Implicitly	created	temp	tables	must	have	a	name	that	starts	with		#	.

Note

Teiid	interprets	local	to	mean	that	a	temporary	table	is	scoped	to	the	session	or	block	of	the	virtual	procedure	that
creates	it.	This	interpretation	differs	from	the	SQL	specification	and	from	the	interpretation	that	other	database
vendors	implement.	After	exiting	a	block	or	at	the	termination	of	a	session,	the	table	is	dropped.	Session	tables
and	other	temporary	tables	that	a	calling	procedures	creates	are	not	visible	to	called	procedures.	If	a	temporary
table	of	the	same	name	is	created	in	a	called	procedure,	then	a	new	instance	is	created.

Creation	syntax
You	can	create	local	temporary	tables	explicitly	or	implicitly.

Explicit	creation	syntax
Local	temporary	tables	can	be	defined	explicitly	with	a	CREATE	TABLE	statement,	as	in	the	following	example:name:	value

CREATE	LOCAL	TEMPORARY	TABLE	name	(column	type	[NOT	NULL],	...	[PRIMARY	KEY	(column,	...)])	[ON	COMMIT	PRESE

RVE	ROWS]

Use	the	SERIAL	data	type	to	specify	a	NOT	NULL	and	auto-incrementing	INTEGER	column.	The	starting	value	of	a
SERIAL	column	is	1.

Implicit	creation	syntax
Local	temporary	tables	can	be	defined	implicitly	by	referencing	them	in	an	INSERT	statement.

INSERT	INTO	#name	(column,	...)	VALUES	(value,	...)

INSERT	INTO	#name	[(column,	...)]	select	c1,	c2	from	t

Note If		#name		does	not	exist,	it	is	defined	using	the	given	column	names	and	types	from	the	value	expressions.

INSERT	INTO	#name	(column,	...)	VALUES	(value,	...)

INSERT	INTO	#name	[(column,	...)]	select	c1,	c2	from	t

Note
If		#name		does	not	exist,	it	is	defined	using	the	target	column	names,	and	the	types	from	the	query-derived
columns.	If	target	columns	are	not	supplied,	the	column	names	will	match	the	derived	column	names	from
the	query.

Drop	syntax

DROP	TABLE	name

+	In	the	following	example,	a	series	of	statements	loads	a	temporary	table	with	data	from	2	sources,	manually	inserts	a	record,	and
then	uses	the	temporary	table	in	a	SELECT	query.

Example:	Local	temporary	tables

CREATE	LOCAL	TEMPORARY	TABLE	TEMP	(a	integer,	b	integer,	c	integer);

SELECT	*	INTO	temp	FROM	Src1;

SELECT	*	INTO	temp	FROM	Src2;

INSERT	INTO	temp	VALUES	(1,2,3);

SELECT	a,b,c	FROM	Src3,	temp	WHERE	Src3.a	=	temp.b;

For	more	information	about	using	local	temporary	tables,	see	Virtual	procedures.

DDL	commands

489

DDL	commands

490

Global	temporary	tables
Global	temporary	tables	are	created	from	the	metadata	that	you	supply	to	Teiid	at	deployment	time.	Unlike	local	temporary	tables,
you	cannot	create	global	temporary	tables	at	runtime.	Your	global	temporary	tables	share	a	common	definition	through	a	schema
entry.	However,	a	new	instance	of	the	temporary	table	is	created	in	each	session.	The	table	is	then	dropped	when	the	session	ends.
There	is	no	explicit	drop	support.	A	common	use	for	a	global	temporary	table	is	to	pass	results	into	and	out	of	procedures.

Creation	syntax

CREATE	GLOBAL	TEMPORARY	TABLE	name	(column	type	[NOT	NULL],	...	[PRIMARY	KEY	(column,	...)])	OPTIONS	(UPDATABLE	

'true')

If	you	use	the	SERIAL	data	type,	then	each	session’s	instance	of	the	global	temporary	table	will	have	its	own	sequence.

You	must	explicitly	specify	UPDATABLE	if	you	want	to	update	the	temporary	table.

For	information	about	syntax	options,	see	the		CREATE	TABLE		DDL	statements	in	DDL	metadata	for	schema	objects.

DDL	commands

491

Common	features	of	global	and	local	temporary	tables
Global	and	local	temporary	tables	share	some	common	features.

Primary	key	usage
All	key	columns	must	be	comparable.

If	you	use	a	primary	key,	it	creates	a	clustered	index	that	enables	search	improvements	for	SQL	comparison	operators,	and
the	IN,	LIKE,	and	ORDER	BY	operators.

You	can	use		Null		as	a	primary	key	value,	but	there	must	be	only	one	row	that	has	an	all-null	key.

Transactions
There	is	a		READ_UNCOMMITED		transaction	isolation	level.	There	are	no	locking	mechanisms	available	to	enable	higher
isolation	levels,	and	the	result	of	a	rollback	may	be	inconsistent	across	multiple	transactions.	If	concurrent	transactions	are
not	associated	with	the	same	local	temporary	table	or	session,	then	the	transaction	isolation	level	is	effectively	serializable.	If
you	want	full	consistency	with	local	temporary	tables,	then	only	use	a	connection	with	one	transaction	at	a	time.	This	mode
of	operation	is	ensured	by	connection	pooling	that	tracks	connections	by	transaction.

Limitations
With	the		CREATE	TABLE		syntax,	you	can	specify	only	basic	table	definition	(column	name,	type,	and	nullable	information),
and	an	optional	primary	key.	For	global	temporary	tables,	additional	metadata	in	the	CREATE	statement	is	effectively
ignored	when	creating	the	temporary	table	instance.	However,	the	metadata	might	still	be	used	by	planning	similar	to	any
other	table	entry.

You	can	use		ON	COMMIT	PRESERVE	ROWS	.	You	cannot	use	other		ON	COMMIT		actions.

The	cannot	use	"drop	behavior"	options	in	the	DROP	statement.

Temporary	tables	are	not	fail-over	safe.

Non-inlined	LOB	values	(XML,	CLOB,	BLOB,	JSON,	geometry)	are	tracked	by	reference	rather	than	by	value	in	a
temporary	table.	If	you	insert	LOB	values	from	external	sources	in	your	temporary	table,	they	might	become	unreadable
when	the	associated	statement	or	connection	is	closed.

DDL	commands

492

Foreign	temporary	tables
Unlike	a	local	or	global	temporary	table,	a	foreign	temporary	table	is	a	reference	to	an	actual	source	table	that	is	created	at
runtime,	rather	than	during	the	metadata	load.

A	foreign	temporary	table	requires	explicit	creation	syntax:

CREATE	FOREIGN	TEMPORARY	TABLE	name	...	ON	schema

Where	the	table	creation	body	syntax	is	the	same	as	a	standard	CREATE	FOREIGN	TABLE	DDL	statement.	For	more
information,	see	DDL	metadata.	In	general,	usage	of	DDL	OPTION	clauses	might	be	required	to	properly	access	the	source	table,
including	setting	the	name	in	the	source,	updatability,	native	types,	and	so	forth.

The	schema	name	must	specify	an	existing	schema/model	in	the	VDB.	The	table	will	be	accessed	as	if	it	is	on	that	source.
However	within	Teiid	the	temporary	table	will	still	be	scoped	the	same	as	a	non-foreign	temporary	table.	This	means	that	the
foreign	temporary	table	will	not	belong	to	a	Teiid	schema,	and	will	be	scoped	to	the	session	or	procedure	block	where	it	is	created.

The	DROP	syntax	for	a	foreign	temporary	table	is	the	same	as	for	a	non-foreign	temporary	table.

Neither	a	CREATE	nor	a	corresponding	DROP	of	a	foreign	temporary	table	issues	a	pushdown	command.	Rather,	this	mechanism
exposes	a	source	table	for	use	within	Teiid	on	a	temporary	basis.

There	are	two	usage	scenarios	for	a	FOREIGN	TEMPORARY	TABLE.	The	first	is	to	dynamically	access	additional	tables	on	the
source.	The	other	is	to	replace	the	usage	of	a	Teiid	local	temporary	table	for	performance	reasons.	The	usage	pattern	for	the	latter
case	would	look	like:

//-	create	the	source	table

source.native("CREATE	GLOBAL	TEMPORARY	TABLE	name	IF	NOT	EXISTS	...	ON	COMMIT	DELETE	ROWS");

//-	bring	the	table	into	Teiid

CREATE	FOREIGN	TEMPORARY	TABLE	name	...	OPTIONS	(UPDATABLE	true)

//-	use	the	table

...

//-	forget	the	table

DROP	TABLE	name

Note	the	usage	of	the	native	procedure	to	pass	source-specific	CREATE	DDL	to	the	source.	Teiid	does	not	currently	attempt	to
pushdown	a	source	creation	of	a	temporary	table	based	on	the	CREATE	statement.	Some	other	mechanism,	such	as	the	native
procedure	shown	above,	must	be	used	to	first	create	the	table.	Also	note	the	table	is	explicitly	marked	as	updatable,	since	DDL
defined	tables	are	not	updatable	by	default.

The	source’s	handling	of	temporary	tables	must	also	be	understood	to	make	this	work	as	intended.	Sources	that	use	the	same
GLOBAL	table	definition	for	all	sessions	while	scoping	the	data	to	be	session-specific	(such	as	Oracle)	or	sources	that	use
session-scoped	temporary	tables	(such	as	PostgreSQL)	will	work	if	accessed	under	a	transaction.	A	transaction	is	necessary	for	the
following	reasons:

The	source	on	commit	behavior	(most	likely	DELETE	ROWS	or	DROP)	will	ensure	clean-up.	Keep	in	mind	that	a	Teiid
drop	does	not	issue	a	source	command	and	is	not	guaranteed	to	occur	(in	some	exception	cases,	loss	of	database	connectivity,
hard	shutdown,	and	so	forth).

The	source	pool	when	using	track	connections	by	transaction	will	ensure	that	multiple	uses	of	that	source	by	Teiid	will	use
the	same	connection/session	and	thus	the	same	temporary	table	and	data.

Tip You	cannot	use	the		ON	COMMIT		clause	with	Teiid.	As	a	result,	for	local	temporary	tables,	the		ON	COMMIT		behavior
for	source	tables	is	likely	to	be	different	from	the	default		PRESERVE	ROWS	.

DDL	commands

493

DDL	commands

494

Alter	view
Usage

ALTER	VIEW	name	AS	queryExpression

Syntax	rules
The	alter	query	expression	can	be	prefixed	with	a	cache	hint	for	materialized	view	definitions.	The	hint	takes	effect	the	next
time	that	the	materialized	view	table	loads.

DDL	commands

495

Alter	procedure
Usage

ALTER	PROCEDURE	name	AS	block

Syntax	rules
The	ALTER	block	should	not	include		CREATE	VIRTUAL	PROCEDURE	.

You	can	prefix	the	ALTER	block	with	a	cache	hint	for	cached	procedures.

DDL	commands

496

Alter	trigger
Usage

ALTER	TRIGGER	ON	name	INSTEAD	OF	INSERT|UPDATE|DELETE	(AS	FOR	EACH	ROW	block)	|	(ENABLED|DISABLED)

Syntax	rules
The	target		name		must	be	an	updatable	view.

Triggers	are	not	true	schema	objects.	They	are	scoped	only	to	their	view	and	have	no	name.

Update	procedures	must	already	exist	for	the	given	trigger	event.	For	more	information,	see	Triggers.

DDL	commands

497

Procedures
You	can	use	a	procedure	language	in	Teiid	to	call	foreign	procedures	and	define	virtual	procedures	and	triggers.

Procedures

498

Procedure	language
You	can	use	a	procedural	language	in	Teiid	to	define	virtual	procedures.	These	are	similar	to	stored	procedures	in	relational
database	management	systems.	You	can	use	this	language	to	define	the	transformation	logic	for	decomposing	INSERT,	UPDATE,
and	DELETE	commands	against	views.	These	are	known	as	update	procedures.	For	more	information,	see	Virtual	procedures	and
update	procedures	(Triggers).

Procedures

499

Command	statement
A	command	statement	executes	a	DML	command,	DDL	command,	or	dynamic	SQL	against	one	or	more	data	sources.	For	more
information,	see	DML	commands	and	DDL	commands.

Usage

command	[(WITH|WITHOUT)	RETURN];

Example	command	statements

SELECT	*	FROM	MySchema.MyTable	WHERE	ColA	>	100	WITHOUT	RETURN;

INSERT	INTO	MySchema.MyTable	(ColA,ColB)	VALUES	(50,	'hi');

Syntax	rules
EXECUTE	command	statements	may	access	IN/OUT,	OUT,	and	RETURN	parameters.	To	access	the	return	value	the
statement	will	have	the	form		var	=	EXEC	proc…	.	To	access	OUT	or	IN/OUT	values	named	parameter	syntax	must	be	used.
For	example,		EXEC	proc(in_param⇒'1',	out_param⇒var)		will	assign	the	value	of	the	out	parameter	to	the	variable	var.	It	is
expected	that	the	datatype	of	a	parameter	is	implicitly	convertible	to	the	data	type	of	the	variable.	For	more	information	about
EXECUTE	command	statements,	see	EXECUTE	command.

The	RETURN	clause	determines	if	the	result	of	the	command	is	returnable	from	the	procedure.	WITH	RETURN	is	the
default.	If	the	command	does	not	return	a	result	set,	or	the	procedure	does	not	return	a	result	set,	the	RETURN	clause	is
ignored.	If	WITH	RETURN	is	specified,	the	result	set	of	the	command	must	match	the	expected	result	set	of	the	procedure.
Only	the	last	successfully	executed	statement	executed	WITH	RETURN	will	be	returned	as	the	procedure	result	set.	If	there
are	no	returnable	result	sets	and	the	procedure	declares	that	a	result	set	will	be	returned,	then	an	empty	result	set	is	returned.

Note

The	INTO	clause	is	used	only	for	inserting	into	a	table.	`SELECT	…	INTO	table	…		is	functionally

equivalent	to	`INSERT	INTO	table	SELECT	…		If	you	need	to	assign	variables,	you	can	use	one	of	the	following
methods:

Use	an	assignment	statement	with	a	scalar	subquery

DECLARE	string	var	=	(SELECT	col	...);

Use	a	temporary	table

INSERT	INTO	#temp	SELECT	col1,	col2	...;

DECLARE	string	VARIABLES.RESULT	=	(SELECT	x	FROM	#temp);

Use	an	array

DECLARE	string[]	var	=	(SELECT	(col1,	col2)	...);

DECLARE	string	col1val	=	var[1];

Procedures

500

Dynamic	SQL	command
Dynamic	SQL	allows	for	the	execution	of	an	arbitrary	SQL	command	in	a	virtual	procedure.	Dynamic	SQL	is	useful	in	situations
where	the	exact	command	form	is	not	known	prior	to	execution.

Usage

EXECUTE	IMMEDIATE	<sql	expression>	AS	<variable>	<type>	[,	<variable>	<type>]*	[INTO	<variable>]	[USING	<variab

le>=<expression>	[,<variable>=<expression>]*]	[UPDATE	<literal>]

Syntax	rules
The	SQL	expression	must	be	a	CLOB	or	string	value	of	less	than	262144	characters.

The		AS		clause	is	used	to	define	the	projected	symbols	names	and	types	returned	by	the	executed	SQL	string.	The		AS	
clause	symbols	will	be	matched	positionally	with	the	symbols	returned	by	the	executed	SQL	string.	Non-convertible	types	or
too	few	columns	returned	by	the	executed	SQL	string	will	result	in	an	error.

The		INTO		clause	will	project	the	dynamic	SQL	into	the	specified	temp	table.	With	the		INTO		clause	specified,	the	dynamic
command	will	actually	execute	a	statement	that	behaves	like	an	INSERT	with	a	QUERY	EXPRESSION.	If	the	dynamic	SQL
command	creates	a	temporary	table	with	the		INTO		clause,	then	the		AS		clause	is	required	to	define	the	table’s	metadata.
Note	that	if	the	temporary	table	already	exists,	then	the	insert	columns	are	matched	positionally	-	not	by	name.

The		USING		clause	allows	the	dynamic	SQL	string	to	contain	variable	references	that	are	bound	at	runtime	to	specified
values.	This	allows	for	some	independence	of	the	SQL	string	from	the	surrounding	procedure	variable	names	and	input
names.	In	the	dynamic	command		USING		clause,	each	variable	is	specified	by	short	name	only.	However,	in	the	dynamic
SQL	the		USING		variable	must	be	fully	qualified	to		DVAR	.	The		USING		clause	is	only	for	values	that	will	be	used	in	the
dynamic	SQL	as	valid	expressions.	It	is	not	possible	to	use	the		USING		clause	to	replace	table	names,	keywords,	and	so	forth.
This	makes	using	symbols	equivalent	in	power	to	normal	bind	(?)	expressions	in	prepared	statements.	The		USING		clause
helps	reduce	the	amount	of	string	manipulation	needed.	If	a	reference	is	made	to	a	USING	symbol	in	the	SQL	string	that	is
not	bound	to	a	value	in	the		USING		clause,	an	exception	will	occur.

The		UPDATE		clause	is	used	to	specify	the	updating	model	count.	Accepted	values	are	(0,1,*).	0	is	the	default	value	if	the
clause	is	not	specified.	For	more	information,	see	Updating	model	count.

Example:	Dynamic	SQL

...

/*	Typically	complex	criteria	would	be	formed	based	upon	inputs	to	the	procedure.

	In	this	simple	example	the	criteria	is	references	the	using	clause	to	isolate

	the	SQL	string	from	referencing	a	value	from	the	procedure	directly	*/

DECLARE	string	criteria	=	'Customer.Accounts.Last	=	DVARS.LastName';

/*	Now	we	create	the	desired	SQL	string	*/

DECLARE	string	sql_string	=	'SELECT	ID,	First	||	"	"	||	Last	AS	Name,	Birthdate	FROM	Customer.Accounts	WHERE	'	

||	criteria;

/*	The	execution	of	the	SQL	string	will	create	the	#temp	table	with	the	columns	(ID,	Name,	Birthdate).

		Note	that	we	also	have	the	USING	clause	to	bind	a	value	to	LastName,	which	is	referenced	in	the	criteria.	*/

EXECUTE	IMMEDIATE	sql_string	AS	ID	integer,	Name	string,	Birthdate	date	INTO	#temp	USING	LastName='some	name';

/*	The	temp	table	can	now	be	used	with	the	values	from	the	Dynamic	SQL	*/

loop	on	(SELCT	ID	from	#temp)	as	myCursor

...

Procedures

501

Here	is	an	example	showing	a	more	complex	approach	to	building	criteria	for	the	dynamic	SQL	string.	In	short,	the	virtual
procedure		AccountAccess.GetAccounts		has	the	inputs		ID	,		LastName	,	and		bday	.	If	a	value	is	specified	for		ID		it	will	be	the
only	value	used	in	the	dynamic	SQL	criteria.	Otherwise,	if	a	value	is	specified	for		LastName		the	procedure	will	detect	if	the
value	is	a	search	string.	If		bday		is	specified	in	addition	to		LastName	,	it	will	be	used	to	form	compound	criteria	with		LastName	.

Example:	Dynamic	SQL	with	USING	clause	and	dynamically	built	criteria	string

...

DECLARE	string	crit	=	null;

IF	(AccountAccess.GetAccounts.ID	IS	NOT	NULL)

	crit	=	'(Customer.Accounts.ID	=	DVARS.ID)';

ELSE	IF	(AccountAccess.GetAccounts.LastName	IS	NOT	NULL)

BEGIN

	IF	(AccountAccess.GetAccounts.LastName	==	'%')

			ERROR	"Last	name	cannot	be	%";

	ELSE	IF	(LOCATE('%',	AccountAccess.GetAccounts.LastName)	<	0)

			crit	=	'(Customer.Accounts.Last	=	DVARS.LastName)';

	ELSE

			crit	=	'(Customer.Accounts.Last	LIKE	DVARS.LastName)';

	IF	(AccountAccess.GetAccounts.bday	IS	NOT	NULL)

			crit	=	'('	||	crit	||	'	and	(Customer.Accounts.Birthdate	=	DVARS.BirthDay))';

END

ELSE

	ERROR	"ID	or	LastName	must	be	specified.";

EXECUTE	IMMEDIATE	'SELECT	ID,	First	||	"	"	||	Last	AS	Name,	Birthdate	FROM	Customer.Accounts	WHERE	'	||	crit	US

ING	ID=AccountAccess.GetAccounts.ID,	LastName=AccountAccess.GetAccounts.LastName,	BirthDay=AccountAccess.GetAcc

ounts.Bday;

...

Dynamic	SQL	limitations	and	workarounds
The	use	of	the	dynamic	SQL	command	results	in	an	assignment	statement	that	requires	the	use	of	a	temporary	table.

Example	assignment

EXECUTE	IMMEDIATE	<expression>	AS	x	string	INTO	#temp;

DECLARE	string	VARIABLES.RESULT	=	(SELECT	x	FROM	#temp);

The	construction	of	appropriate	criteria	will	be	cumbersome	if	parts	of	the	criteria	are	not	present.	For	example	if		criteria		were
already	NULL,	then	the	following	example	results	in		criteria		remaining	NULL.

Example:	Dangerous	NULL	handling

...

criteria	=	'('	||	criteria	||	'	and	(Customer.Accounts.Birthdate	=	DVARS.BirthDay))';

It	is	best	to	ensure	that	the	criteria	is	not	NULL	prior	its	usage.	If	this	is	not	possible,	a	you	can	specify	a	default,	as	shown	in	the
following	example.

Example:	NULL	handling

...

criteria	=	'('	||	nvl(criteria,	'(1	=	1)')	||	'	and	(Customer.Accounts.Birthdate	=	DVARS.BirthDay))';

If	the	dynamic	SQL	is	an		UPDATE	,		DELETE	,	or		INSERT		command,	the	rowcount	of	the	statement	can	be	obtained	from	the
rowcount	variable.

Example:	AS	and	INTO	clauses

/*	Execute	an	update	*/

EXECUTE	IMMEDIATE	<expression>;

Procedures

502

Procedures

503

Declaration	statement
A	declaration	statement	declares	a	variable	and	its	type.	After	you	declare	a	variable,	you	can	use	it	in	that	block	within	the
procedure	and	any	sub-blocks.	A	variable	is	initialized	to	null	by	default,	but	can	also	be	assigned	the	value	of	an	expression	as
part	of	the	declaration	statement.

Usage

DECLARE	<type>	[VARIABLES.]<name>	[=	<expression>];

Example	syntax

		declare	integer	x;

		declare	string	VARIABLES.myvar	=	'value';

Syntax	rules
You	cannot	redeclare	a	variable	with	a	duplicate	name	in	a	sub-block.

The	VARIABLES	group	is	always	implied	even	if	it	is	not	specified.

The	assignment	value	follows	the	same	rules	as	for	an	Assignment	statement.

In	addition	to	the	standard	types,	you	may	specify	EXCEPTION	if	declaring	an	exception	variable.

Procedures

504

Assignment	statement
An	assignment	statement	assigns	a	value	to	a	variable	by	evaluating	an	expression.

Usage

<variable	reference>	=	<expression>;

Example	syntax

myString	=	'Thank	you';

VARIABLES.x	=	(SELECT	Column1	FROM	MySchema.MyTable);

Valid	variables	for	assignment	include	any	in-scope	variable	that	has	been	declared	with	a	declaration	statement,	or	the	procedure
	in_out		and		out		parameters.		In_out		and		out		parameters	can	be	accessed	by	their	fully	qualified	names.

Example:	Out	parameter

CREATE	VIRTUAL	PROCEDURE	proc	(OUT	STRING	x,	INOUT	STRING	y)	AS

BEGIN

		proc.x	=	'some	value	'	||	proc.y;

		y	=	'some	new	value';

END

Procedures

505

Special	variables
	VARIABLES.ROWCOUNT		integer	variable	will	contain	the	numbers	of	rows	affected	by	the	last	INSERT,	UPDATE,	or	DELETE
command	statement	executed.	Inserts	that	are	processed	by	dynamic	SQL	with	an		into		clause	will	also	update	the		ROWCOUNT	.

Sample	usage

...

UPDATE	FOO	SET	X	=	1	WHERE	Y	=	2;

DECLARE	INTEGER	UPDATED	=	VARIABLES.ROWCOUNT;

...

Non-update	command	statements	(WITH		or		WITHOUT	RETURN)	will	reset	the		ROWCOUNT		to	0.

Note To	ensure	you	are	getting	the	appropriate		ROWCOUNT		value,	save	the		ROWCOUNT		to	a	variable	immediately	after
the	command	statement.

Procedures

506

Compound	statement
A	compound	statement	or	block	logically	groups	a	series	of	statements.	Temporary	tables	and	variables	that	are	created	in	a
compound	statement	are	local	only	to	that	block,	and	are	destroyed	when	exiting	the	block.

Usage

[label	:]	BEGIN	[[NOT]	ATOMIC]

				statement*

[EXCEPTION	ex

				statement*

]

END

Note
When	a	block	is	expected	by	an		IF	,		LOOP	,		WHILE	,	and	so	forth,	a	single	statement	is	also	accepted	by	the
parser.	Even	though	the	block		BEGIN		or		END		are	not	expected,	the	statement	will	execute	as	if	wrapped	in	a
	BEGIN		or		END		pair.

Syntax	rules
If		NOT	ATOMIC		or	no		ATOMIC		clause	is	specified,	the	block	will	be	executed	non-atomically.

If	the		ATOMIC		clause	is	specified,	the	block	must	execute	atomically.	If	a	transaction	is	already	associated	with	the	thread,
no	additional	action	will	be	taken;	savepoints	or	sub-transactions	are	not	currently	used.	If	the	higher	level	transaction	is
used,	and	the	block	does	not	complete — regardless	of	the	presence	of	exception	handling — the	transaction	will	be	marked
as	rollback	only.	Otherwise,	a	transaction	will	be	associated	with	the	execution	of	the	block.	Upon	successful	completion	of
the	block	the	transaction	will	be	committed.

The	label	must	not	be	the	same	as	any	label	that	is	used	in	statements	that	contain	this	one.

Variable	assignments	and	the	implicit	result	cursor	are	unaffected	by	rollbacks.	If	a	block	does	not	complete	successfully,	its
assignments	will	still	take	affect.

Exception	handling
If	an		EXCEPTION		clause	is	used	within	a	compound	statement,	any	processing	exception	emitted	from	statements	will	be	caught
with	the	flow	of	execution	transferring	to		EXCEPTION		statements.	Any	block-level	transaction	started	by	this	block	will	commit	if
the	exception	handler	successfully	completes.	If	another	exception,	or	the	original	exception,	is	emitted	from	the	exception
handler,	the	transaction	will	rollback.	Any	temporary	tables	or	variables	specific	to	the	BLOCK	will	not	be	available	to	the
exception	handler	statements.

Note Only	processing	exceptions,	which	are	typically	caused	by	errors	originating	at	the	sources	or	with	function
execution,	are	caught.	A	low-level	internal	Teiid	error	or	Java		RuntimeException		will	not	be	caught.

To	aid	in	the	processing	of	a	caught	exception,	the		EXCEPTION		clause	specifies	a	group	name	that	exposes	the	significant	fields	of
the	exception.	The	following	table	shows	the	variables	that	an	exception	group	contains:

Variable Type Description

STATE string The	SQL	State

ERRORCODE integer

The	error	or	vendor	code.	In	the	case
of	Teiid	internal	exceptions	this	will
be	the	integer	suffix	of	the
TEIIDxxxx	code.

TEIIDCODE string The	full	Teiid	event	code.	Typically
TEIIDxxxx.

Procedures

507

EXCEPTION object The	exception	being	caught,	will	be
an	instance	of		TeiidSQLException	.

CHAIN object The	chained	exception	or	cause	of
the	current	exception.

Note Teiid	does	not	yet	fully	comply	with	the	ANSI	SQL	specification	on	SQL	State	usage.	For	Teiid	errors	without	an
underlying	SQLException	cause,	it	is	best	to	use	the	Teiid	code.

The	exception	group	name	might	not	be	the	same	as	any	higher	level	exception	group	or	loop	cursor	name.

Example	exception	group	handling

BEGIN

				DECLARE	EXCEPTION	e	=	SQLEXCEPTION	'this	is	bad'	SQLSTATE	'xxxxx';

				RAISE	variables.e;

EXCEPTION	e

				IF	(e.state	=	'xxxxx')

								//in	this	trivial	example,	we'll	always	hit	this	branch	and	just	log	the	exception

								RAISE	SQLWARNING	e.exception;

				ELSE

								RAISE	e.exception;

END

Procedures

508

IF	statement
An	IF	statement	evaluates	a	condition	and	executes	either	one	of	two	statements	depending	on	the	result.	You	can	nest	IF
statements	to	create	complex	branching	logic.	A	dependent	ELSE	statement	will	execute	its	statement	only	if	the	IF	statement
evaluates	to		false	.

Usage

IF	(criteria)

			block

[ELSE

			block]

END

Example	IF	statement

IF	(var1	=	'North	America')

BEGIN

		...statement...

END	ELSE

BEGIN

		...statement...

END

The	criteria	can	be	any	valid	Boolean	expression	or	an		IS	DISTINCT	FROM		predicate	referencing	row	values.	The		IS	DISTINCT
FROM		extension	uses	the	following	syntax:

rowVal	IS	[NOT]	DISTINCT	FROM	rowValOther

Where		rowVal		and		rowValOther		are	references	to	row	value	group.	This	would	typically	be	used	in	instead	of	update	triggers
on	views	to	quickly	determine	if	the	row	values	are	changing:

Example:	IS	DISTINCT	FROM	IF	statement

IF	("new"	IS	DISTINCT	FROM	"old")

BEGIN

		...statement...

END

	IS	DISTINCT	FROM		considers	null	values	equivalent	and	never	produces	an	UNKNOWN	value.

Tip Null	values	should	be	considered	in	the	criteria	of	an	IF	statement.		IS	NULL		criteria	can	be	used	to	detect	the
presence	of	a	null	value.

Procedures

509

Loop	Statement
A	LOOP	statement	is	an	iterative	control	construct	that	is	used	to	cursor	through	a	result	set.

Usage

[label	:]	LOOP	ON	<select	statement>	AS	<cursorname>

				statement

Syntax	rules
The	label	must	not	be	the	same	as	any	label	that	is	used	in	statements	that	contain	this	one.

Procedures

510

While	statement
A		WHILE		statement	is	an	iterative	control	construct	that	is	used	to	execute	a	statement	repeatedly	whenever	a	specified	condition
is	met.

Usage

[label	:]	WHILE	<criteria>

				statement

Syntax	rules
The	label	must	not	be	the	same	as	any	label	that	is	used	in	statements	that	contain	this	one.

Procedures

511

Continue	statement
A		CONTINUE		statement	is	used	inside	a		LOOP		or		WHILE		construct	to	continue	with	the	next	loop	by	skipping	over	the	rest	of	the
statements	in	the	loop.	It	must	be	used	inside	a		LOOP		or		WHILE		statement.

Usage

CONTINUE	[label];

Syntax	rules
If	the	label	is	specified,	it	must	exist	on	a	containing		LOOP		or		WHILE		statement.

If	no	label	is	specified,	the	statement	will	affect	the	closest	containing		LOOP		or		WHILE		statement.

Procedures

512

Break	statement
A		BREAK		statement	is	used	inside	a		LOOP		or		WHILE		construct	to	break	from	the	loop.	It	must	be	used	inside	a		LOOP		or
	WHILE		statement.

Usage

BREAK	[label];

Syntax	rules
If	the	label	is	specified,	it	must	exist	on	a	containing		LOOP		or		WHILE		statement.

If	no	label	is	specified,	the	statement	will	affect	the	closest	containing		LOOP		or		WHILE		statement.

Procedures

513

Leave	statement
A		LEAVE		statement	is	used	inside	a	compound,		LOOP	,	or		WHILE		construct	to	leave	to	the	specified	level.

Usage

LEAVE	label;

Syntax	rules
The	label	must	exist	on	a	containing	compound	statement,		LOOP	,	or		WHILE		statement.

Procedures

514

Return	statement
A		RETURN		statement	gracefully	exits	the	procedure	and	optionally	returns	a	value.

Usage

RETURN	[expression];

Syntax	rules
If	an	expression	is	specified,	the	procedure	must	have	a	return	parameter	and	the	value	must	be	implicitly	convertible	to	the
expected	type.

Even	if	the	procedure	has	a	return	parameter,	it	is	not	required	to	specify	a	return	value	in	a		RETURN		statement.	A	return
parameter	can	be	set	through	an	assignment	or	it	can	be	left	as	null.

Sample	usage

CREATE	VIRTUAL	FUNCTION	times_two(val	integer)

			RETURNS	integer	AS

			BEGIN

						RETURN	val*2;

			END

Procedures

515

Error	statement
An		ERROR		statement	declares	that	the	procedure	has	entered	an	error	state	and	should	abort.	This	statement	will	also	roll	back	the
current	transaction,	if	one	exists.	Any	valid	expression	can	be	specified	after	the		ERROR		keyword.

Usage

ERROR	message;

Example:	Error	statement

ERROR	'Invalid	input	value:	'	||	nvl(Acct.GetBalance.AcctID,	'null');

An		ERROR		statement	is	equivalent	to:

RAISE	SQLEXCEPTION	message;

Procedures

516

Raise	statement
A		RAISE		statement	is	used	to	raise	an	exception	or	warning.	When	raising	an	exception,	this	statement	will	also	roll	back	the
current	transaction,	if	one	exists.

Usage

RAISE	[SQLWARNING]	exception;

Where	exception	may	be	a	variable	reference	to	an	exception	or	an	exception	expression.

Syntax	rules
If		SQLWARNING		is	specified,	the	exception	will	be	sent	to	the	client	as	a	warning	and	the	procedure	will	continue	to	execute.

A	null	warning	will	be	ignored.	A	null	non-warning	exception	will	still	cause	an	exception	to	be	raised.

Example	raise	statement

RAISE	SQLWARNING	SQLEXCEPTION	'invalid'	SQLSTATE	'05000';

Procedures

517

Exception	expression
An	exception	expression	creates	an	exception	that	can	be	raised	or	used	as	a	warning.

Usage

SQLEXCEPTION	message	[SQLSTATE	state	[,	code]]	CHAIN	exception

Syntax	rules
Any	of	the	values	may	be	null.

	message		and		state		are	string	expressions	that	specify	the	exception	message	and	SQL	state.	Teiid	does	not	fully	comply
with	the	ANSI	SQL	specification	on	SQL	state	usage,	but	you	are	allowed	to	set	any	SQL	state	you	choose.

	code		is	an	integer	expression	that	specifies	the	vendor	code.

	exception		must	be	a	variable	reference	to	an	exception	or	an	exception	expression,	and	will	be	chained	to	the	resulting
exception	as	its	parent.

Procedures

518

Virtual	procedures
Virtual	procedures	are	defined	using	the	Teiid	procedural	language.	For	more	information,	see	Procedure	language.

A	virtual	procedure	has	zero	or	more	INPUT,	INOUT,	or	OUT	parameters,	an	optional	RETURN	parameter,	and	an	optional	result
set.	Virtual	procedures	can	execute	queries	and	other	SQL	commands,	define	temporary	tables,	add	data	to	temporary	tables,	walk
through	result	sets,	use	loops,	and	use	conditional	logic.

Virtual	procedure	definition
For	more	information,	see	Create	procedure/function	in	DDL	metadata	for	schema	objects.

Note	that	the	optional	result	parameter	is	always	considered	the	first	parameter.

Within	the	body	of	the	procedure,	you	can	use	any	valid	statement.	For	more	information	avbout	procedure	language	statements,
see	Procedure	language.

There	is	no	explicit	cursoring	or	value	returning	statement.	Instead,	the	last	unnamed	command	statement	executed	in	the
procedure	that	returns	a	result	set	will	be	returned	as	the	result.	The	output	of	that	statement	must	match	the	expected	result	set
and	parameters	of	the	procedure.

Virtual	procedure	parameters
Virtual	procedures	can	take	zero	or	more		IN		or		INOUT		parameters,	and	can	have	any	number	of		OUT		parameters	and	an
optional		RETURN		parameter.	Each	input	has	the	following	information	that	is	used	during	runtime	processing:

Name
The	name	of	the	input	parameter.

Datatype
The	design-time	type	of	the	input	parameter.

Default	value
The	default	value	if	the	input	parameter	is	not	specified.

Nullable
	NO_NULLS	,		NULLABLE	,		NULLABLE_UNKNOWN	;	parameter	is	optional	if	nullable,	and	is	not	required	to	be	listed	when	using
named	parameter	syntax.

You	reference	a	parameter	in	a	virtual	procedure	by	using	its	fully-qualified	name	(or	less	if	unambiguous).	For	example,
	MySchema.MyProc.Param1	.

Example:	Referencing	an	input	parameter	and	assigning	an	Out	parameter	for		GetBalance		procedure

BEGIN

		MySchema.GetBalance.RetVal	=	UPPER(MySchema.GetBalance.AcctID);

		SELECT	Balance	FROM	MySchema.Accts	WHERE	MySchema.Accts.AccountID	=	MySchema.GetBalance.AcctID;

END

If	an		INOUT		parameter	is	not	assigned	any	value	in	a	procedure,	it	will	retain	the	value	it	was	assigned	for	input.	Any
	OUT/RETURN		parameter	that	is	not	assigned	a	value	will	retain	the	default	NULL	value.	The		INOUT/OUT/RETURN		output	values	are
validated	against	the		NOT	NULL		metadata	of	the	parameter.

Example	virtual	procedures
The	following	example	represents	a	loop	that	walks	through	a	cursored	table	and	uses		CONTINUE		and		BREAK	.

Virtual	procedure	using	LOOP,	CONTINUE,	BREAK

BEGIN

		DECLARE	double	total;

Procedures

519

		DECLARE	integer	transactions;

		LOOP	ON	(SELECT	amt,	type	FROM	CashTxnTable)	AS	txncursor

		BEGIN

				IF(txncursor.type	<>	'Sale')

				BEGIN

						CONTINUE;

				END	ELSE

				BEGIN

						total	=	(total	+	txncursor.amt);

						transactions	=	(transactions	+	1);

						IF(transactions	=	100)

						BEGIN

								BREAK;

						END

				END

		END

		SELECT	total,	(total	/	transactions)	AS	avg_transaction;

END

The	following	example	uses	conditional	logic	to	determine	which	of	two	SELECT	statements	to	execute.

Virtual	procedure	with	conditional	SELECT

BEGIN

		DECLARE	string	VARIABLES.SORTDIRECTION;

		VARIABLES.SORTDIRECTION	=	PartsVirtual.OrderedQtyProc.SORTMODE;

		IF	(ucase(VARIABLES.SORTDIRECTION)	=	'ASC')

		BEGIN

				SELECT	*	FROM	PartsVirtual.SupplierInfo	WHERE	QUANTITY	>	PartsVirtual.OrderedQtyProc.QTYIN	ORDER	BY	PartsVi

rtual.SupplierInfo.PART_ID;

		END	ELSE

		BEGIN

				SELECT	*	FROM	PartsVirtual.SupplierInfo	WHERE	QUANTITY	>	PartsVirtual.OrderedQtyProc.QTYIN	ORDER	BY	PartsVi

rtual.SupplierInfo.PART_ID	DESC;

		END

END

Executing	virtual	procedures
You	execute	procedures	using	the	SQL		EXECUTE		command.	For	more	information,	see	Execute	command	in	DML	commands.

If	the	procedure	has	defined	inputs,	you	specify	those	in	a	sequential	list,	or	using	name=value	syntax.	You	must	use	the	name	of
the	input	parameter,	scoped	by	the	full	procedure	name	if	the	parameter	name	is	ambiguous	in	the	context	of	other	columns	or
variables	in	the	procedure.

A	virtual	procedure	call	returns	a	result	set	like	any		SELECT	,	so	you	can	use	this	in	many	places	you	can	use	a		SELECT	.
Typically	you’ll	use	the	following	syntax:

SELECT	*	FROM	(EXEC	...)	AS	x

Virtual	procedure	limitations
A	virtual	procedure	can	return	only	one	result	set.	If	you	need	to	pass	in	a	result	set,	or	pass	out	multiple	result	sets,	then	consider
using	global	temporary	tables	instead.

Procedures

520

Triggers
View	triggers
Views	are	abstractions	above	physical	sources.	They	typically	union	or	join	information	from	multiple	tables,	often	from	multiple
data	sources	or	other	views.	Teiid	can	perform	update	operations	against	views.	Update	commands	that	you	run	against	a	view
(INSERT	,		UPDATE	,	or		DELETE)	require	logic	to	define	how	the	tables	and	views	integrated	by	the	view	are	affected	by	each
type	of	command.	This	transformation	logic,	also	referred	to	as	a	trigger,	is	invoked	when	an	update	command	is	issued	against	a
view.	Update	procedures	define	the	logic	for	how	the	update	command	that	you	run	against	a	view	is	decomposed	into	the
individual	commands	to	be	executed	against	the	underlying	physical	sources.	Similar	to	virtual	procedures,	update	procedures
have	the	ability	to	execute	queries	or	other	commands,	define	temporary	tables,	add	data	to	temporary	tables,	walk	through	result
sets,	use	loops,	and	use	conditional	logic.	For	more	inmformation	about	virtual	procedures,	see	Virtual	procedures.

You	can	use		INSTEAD	OF		triggers	on	views	in	a	way	that	is	similar	to	the	way	that	you	might	use	them	with	traditional	databases.
You	can	have	only	one		FOR	EACH	ROW		procedure	for	each		INSERT	,		UPDATE	,	or		DELETE		operation	against	a	view.

Usage

CREATE	TRIGGER	ON	view_name	INSTEAD	OF	INSERT|UPDATE|DELETE	AS

FOR	EACH	ROW

...

Update	procedure	processing
1.	 The	user	application	submits	the	SQL	command.

2.	 The	command	detects	the	view	that	it	is	executed	against.

3.	 The	correct	procedure	is	chosen	depending	upon	the	command	type	(INSERT	,		UPDATE	,	or		DELETE).

4.	 The	procedure	is	executed.	The	procedure	might	contain	SQL	commands	of	its	own.	Commands	in	the	procedure	can	be
different	in	type	from	the	command	that	is	received	from	the	calling	application.

5.	 Commands,	as	described	in	the	procedure,	are	issued	to	the	individual	physical	data	sources	or	other	views.

6.	 A	value	representing	the	number	of	rows	changed	is	returned	to	the	calling	application.

Source	triggers
Teiid	can	use		AFTER		triggers	on	source	tables.		AFTER		triggers	are	called	by	events	from	a	change	data	capture	(CDC)	system.

Usage:

CREATE	TRIGGER	ON	source_table	AFTER	INSERT|UPDATE|DELETE	AS

FOR	EACH	ROW

...

FOR	EACH	ROW	triggers
Only	the		FOR	EACH	ROW		construct	serves	as	a	trigger	handler.	A		FOR	EACH	ROW		trigger	procedure	will	evaluate	its	block	for	each
row	of	the	view/source	affected	by	the		UPDATE		statement.	For		UPDATE		and		DELETE		statements,	this	will	be	every	row	that
passes	the		WHERE		condition.	For		INSERT		statements	there	will	be	one	new	row	for	each	set	of	values	from	the		VALUES		or	query
expression.	For	a	view,	the	rows	updated	is	reported	as	this	number,	regardless	of	the	affect	of	the	underlying	procedure	logic.

Usage

FOR	EACH	ROW

			BEGIN	ATOMIC

						...

			END

Procedures

521

The		BEGIN		and		END		keywords	are	used	to	denote	block	boundaries.	Within	the	body	of	the	procedure,	any	valid	statement	may
be	used.

Note The	use	of	the		ATOMIC		keyword	is	currently	optional	for	backward	compatibility,	but	unlike	a	normal	block,	the
default	for		INSTEAD	OF		triggers	is	atomic.

Special	variables	for	update	procedures
You	can	use	a	number	of	special	variables	when	defining	your	update	procedure.

NEW	variables
Every	attribute	in	the	view/table	whose		UPDATE		and		INSERT		transformations	you	are	defining	has	an	equivalent	variable
named		NEW.<column_name>	.

When	an	INSERT	or	an	UPDATE	command	is	executed	against	the	view,	or	the	event	is	received,	these	variables	are
initialized	to	the	values	in	the		INSERT	VALUES		clause	or	the		UPDATE	SET		clause	respectively.

In	an		UPDATE		procedure,	the	default	value	of	these	variables,	if	they	are	not	set	by	the	command,	is	the	old	value.	In	an
INSERT	procedure,	the	default	value	of	these	variables	is	the	default	value	of	the	virtual	table	attributes.	See		CHANGING	
variables,	later	in	this	list	for	distinguishing	defaults	from	passed	values.

OLD	variables
Every	attribute	on	the	view/table	whose		UPDATE		and		DELETE		transformations	you	are	defining	has	an	equivalent	variable
named		OLD.<column_name>	.

When	a		DELETE		or		UPDATE		command	is	executed	against	the	view,	or	the	event	is	received,	these	variables	are	initialized	to
the	current	values	of	the	row	being	deleted	or	updated	respectively.

CHANGING	variables
Every	attribute	on	the	view/table	whose		UPDATE		and		INSERT		transformations	you	are	defining	has	an	equivalent	variable
named		CHANGING.<column_name>	.

When	an		INSERT		or	an		UPDATE		command	is	executed	against	the	view,	or	an	the	event	is	received,	these	variables	are
initialized	to		true		or		false		depending	on	whether	the		INPUT		variable	was	set	by	the	command.	A		CHANGING		variable	is
commonly	used	to	differentiate	between	a	default	insert	value	and	one	that	is	specified	in	the	user	query.

For	example,	for	a	view	with	columns	A,	B,	C:

If	User	Executes… Then…

	INSERT	INTO	VT	(A,	B)	VALUES	(0,	1)	
CHANGING.A	=	true,	CHANGING.B	=	true,
CHANGING.C	=	false

	UPDATE	VT	SET	C	=	2	
CHANGING.A	=	false,	CHANGING.B	=	false,
CHANGING.C	=	true

Key	variables
To	return	generated	keys	from	an		INSERT		trigger,	a	KEY	group	is	made	available	that	can	be	assigned	the	value	to	be
returned.	Typically	this	requires	using	the		generated_key		system	function.	However,	not	all	inserts	provide	generated	keys,
because	not	all	sources	return	generated	keys.

create	view	v1	(i	integer,	k	integer	not	null	auto_increment	primary	key)

OPTIONS	(UPDATABLE	true)	as

			select	x,	y	from	tbl;

create	trigger	on	v1	instead	of	insert	as

			for	each	row	begin	atomic

						--	...	some	logic

						insert	into	tbl	(x)	values	(new.i);

						key.k	=	cast(generated_key('y')	as	integer);

			end;

Procedures

522

Example	update	procedures
For	example,	for	a	view	with	columns	A,	B,	C:

Sample	DELETE	procedure

FOR	EACH	ROW

BEGIN

				DELETE	FROM	X	WHERE	Y	=	OLD.A;

				DELETE	FROM	Z	WHERE	Y	=	OLD.A;	//	cascade	the	delete

END

Sample	UPDATE	procedure

FOR	EACH	ROW

BEGIN

				IF	(CHANGING.B)

				BEGIN

								UPDATE	Z	SET	Y	=	NEW.B	WHERE	Y	=	OLD.B;

				END

END

Other	usages
	FOR	EACH	ROW		update	procedures	in	a	view	can	also	be	used	to	emulate		BEFORE/AFTER		each	row	triggers	while	still	retaining	the
ability	to	perform	an	inherent	update.	This		BEFORE/AFTER		trigger	behavior	with	an	inherent	update	can	be	achieved	by	creating
an	additional	updatable	view	over	the	target	view	with	update	procedures	of	the	form:

CREATE	TRIGGER	ON	outerVW	INSTEAD	OF	INSERT	AS

FOR	EACH	ROW

				BEGIN	ATOMIC

				--before	row	logic

				...

				--default	insert/update/delete	against	the	target	view

				INSERT	INTO	VW	(c1,	c2,	c3)	VALUES	(NEW.c1,	NEW.c2,	NEW.c3);

				--after	row	logic

				...

				END

Procedures

523

Comments
You	can	add	multi-line	SQL	comments	in	Teiid	by	enclosing	text	with		/*	*/	.

/*	comment

comment

comment...	*/

You	can	also	add	single	line	comments:

SELECT	...	--	comment

You	can	also	nest	comments.

Comments

524

Explain	statements
You	can	use	an	EXPLAIN	statement	to	obtain	a	query	plan.	Using	EXPLAIN	statements	to	obtain	a	query	execution	plan	is	a
native	function	of	the	SQL	language,	and	it	is	the	preferred	mechanism	to	use	over	pg/ODBC	transport.	If	you	are	using	a	Teiid
JDBC	client,	you	can	also	use	SET/SHOW	statements.	For	more	information	about	SET	and	SHOW	statements,	see	the	Client
Developer’s	Guide.

Usage

EXPLAIN	[(explainOption	[,	...])]	statement

explainOption	:=

						ANALYZE	[TRUE|FALSE]

				|	FORMAT	{TEXT|YAML|XML}

If	no	options	are	specified,	by	default	the	plan	is	provided	in	text	format	without	executing	the	query.

If	you	specify		ANALYZE		or		ANALYZE	TRUE	,	then	the	statement	is	executed,	unless	the	client	has	set	the		NOEXEC		option.	The
resulting	plan	will	include	runtime	node	statistics	from	the	fully	executed	statement.	All	side	effects,	including	updates,	will	still
occur.	You	might	need	to	use	a	transaction	to	rollback	any	unwanted	side	effects.

While	this	is	superficially	the	same	syntax	as	PostgreSQL,	the	plan	provided	in	the	various	formats	is	the	same	that	has	been
provided	by	Teiid	in	prior	versions.

For	more	information	about	how	to	interpret	results,	see	Query	plans.

Example

EXPLAIN	(analyze)	select	*	from	really_complicated_view

Returns	a	text-formatted	plan	from	an	actual	run	of	the	given	statement.

Explain	statement

525

Data	types
The	Teiid	type	system	is	based	on	Java/JDBC	types.	The	runtime	object	is	represented	by	the	corresponding	Java	class,	such	as
Long,	Integer,	Boolean,	String,	and	so	forth.	For	more	information,	see	Runtime	types.	You	can	use	domain	types	to	extend	the
type	system.	For	more	information,	see	DDL	metadata	for	domains.

Datatypes

526

Runtime	types
Teiid	works	with	a	core	set	of	runtime	types.	Runtime	types	can	be	different	from	semantic	types	that	are	defined	in	type	fields	at
design	time.	The	runtime	type	can	also	be	specified	at	design	time	or	it	will	be	automatically	chosen	as	the	closest	base	type	to	the
semantic	type.

Note

Even	if	a	type	is	declared	with	a	length,	precision,	or	scale	argument,	those	restrictions	are	effectively	ignored	by
the	runtime	system,	but	may	be	enforced/reported	at	the	edge	by	OData,	ODBC,	JDBC.	Geospatial	types	act	in	a
similar	manner.	Extension	metadata	might	be	needed	for	SRID,	type,	and	number	of	dimensions	for	consumption
by	tools/OData,	but	it	is	not	yet	enforced.	In	some	instances	you	might	need	to	use	the	ST_SETSRID	function	to
ensure	the	SRID	is	associated.

Table	1.	Teiid	runtime	types

Type Description Java	runtime	class JDBC	type ODBC	type

string	or	varchar

Variable	length
character	string	with	a
maximum	length	of
4000.

java.lang.String VARCHAR VARCHAR

varbinary

Variable	length	binary
string	with	a	nominal
maximum	length	of
8192.

byte[]	[1] VARBINARY VARBINARY

char

A	single	16	bit
character	-	which
cannot	represent	a
value	beyond	the
Basic	Multilingual
Plane.	This	limitation
also	applies	to
functions/expressions
that	expect	a	single
character	such	as
trim,	textagg,
texttable,	and	like
escape.

java.lang.Character CHAR CHAR

boolean

A	single	bit,	or
Boolean,	that	can	be
true,	false,	or	null
(unknown)

java.lang.Boolean BIT SMALLINT

byte	or	tinyint Numeric,	integral
type,	signed	8-bit java.lang.Byte TINYINT SMALLINT

short	or	smallint Numeric,	integral
type,	signed	16-bit java.lang.Short SMALLINT SMALLINT

integer	or	serial

Numeric,	integral
type,	signed	32-bit.
The	serial	type	also
implies	not	null	and
has	an	auto-
incrementing	value
that	starts	at	1.	serial
types	are	not
automatically
UNIQUE.

java.lang.Integer INTEGER INTEGER

Supported	types

527

long	or	bigint Numeric,	integral
type,	signed	64-bit java.lang.Long BIGINT NUMERIC

biginteger

Numeric,	integral
type,	arbitrary
precision	of	up	to
1000	digits

java.math.BigInteger NUMERIC NUMERIC

float	or	real

Numeric,	floating
point	type,	32-bit
IEEE	754	floating-
point	numbers

java.lang.Float REAL FLOAT

double

Numeric,	floating
point	type,	64-bit
IEEE	754	floating-
point	numbers

java.lang.Double DOUBLE DOUBLE

bigdecimal	or
decimal

Numeric,	floating
point	type,	arbitrary
precision	of	up	to
1000	digits.

java.math.BigDecimal NUMERIC NUMERIC

date

Datetime,
representing	a	single
day	(year,	month,
day)

java.sql.Date DATE DATE

time

Datetime,
representing	a	single
time	(hours,	minutes,
seconds)

java.sql.Time TIME TIME

timestamp

Datetime,
representing	a	single
date	and	time	(year,
month,	day,	hours,
minutes,	seconds,
fractional	seconds).

java.sql.Timestamp TIMESTAMP TIMESTAMP

object

Any	arbitrary	Java
object,	must
implement
java.lang.Serializable.

Any JAVA_OBJECT VARCHAR

blob
Binary	large	object,
representing	a	stream
of	bytes.

java.sql.Blob	[2] BLOB VARCHAR

clob
Character	large
object,	representing	a
stream	of	characters.

java.sql.Clob	[3] CLOB VARCHAR

xml XML	document java.sql.SQLXML[4] JAVA_OBJECT VARCHAR

geometry Geospatial	Object java.sql.Blob	[5] BLOB BLOB

geography	(11.2+) Geospatial	Object java.sql.Blob	[6] BLOB BLOB

Supported	types

528

json	(11.2+)

Character	large
object,	representing	a
stream	of	JSON
characters.

java.sql.Clob	[7] CLOB VARCHAR

1.	 The	runtime	type	is	org.teiid.core.types.BinaryType.	Translators	will	need	to	explicitly	handle	BinaryType	values.	UDFs	will
instead	have	a	byte[]	value	passed.

2.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.BlobType

3.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.ClobType

4.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.XMLType

5.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.GeometryType

6.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.GeographyType

7.	 The	concrete	type	is	expected	to	be	org.teiid.core.types.JsonType

Note Character,	String,	and	character	large	objects	(CLOB)	types	are	not	limited	to	ASCII/extended	ASCII	values.
Character	can	hold	codes	up	to	2^16-1	and	String/CLOB	can	hold	any	value.

Arrays
An	array	of	any	type	is	designated	by	adding	[]	for	each	array	dimension	to	the	type	declaration.

Example:	Array	types

string[]

integer[][]

Note Array	handling	is	typically	in	memory.	It	is	not	advisable	to	rely	on	the	usage	of	large	array	values.	Arrays	of
large	objects	(LOBs)	are	typically	not	handled	correctly	when	serialized.

Supported	types

529

Type	conversions
Data	types	may	be	converted	from	one	form	to	another	either	explicitly	or	implicitly.	Implicit	conversions	automatically	occur	in
criteria	and	expressions	to	ease	development.	Explicit	datatype	conversions	require	the	use	of	the		CONVERT		function	or		CAST	
keyword.

Type	conversion	considerations
Any	type	may	be	implicitly	converted	to	the		OBJECT		type.

The		OBJECT		type	can	be	explicitly	converted	to	any	other	type.

The	NULL	value	can	be	converted	to	any	type.

Any	valid	implicit	conversion	is	also	a	valid	explicit	conversion.

In	scenarios	where	literal	values	would	normally	require	explicit	conversions,	you	can	apply	implicit	conversions	if	no	loss
of	information	occurs.

If		widenComparisonToString		is	false	(the	default),	Teiid	raises	an	exception	if	it	detects	that	an	explicit	conversion	cannot
be	applied	implicitly	in	criteria.

If		widenComparisonToString		is	true,	then	depending	upon	the	comparison,	a	widening	conversion	is	applied	or	the	criteria
are	treated	as	false.	For	more	information	about		widenComparisonToString	,	see	System	properties	in	the	Administrator’s
Guide.

SELECT	*	FROM	my.table	WHERE	created_by	=	'not	a	date'

If		widenComparisonToString		is	false,	and		created_by		is	a	date,		not	a	date		cannot	be	converted	to	a	date	value,	and	an
exception	results.

Explicit	conversions	that	are	not	allowed	between	two	types	will	result	in	an	exception	before	execution.	Allowed	explicit
conversions	can	still	fail	during	processing	if	the	runtime	values	are	not	actually	convertible.

Warning

The	Teiid	conversions	of	float/double/bigdecimal/timestamp	to	string	rely	on	the	JDBC/Java	defined	output
formats.	Pushdown	behavior	attempts	to	mimic	these	results,	but	can	vary	depending	upon	the	actual	source
type	and	conversion	logic.	It	is	best	not	to	assume	use	of	the	string	form	in	criteria	or	other	places	where
variations	might	lead	to	different	results.

Table	1.	Type	conversions

Source	type Valid	implicit	target	types Valid	explicit	target	types

string clob
char,	boolean,	byte,	short,	integer,
long,	biginteger,	float,	double,
bigdecimal,	xml	

char string

boolean string,	byte,	short,	integer,	long,
biginteger,	float,	double,	bigdecimal

byte string,	short,	integer,	long,	biginteger,
float,	double,	bigdecimal boolean

short string,	integer,	long,	biginteger,	float,
double,	bigdecimal boolean,	byte

[1]

Type	conversions

530

integer string,	long,	biginteger,	double,
bigdecimal

boolean,	byte,	short,	float

long string,	biginteger,	bigdecimal,	float
,	double	

boolean,	byte,	short,	integer,	float,
double

biginteger string,	bigdecimal	float	 ,	double boolean,	byte,	short,	integer,	long,
float,	double

bigdecimal string,	float	 ,	double	 boolean,	byte,	short,	integer,	long,
biginteger,	float,	double

float string,	bigdecimal,	double boolean,	byte,	short,	integer,	long,
biginteger

double string,	bigdecimal,	float	 boolean,	byte,	short,	integer,	long,
biginteger,	float

date string,	timestamp

time string,	timestamp

timestamp string date,	time

clob string

json clob string

xml string	

geography geometry

1.	string	to	xml	is	equivalent	to	XMLPARSE(DOCUMENT	exp).	For	more	information,	see	XMLPARSE	in	XML	functions.
2.	Implicit	conversion	to	float/double	only	occurs	for	literal	values.
3.	xml	to	string	is	equivalent	to	XMLSERIALIZE(exp	AS	STRING).	For	more	information,	see	XMLSERIALIZE	in	XML
functions.

[2] [2]

[2]
[2]

[2] [2]

[2]

[3]

Type	conversions

531

Special	conversion	cases
Conversion	of	string	literals
Teiid	automatically	converts	string	literals	within	a	SQL	statement	to	their	implied	types.	This	typically	occurs	in	a	criteria
comparison	where	an	expression	with	a	different	datatype	is	compared	to	a	literal	string.	For	example:

SELECT	*	FROM	my.table	WHERE	created_by	=	'2016-01-02'

In	the	preceding	example,	if	the		created_by		column	has	the	data	type	of	date,	Teiid	automatically	converts	the	data	type	of	the
string	literal	to	a	date.

Converting	to	Boolean
Teiid	can	automatically	convert	literal	strings	and	numeric	type	values	to	Boolean	values	as	shwon	in	the	following	table:

Table	1.	Boolean	conversions

Type Literal	value Boolean	value

String 'false' false

'unknown' null

other true

Numeric 0 false

other true

Date	and	time	conversions
Teiid	can	implicitly	convert	properly	formatted	literal	strings	to	their	associated	date-related	data	types	as	shown	in	the	following
table:

Table	2.	Date	and	time	conversions

String	literal	format Possible	implicit	conversion	type

yyyy-mm-dd DATE

hh:mm:ss TIME

yyyy-mm-dd[hh:mm:ss.[fff…]] TIMESTAMP

The	preceding	formats	are	those	expected	by	the	JDBC	date	types.	For	information	about	using	other	formats,	see	the	functions
	PARSEDATE	,		PARSETIME	,	and		PARSETIMESTAMP		in	Date	and	time	functions.

Special	conversion	cases

532

Escaped	literal	syntax
Rather	than	relying	on	implicit	conversion,	you	can	define	data	type	values	directly	in	SQL	by	using	escape	syntax.	The	string
values	that	you	supply	must	match	the	expected	format	exactly,	or	an	exception	will	occur.

Datatype Escaped	syntax Standard	literal

BOOLEAN {b	'true'} TRUE

DATE {d	'yyyy-mm-dd'} DATE	'yyyy-mm-dd'

TIME {t	'hh-mm-ss'} TIME	'hh-mm-ss'

TIMESTAMP {ts	'yyyy-mm-dd[hh:mm:ss.[fff…]]'} TIMESTAMP	'yyyy-mm-dd[
hh:mm:ss.[fff…]]'

Escaped	literal	syntax

533

Updatable	Views
Any	view	can	be	marked	as	updatable.	In	many	circumstances	the	view	definition	allows	the	view	to	be	inherently	updatable
without	the	need	to	manually	define	a	trigger	to	handle		INSERT/UPDATE/DELETE		operations.

An	inherently	updatable	view	cannot	be	defined	with	a	query	that	has:

A	set	operation	(INTERSECT	,		EXCEPT	,		UNION).

	SELECT	DISTINCT	.

Aggregation	(aggregate	functions,		GROUP	BY	,		HAVING).

A		LIMIT		clause.

A		UNION	ALL		can	define	an	inherently	updatable	view	only	if	each	of	the	UNION	branches	are	themselves	inherently	updatable.
A	view	defined	by	a		UNION	ALL		can	accommodate	inherent		INSERT		statements	if	it	is	a	partitioned	union,	and	the		INSERT	
specifies	values	that	belong	to	a	single	partition.	For	more	information,	see	partitioned	union	in	Federated	optimizations.

Any	view	column	that	is	not	mapped	directly	to	a	column	is	not	updatable	and	cannot	be	targeted	by	an	UPDATE	set	clause	or	be
an	INSERT	column.

If	a	view	is	defined	by	a	join	query	or	has	a		WITH		clause	it	might	still	be	inherently	updatable.	However,	in	these	situations	there
are	further	restrictions,	and	the	resulting	query	plan	may	execute	multiple	statements.	For	a	non-simple	query	to	be	updatable,	the
following	criteria	apply:

An		INSERT/UPDATE		can	only	modify	a	single	key-preserved	table.

To	allow		DELETE		operations,	there	must	be	only	a	single	key-preserved	table.

For	information	about	key-preserved	tables,	see	Key-preserved	tables.

If	the	default	handling	is	not	available	or	if	you	want	to	have	an	alternative	implementation	of	an		INSERT/UPDATE/DELETE	,	you
can	use	update	procedures,	or	triggers,	to	define	procedures	to	handle	the	respective	operations.	For	more	information	see	Update
procedures	(Triggers).

Consider	the	following	example	of	an	inherently	updatable	denormalized	view:

create	foreign	table	parent_table	(pk_col	integer	primary	key,	name	string)	options	(updatable	true);

create	foreign	table	child_table	(pk_col	integer	primary	key,	name	string,	fk_col	integer,	foreign	key	(fk_col)	

references	parent_table	(pk_col))	options	(updatable	true);

create	view	denormalized	options	(updatable	true)	as	select	c.fk_col,	c.name	as	child_name,	p.name	from	parent_

table	as	p,	child_table	as	c	where	p.pk_col	=	c.fk_col;

A	query	such	as		insert	into	denormalized	(fk_col,	child_name)	values	(1,	'a')		would	succeed	against	this	view,	because
it	targets	a	single	key-preserved	table,		child_table	.	However,		insert	into	denormalized	(name)	values	('a')		would	fail,
because	it	maps	to	a		parent_table		that	can	have	multiple	rows	for	each		parent_table		key.	In	other	words,	it	is	not	key-
preserved.

Also,	an		INSERT		against		parent_table		alone	might	not	be	visible	to	the	view,	because	there	might	be	no	child	entities
associated	either.

Not	all	scenarios	will	work.	Referencing	the	preceding	example,	an		insert	into	denormalized	(pk_col,	child_name)	values
(1,	'a')		with	a	view	that	is	defined	using	the		p.pk_col		will	fail,	because	the	logic	doesn’t	yet	consider	the	equivalency	of	the
key	values.

Updatable	views

534

Updatable	views

535

Key-preserved	tables
A	key-preserved	table	has	a	primary	or	unique	key	that	remains	unique	when	it	is	projected	into	the	result	of	the	query.	Note	that	it
is	not	actually	required	for	a	view	to	reference	the	key	columns	in	the	SELECT	clause.	The	query	engine	can	detect	a	key-
preserved	table	by	analyzing	the	join	structure.	The	engine	will	ensure	that	a	join	of	a	key-preserved	table	must	be	against	one	of
its	foreign	keys.

Key-preserved	tables

536

Transactions
Teiid	utilizes	XA	transactions	for	participating	in	global	transactions	and	for	demarcating	its	local	and	command	scoped
transactions.

Narayana	is	used	by	Teiid	as	its	transaction	manager.

Narayana	is	optionally	used	by	Teiid	as	its	transaction	manager.	In	single	source,	or	scenarios	utilizing	only	non-XA	sources,	then
the	Spring	platform	transaction	manager	may	be	used.

For	information	about	advanced	transaction	technologies	that	are	provided	for	Teiid	through	the	Narayana	community	project,	see
the	Narayana	documentation.

Table	1.	Teiid	transaction	scopes

Scope Description

Command

Treats	the	user	command	as	if	all	source	commands	are
executed	within	the	scope	of	the	same	transaction.	The
AutoCommitTxn	execution	property	controls	the	behavior
of	command	level	transactions.

Local The	transaction	boundary	is	local	defined	by	a	single	client
session.

Global Teiid	participates	in	a	global	transaction	as	an	XA	resource.

The	default	transaction	isolation	level	for	Teiid	is	READ_COMMITTED.

Transaction	Support

537

http://narayana.io/
http://narayana.io/
http://narayana.io/documentation/index.html

AutoCommitTxn	Execution	Property
User	level	commands	can	execute	multiple	source	commands.	To	control	the	transactional	behavior	of	a	user	command	when	not
in	a	local	or	global	transaction,	you	can	specify	the	AutoCommitTxn	execution	property.

Table	1.	AutoCommitTxn	Settings

Setting Description

OFF
Do	not	wrap	each	command	in	a	transaction.	Individual
source	commands	may	commit	or	rollback	regardless	of
the	success	or	failure	of	the	overall	command.

ON Wrap	each	command	in	a	transaction.	This	mode	is	the
safest,	but	may	introduce	performance	overhead.

DETECT
This	is	the	default	setting.	Will	automatically	wrap
commands	in	a	transaction,	but	only	if	the	command	seems
to	be	transactionally	unsafe.

The	concept	of	command	safety	with	respect	to	a	transaction	is	determined	by	Teiid	based	upon	command	type,	the	transaction
isolation	level,	and	available	metadata.	A	wrapping	transaction	is	not	needed	if	the	following	criteria	are	true:

The	user	command	is	fully	pushed	to	the	source.

The	user	command	is	a	SELECT	(including	XML)	and	the	transaction	isolation	is	not	REPEATABLE_READ	nor
SERIALIABLE.

The	user	command	is	a	stored	procedure,	the	transaction	isolation	is	not	REPEATABLE_READ	nor	SERIALIABLE,	and	the
updating	model	count	is	zero.	For	more	information,	see	Updating	model	count.

The	update	count	may	be	set	on	all	procedures	as	part	of	the	procedure	metadata	in	the	model.

AutoCommitTxn	execution	property

538

Updating	Model	Count
The	term	"updating	model	count"	refers	to	the	number	of	times	any	model	is	updated	during	the	execution	of	a	command.	It	is
used	to	determine	whether	a	transaction,	of	any	scope,	is	required	to	safely	execute	the	command.

Table	1.	Updating	model	count	settings

Count Description

0 No	updates	are	performed	by	this	command.

1

Indicates	that	only	one	model	is	updated	by	this	command
(and	its	subcommands).	The	success	or	failure	of	that
update	corresponds	to	the	success	or	failure	of	the
command.	It	should	not	be	possible	for	the	update	to
succeed	while	the	command	fails.	Execution	is	not
considered	transactionally	unsafe.

*
Any	number	greater	than	1	indicates	that	execution	is
transactionally	unsafe	and	an	XA	transaction	will	be
required.

Updating	model	count

539

JDBC	and	transactions
JDBC	API	functionality
The	transaction	scopes	in	Transactions	map	to	the	following	JDBC	modes:

Command
Connection	autoCommit	property	set	to	true.

Local
Connection	autoCommit	property	set	to	false.	The	transaction	is	committed	by	setting	autoCommit	to	true	or	calling
	java.sql.Connection.commit	.	The	transaction	can	be	rolled	back	by	a	call	to		java.sql.Connection.rollback	

Global
The	XAResource	interface	provided	by	an	XAConnection	is	used	to	control	the	transaction.	Note	that	XAConnections	are
available	only	if	Teiid	is	consumed	through	its	XADataSource,		org.teiid.jdbc.TeiidDataSource	.	JEE	containers	or	data
access	APIs	typically	control	XA	transactions	on	behalf	of	application	code.

J2EE	usage	models
J2EE	provides	the	following	ways	to	manage	transactions	for	beans:

Client-controlled
The	client	of	a	bean	begins	and	ends	a	transaction	explicitly.

Bean-managed
The	bean	itself	begins	and	ends	a	transaction	explicitly.

Container-managed
The	application	server	container	begins	and	ends	a	transaction	automatically.

In	any	of	the	preceding	cases,	transactions	can	be	either	local	or	XA	transactions,	depending	on	how	the	code	and	descriptors	are
written.	The	XA	specification	does	not	require	some	types	of	beans	(for	example,	stateful	session	beans	and	entity	beans)	to	work
with	non-transactional	sources.	However,	according	to	the	specification,	optionally,	application	servers	can	allow	the	use	of	these
beans	with	non-transactional	sources,	with	the	caution	that	such	usage	is	not	portable	or	predictable.	Generally	speaking,	to
provide	for	most	types	of	EJB	activities	in	a	portable	fashion,	applications	require	a	mechanism	for	managing	transactions.

JDBC	and	transactions

540

Transactional	Behavior	with	WildFly	Data	Source	Types
WildFly	allows	creation	of	different	types	of	data	sources,	based	on	their	transactional	capabilities.	The	type	of	data	source	you
create	for	your	VDB’s	sources	also	dictates	if	that	data	source	will	be	participating	the	distributed	transaction	or	not,	irrespective
of	the	transaction	scope	you	selected	from	above.	Here	are	different	types	of	data	sources

xa-datasource:	Capable	of	participating	in	the	distributed	transaction	using	XA.	This	is	recommended	type	be	used	with	any
Teiid	sources.

local-datasource:	Does	not	participate	in	XA,	unless	this	is	the	only	source	that	is	local-datasource	that	is	participating	among
other	xa-datasources	in	the	current	distributed	transaction.	This	technique	is	called	last	commit	optimization.	However,	if	you
have	more	then	one	local-datasources	participating	in	a	transaction,	then	the	transaction	manager	will	end	up	with	"Could	not
enlist	in	transaction	on	entering	meta-aware	object!;"	exception.

no-tx-datasource:	Does	not	participate	in	distributed	transaction	at	all.	In	the	scope	of	Teiid	command	over	multiple	sources,
you	can	include	this	type	of	datasource	in	the	same	distributed	transaction	context,	however	this	source	will	be	it	will	not	be
subject	to	any	transactional	participation.	Any	changes	done	on	this	source	as	part	of	the	transaction	scope,	can	not	be	rolled
back.	If	you	have	three	different	sources	A,	B,	C	and	they	are	being	used	in	Teiid.	Here	are	some	variations	on	how	they
behave	with	different	types	of	data	sources.	The	suffixes	"xa",	"local",	"no-tx"	define	different	type	of	sources	used.

A-xa	B-xa,	C-xa	:	Can	participate	in	all	transactional	scopes.	No	restrictions.

A-xa,	B-xa,	c-local:	Can	participate	in	all	transactional	scopes.	Note	that	there	is	only	one	single	source	is	"local".	It	is
assumed	that	in	the	Global	scope,	the	third	party	datasource,	other	than	Teiid	Datasource	is	also	XA.

A-xa,	B-xa,	C-no-tx	:	Can	participate	in	all	transactional	scopes.	Note	"C"	is	not	a	really	bound	by	any	transactional	contract.
A	and	B	are	the	only	participents	in	XA	transaction.

A-xa,	B-local,	C-no-tx	:	Can	participate	in	all	transactional	scopes.	Note	"C"	is	not	a	really	bound	by	any	transactional
contract,	and	there	is	only	single	"local"	source.

If	any	two	or	more	sources	are	"local"	:	They	can	only	participate	in	Command	mode	with	"autoCommitTxn=OFF".
Otherwise	will	end	with	exception	as	"Could	not	enlist	in	transaction	on	entering	meta-aware	object!;"	exception,	as	it	is	not
possible	to	do	a	XA	transaction	with	"local"	datasources.

A-no-tx,	B-no-tx,	C-no-tx	:	Can	participate	in	all	transaction	scopes,	but	none	of	the	sources	will	be	bound	by	transactional
terms.	This	is	equivalent	to	not	using	transactions	or	setting	Command	mode	with	"autoCommitTxn=OFF".

To	create	XA	data	source,	look	in	the	WildFly	"doc"	directory	for	example	templates,	or	use	the	"admin-console"	to	create	the	XA
data	sources.

If	your	datasource	is	not	XA,	and	not	the	only	local	source	and	can	not	use	"no-tx",	then	you	can	look	into	extending	the	source	to
implement	the	compensating	XA	implementation.	i.e.	define	your	own	resource	manager	for	your	source	and	manage	the
transaction	the	way	you	want	it	to	behave.	Note	that	this	could	be	complicated	if	not	impossible	if	your	source	natively	does	not
support	distributed	XA	protocol.	In	summay

Use	XA	datasource	if	possible

Use	no-tx	datasource	if	applicable

Use	autoCommitTxn	=	OFF,	and	let	go	distributed	transactions,	though	not	recommended

Write	a	compensating	XA	based	implementation.

Table	1.	Teiid	Transaction	Participation

Tx-Scope XA	source Local	Source No-Tx	Source

Transactional	behavior	with	JBoss	data	source	types

541

Local	(Auto-
commit=false)

always Only	If	Single	Source never

Global always Only	If	Single	Source never

Auto-commit=true,
AutoCommitTxn=ON,	or
DETECT	and	txn	started

always Only	If	Single	Source never

Auto-commit=true,
AutoCommitTxn=OFF never never never

Transactional	behavior	with	JBoss	data	source	types

542

Limitations
The	client	setting	of	transaction	isolation	level	is	propagated	only	to	JDBC	connectors;	the	setting	is	not	propagated	to	other
connector	types.	The	default	transaction	isolation	level	can	be	set	on	each	XA	connector.	However,	the	isolation	level	is
fixed,	and	cannot	be	changed	at	runtime	for	specific	connections	or	commands.

Limitations	and	workarounds

543

Data	roles
Data	roles,	also	called	entitlements,	are	sets	of	permissions	defined	per	virtual	database	that	specify	data	access	permissions
(create,	read,	update,	delete).	Data	roles	use	a	fine-grained	permission	system	that	Teiid	will	enforce	at	runtime	and	provide	audit
log	entries	for	access	violations.	See	Logging	and	Custom	Logging	for	more.

Before	you	apply	data	roles,	you	might	want	to	restrict	source	system	access	through	the	fundamental	design	of	your	virtual
database.	Foremost,	Teiid	can	only	access	source	entries	that	are	represented	in	imported	metadata.	You	should	narrow	imported
metadata	to	only	what	is	necessary	for	use	by	your	virtual	database.

If	data	role	validation	is	enabled	and	data	roles	are	defined	in	a	virtual	database,	then	access	permissions	will	be	enforced	by	the
Teiid	server.	The	use	of	data	roles	may	be	disabled	system	wide	by	removing	the	setting	for	the		teiid		subsystem	policy-decider-
module.	Data	roles	also	have	built-in	security	functions	that	can	be	used	for	row-based	and	other	authorization	checks.

Warning
A	virtual	database	that	is	deployed	without	data	roles	can	be	accessed	by	any	authenticated	user.	If	you	want
to	ensure	some	attempt	has	been	made	at	securing	access,	then	set	the	data-roles-required	configuration
element	to	true	via	the	CLI	or	in	the	standalone.xml	on	the	teiid	subsystem.

Tip

By	default,	non-hidden	schema	metadata	is	only	visible	over	JDBC/pg	if	the	user	is	permissioned	in	some	way	for
the	given	object.	OData	access	provides	all	non-hidden	metadata	by	default.	To	configure	JDBC/pg	to	also	make
all	non-hidden	schema	metadata	visible	to	all	authenticated	users,	set	the	environment/system	property
	org.teiid.metadataRequiresPermission		to	false.

Data	roles

544

Permissions
Permissions,	or	grants,	control	access	to	data	in	several	ways.	There	are	simple	access	restrictions	to	SELECT,	UPDATE,	and	so
forth,	down	to	a	column	level.

Note Column	or	table	metadata	are	not	visible	to	JDBC/ODBC	users	unless	the	user	has	permission	to	read	at	least	a
single	column.

You	may	also	use	permissions	to	filter	and	mask	results,	and	constrain/check	update	values.

User	query	permissions
CREATE,	READ,	UPDATE,	DELETE	(CRUD)	permissions	can	be	set	for	any	resource	path	in	a	VDB.	A	resource	path	can	be	as
specific	as	the	fully	qualified	name	of	a	column	or	as	general	a	top	level	model	(schema)	name.	Permissions	granted	to	a	particular
path	apply	to	it	and	any	resource	paths	that	share	the	same	partial	name.	For	example,	granting	select	to	"model"	will	also	grant
select	to	"model.table",	"model.table.column",	and	so	on.	Allowing	or	denying	a	particular	action	is	determined	by	searching	for
permissions	from	the	most	to	least	specific	resource	paths.	The	first	permission	found	with	a	specific	allow	or	deny	will	be	used.
Thus,	it	is	possible	to	set	very	general	permissions	at	high-level	resource	path	names	and	to	override	only	as	necessary	at	more
specific	resource	paths.

Permission	grants	are	only	needed	for	resources	that	a	role	needs	access	to.	Permissions	are	also	applied	only	to	the
columns/tables/procedures	in	the	user	query,	not	to	every	resource	that	is	accessed	transitively	through	view	and	procedure
definitions.	It	is	important	therefore	to	ensure	that	permission	grants	are	applied	consistently	across	models	that	access	the	same
resources.

Warning
Non-visible	models	are	accessible	by	user	queries.	To	restrict	user	access	at	a	model	level,	at	least	one	data
role	should	be	created	to	enable	data	role	checking.	In	turn,	that	role	can	be	mapped	to	any	authenticated	user,
and	should	not	grant	permissions	to	models	that	should	be	inaccessible.

Permissions	are	not	applicable	to	the	SYS	and	pg_catalog	schemas.	These	metadata	reporting	schemas	are	always	accessible
regardless	of	the	user.	The	SYSADMIN	schema	however	may	need	permissions	as	applicable.

Permission	assignment
To	process	a	SELECT	statement	or	a	stored	procedure	execution,	the	user	account	requires	the	following	access	rights:

SELECT-	on	the	Table(s)	being	accessed	or	the	procedure	being	called.

SELECT-	on	every	column	referenced.

To	process	an	INSERT	statement,	the	user	account	requires	the	following	access	rights:

INSERT-	on	the	Table	being	inserted	into.

INSERT-	on	every	column	being	inserted	on	that	Table.

To	process	an	UPDATE	statement,	the	user	account	requires	the	following	access	rights:

UPDATE-	on	the	Table	being	updated.

UPDATE-	on	every	column	being	updated	on	that	Table.

SELECT-	on	every	column	referenced	in	the	criteria.

To	process	a	DELETE	statement,	the	user	account	requires	the	following	access	rights:

DELETE-	on	the	Table	being	deleted.

SELECT-	on	every	column	referenced	in	the	criteria.

Permissions

545

To	process	a	EXEC/CALL	statement,	the	user	account	requires	the	following	access	rights:

EXECUTE	(or	SELECT)-	on	the	Procedure	being	executed.

To	process	any	function,	the	user	account	requires	the	following	access	rights:

EXECUTE	(or	SELECT)-	on	the	Function	being	called.

To	process	any	ALTER	or	CREATE	TRIGGER	statement,	the	user	account	requires	the	following	access	rights:

ALTER-	on	the	view	or	procedure	that	is	effected.	INSTEAD	OF	Triggers	(update	procedures)	are	not	yet	treated	as	full
schema	objects	and	are	instead	treated	as	attributes	of	the	view.

To	process	any	OBJECTTABLE	function,	the	user	account	requires	the	following	access	rights:

LANGUAGE	-	specifying	the	language	name	that	is	allowed.

To	process	any	statement	against	a	Teiid	temporary	table	requires	the	following	access	rights:

allow-create-temporary-tables	attribute	on	any	applicable	role

SELECT,INSERT,UPDATE,DELETE	-	against	the	target	model/schema	as	needed	for	operations	against	a	FOREIGN
temporary	table.

Row-	and	column-based	security
Although	specified	in	a	similar	way	to	user	query	CRUD	permissions,	row-based	and	column-based	permissions	may	be	used
together	or	separately	to	control	the	data	that	is	returned	to	users	at	a	more	granular	and	consistent	level.

See	also	XML	Definition	for	examples	of	specifying	data	roles	with	row	and	column	based	security.

Note

Row-based	security
Specifying	a	condition	on	a	GRANT	for	row	based	security	has	been	deprecated.	Specifying	a	condition	on	a
GRANT	is	the	same	as	specifying	"CREATE	POLICY	policyName	ON	schemaName.tblName	TO	role	USING
(condition);",	such	that	the	condition	applies	to	all	operations.

A	POLICY	against	a	fully	qualified	table/view/procedure	may	specify	a	condition	to	be	satisfied	by	the	given	role.	The	condition
can	be	any	valid	boolean	expression	referencing	the	columns	of	the	table/view/procedure.	Procedure	result	set	columns	may	be
referenced	as		proc.col	.	The	condition	will	act	as	a	row-based	filter	and	as	a	checked	constraint	for	insert/update	operations.

Application	of	row-based	conditions
A	condition	is	applied	conjunctively	to	update/delete/select	WHERE	clauses	against	the	affected	resource.	Those	queries	will
therefore	only	ever	be	effective	against	the	subset	of	rows	that	pass	the	condition,	such	as	"SELECT	*	FROM	TBL	WHERE
something	AND	condition.	The	condition	will	be	present	regardless	of	how	the	table/view	is	used	in	the	query,	whether	by	means
of	a	union,	join,	or	other	operation.

Example	condition

CREATE	POLICY	policyName	ON	schemaName.tblName	TO	superUser	USING	(foo=bar);

Inserts	and	updates	against	physical	tables	affected	by	a	condition	are	further	validated	so	that	the	insert/change	values	must	pass
the	condition	(evaluate	to	true)	for	the	insert/update	to	succeed — this	is	effectively	the	same	a	SQL	constraint.	This	will	happen
for	all	styles	of	insert/update — insert	with	query	expression,	bulk	insert/update,	and	so	on.	Inserts/updates	against	views	are	not
checked	with	regards	to	the	constraint.

You	can	disable	the	insert/update	constraint	check	by	restricting	the	operations	that	the	POLICY	applies	to.

Example	DDL	non-constraint	condition

CREATE	POLICY	readPolicyName	ON	schemaName.tblName	FOR	SELECT,DELETE	TO	superUser	USING	(col>10);

You	may	of	course	add	another	POLICY	to	cover	the	INSERT	and	UPDATE	operations	should	they	require	a	different	condition.

Permissions

546

Example	XML	non-constraint	condition

		<permission>

				<resource-name>modelName.tblName</resource-name>

				<condition	constraint="false">column1=user()</condition>

		</permission>

If	more	than	one	POLICY	applies	to	the	same	resource,	the	conditions	will	be	accumulated	disjunctively	via	OR,	that	is,	"
(condition1)	OR	(condition2)	…".	Therefore,	creating	a	POLICY	with	the	condition	"true"	will	allow	users	in	that	role	to	see	all
rows	of	the	given	resource	for	the	given	operations.

Considerations	when	using	conditions
Be	aware	that	non-pushdown	conditions	may	adversely	impact	performance.	Avoid	using	multiple	conditions	against	the	same
resource	as	any	non-pushdown	condition	will	cause	the	entire	OR	statement	to	not	be	pushed	down.	If	you	need	to	insert
permission	conditions,	be	careful	when	adding	an	inline	view,	because	adding	them	can	cause	performance	problems	if	they	are
not	compatible	with	your	sources.

Pushdown	of	multi-row	insert/update	operations	will	be	inhibited	since	the	condition	must	be	checked	for	each	row.

You	can	manage	permission	conditions	on	a	per-role	basis,	but	another	approach	is	to	add	condition	permissions	to	any
authenticated	role.	By	adding	permissions	in	this	way,	the	conditions	are	generalized	for	anyone	using	the		hasRole	,		user	,	and
other	security	functions.	The	advantage	of	this	latter	approach	is	that	it	provides	you	with	a	static	row-based	policy.	As	a	result,
your	entire	range	of	query	plans	can	be	shared	among	your	users.

How	you	handle	null	values	is	up	to	you.	You	can	implement	ISNULL	checks	to	ensure	that	null	values	are	allowed	when	a
column	is	nullable.

Limitations	when	using	conditions
Conditions	on	source	tables	that	act	as	check	constraints	must	currently	not	contain	correlated	subqueries.

Conditions	may	not	contain	aggregate	or	windowed	functions.

Tables	and	procedures	referenced	via	subqueries	will	still	have	row-based	filters	and	column	masking	applied	to	them.

Note Row-based	filter	conditions	are	enforced	even	for	materialized	view	loads.

You	should	ensure	that	tables	consumed	to	produce	materialized	views	do	not	have	row-based	filter	conditions	on	them	that	could
affect	the	materialized	view	results.

Column	masking
A	permission	against	a	fully	qualified	table/view/procedure	column	can	also	specify	a	mask	and	optionally	a	condition.	When	the
query	is	submitted,	the	roles	are	consulted,	and	the	relevant	mask/condition	information	are	combined	to	form	a	searched	case
expression	to	mask	the	values	that	would	have	been	returned	by	the	access.	Unlike	the	CRUD	allow	actions	defined	above,	the
resulting	masking	effect	is	always	applied — not	just	at	the	user	query	level.	The	condition	and	expression	can	be	any	valid	SQL
referencing	the	columns	of	the	table/view/procedure.	Procedure	result	set	columns	may	be	referenced	as		proc.col	.

Application	of	column	masks
Column	masking	is	applied	only	against	SELECTs.	Column	masking	is	applied	logically	after	the	affect	of	row-based	security.
However,	because	both	views	and	source	tables	canb	have	row-	and	column-based	security,	the	actual	view-level	masking	can
take	place	on	top	of	source	level	masking.	If	the	condition	is	specified	along	with	the	mask,	then	the	effective	mask	expression
affects	only	a	subset	of	the	rows:	"CASE	WHEN	condition	THEN	mask	ELSE	column".	Otherwise	the	condition	is	assumed	to	be
TRUE,	meaning	that	the	mask	applies	to	all	rows.

If	multiple	roles	specify	a	mask	against	a	column,	the	mask	order	argument	will	determine	their	precedence	from	highest	to	lowest
as	part	of	a	larger	searched	case	expression.	For	example,	a	mask	with	the	default	order	of	0	and	a	mask	with	an	order	of	1	would
be	combined	as	"CASE	WHEN	condition1	THEN	mask1	WHEN	condition0	THEN	mask0	ELSE	column".

Column	masking	considerations

Permissions

547

Non-pushdown	masking	conditions/expressions	can	adversely	impact	performance,	because	their	evaluation	might	inhibit
pushdown	of	query	constructs	on	top	of	the	affected	resource.	In	some	circumstances	the	insertion	of	masking	may	require	that	the
plan	be	altered	with	the	addition	of	an	inline	view,	which	can	result	in	poor	performance	if	your	sources	are	not	compatible	with
the	use	of	inline	views.

In	addition	to	managing	masking	on	a	per-role	basis	with	the	use	of	the	order	value,	another	approach	is	to	specify	masking	in	a
single	any	authenticated	role	such	that	the	conditions/expressions	are	generalized	for	all	users/roles	using	the		hasRole	,		user	,
and	other	such	security	functions.	The	advantage	of	the	latter	approach	is	that	there	is	effectively	a	static	masking	policy	in	effect,
such	that	all	query	plans	can	still	be	shared	between	users.

Column	masking	limitations
If	two	masks	have	the	same	order	value,	it	is	not	well	defined	what	order	they	are	applied	in.

Masks	or	their	conditions	cannot	contain	aggregate	or	windowed	functions.

Tables	and	procedures	referenced	via	subqueries	will	still	have	row-based	filters	and	column	masking	applied	to	them.

Note Masking	is	enforced	even	for	materialized	view	loads.

You	should	ensure	that	tables	consumed	to	produce	materialized	views	do	not	have	masking	on	them	that	could	affect	the
materialized	view	results.

Permissions

548

Role	mapping
Each	Teiid	data	role	can	be	mapped	to	any	number	of	container	roles	or	to	any	authenticated	user.

You	may	control	role	membership	through	whatever	system	the	Teiid	security	domain	login	modules	are	associated	with.	The	kit
includes	example	files	for	use	with	the	UsersRolesLoginModule	-	see	teiid-security-roles.properties.

If	you	have	an	alternative	security	domain	that	a	VDB	should	use,	then	set	the	VDB	property	security-domain	to	the	relevant
security	domain.

It	is	possible	for	a	user	to	have	any	number	of	container	roles,	which	in	turn	imply	a	subset	of	Teiid	data	roles.	Each	applicable
Teiid	data	role	contributes	cumulatively	to	the	permissions	of	the	user.	No	one	role	supersedes	or	negates	the	permissions	of	the
other	data	roles.

Role	mapping

549

XML	definition
Data	roles	are	defined	inside	the		vdb.xml		file	(inside	the	.vdb	Zip	archive	under	META-INF/vdb.xml).	The	"vdb.xml"	file	is
checked	against	the	schema	file		vdb-deployer.xsd	,	which	can	be	found	in	the	kit	under	docs/teiid/schema.	This	example	will
show	a	sample	"vdb.xml"	file	with	few	simple	data	roles.	Note	there	is	a	difference	permission	type	names	between	XML	data
roles	and	DDL	grants	-	here	SELECT,	INSERT	are	referred	to	as	READ	and	CREATE	respectively.

For	example,	if	a	VDB	defines	a	table	"TableA"	in	schema	"modelName"	with	columns	(column1,	column2)	-	note	that	the
column	types	do	not	matter.	And	we	wish	to	define	three	roles	"RoleA",	"RoleB",	and	"admin"	with	following	permissions:

1.	 RoleA	has	permissions	to	read,	write	access	to	TableA,	but	can	not	delete.

2.	 RoleB	has	permissions	that	only	allow	read	access	to	TableA.column1

3.	 admin	has	all	permissions

vdb.xml	defining	RoleA,	RoleB,	and	Admin

<?xml	version="1.0"	encoding="UTF-8"?>

<vdb	name="sample"	version="1">

				<model	name="modelName">

								<source	name="source-name"	translator-name="oracle"	connection-jndi-name="java:myDS"	/>

				</model>

				<data-role	name="RoleA">

								<description>Allow	all,	except	Delete</description>

								<permission>

												<resource-name>modelName.TableA</resource-name>

												<resource-type>TABLE</resource-type>

												<allow-create>true</allow-create>

												<allow-read>true</allow-read>

												<allow-update>true</allow-update>

								</permission>

								<mapped-role-name>role1</mapped-role-name>

				</data-role>

				<data-role	name="RoleB">

								<description>Allow	read	only</description>

								<permission>

												<resource-name>modelName.TableA</resource-name>

												<resource-type>TABLE</resource-type>

												<allow-read>true</allow-read>

								</permission>

								<permission>

												<resource-name>modelName.TableA.colum2</resource-name>

												<resource-type>COLUMN</resource-type>

												<allow-read>false</allow-read>

								</permission>

								<mapped-role-name>role2</mapped-role-name>

				</data-role>

				<data-role	name="admin"	grant-all="true">

								<description>Admin	role</description>

								<mapped-role-name>admin-group</mapped-role-name>

				</data-role>

</vdb>

XML	definition

550

The	above	XML	defined	three	data	roles,	"RoleA"	which	allows	everything	except	delete	on	the	table,	"RoleB"	that	allows	only
read	operation	on	the	table,	and	the	"admin"	role	with	all	permissions.	Since	Teiid	uses	deny	by	default,	there	is	no	explicit	data-
role	entry	needed	for	"RoleB".	Note	that	explicit	column	permissions	are	not	needed	for	RoleA,	since	the	parent	resource	path,
modelName.TableA,	permissions	still	apply.	RoleB	however	must	explicitly	disallow	read	to	column2.

The	"mapped-role-name"	defines	the	container	JAAS	roles	that	are	assigned	the	data	role.	For	assigning	roles	to	your	users	in	the
WildFly,	check	out	the	instructions	for	the	selected	Login	Module.	Check	the	"Admin	Guide"	for	configuring	Login	Modules.

Using	the	grant-all	option	provides	every	permission	on	over	object	in	the	vdb.	When	importing	a	vdb	and	its	roles,	grant-all
applies	only	to	resources	from	the	imported	vdb.

Note
The	optional	resource-type	element	currently	accepts	LANGUAGE,	SCHEMA,	DATABASE,	PROCEDURE,
FUNCTION,	TABLE,	COLUMN.	This	property	ensures	that	migration	issues	will	be	prevented	when	switching
to	DDL	vdbs	or	dealing	with	multi-part	table	names.

Additional	Role	Attributes

You	may	also	choose	to	allow	any	authenticated	user	to	have	a	data	role	by	setting	the	any-authenticated	attribute	value	to	true	on
data-role	element.

The	"allow-create-temporary-tables"	data-role	boolean	attribute	is	used	to	explicitly	enable	or	disable	temporary	table	usage	for
the	role.	If	it	is	left	unspecified,	then	the	value	will	be	defaulted	to	false.

Temp	Table	Role	for	Any	Authenticated

<data-role	name="role"	any-authenticated="true"	allow-create-temporary-tables="true">

					<description>Temp	Table	Role	for	Any	Authenticated</description>

					<permission>

									...

					</permission>

</data-role>

Language	Access

The	following	shows	a	vdb	xml	that	allows	the	use	of	the	javascript	language.	The	allowed-languages	property	enables	the
languages	use	for	any	purpose	in	the	vdb,	while	the	allow-language	permission	allows	the	language	to	be	used	by	users	with
RoleA.

vdb.xml	allowing	JavaScript	access

<?xml	version="1.0"	encoding="UTF-8"?>

<vdb	name="sample"	version="1">

				<property	name="allowed-languages"	value="javascript"/>

				<model	name="modelName">

								<source	name="source-name"	translator-name="oracle"	connection-jndi-name="java:myDS"	/>

				</model>

				<data-role	name="RoleA">

								<description>Read	and	javascript	access.</description>

								<permission>

												<resource-name>modelName</resource-name>

												<allow-read>true</allow-read>

								</permission>

								<permission>

												<resource-name>javascript</resource-name>

												<allow-language>true</allow-language>

XML	definition

551

								</permission>

								<mapped-role-name>role1</mapped-role-name>

				</data-role>

</vdb>

Row-Based	Security

The	following	shows	a	vdb	xml	utilizing	a	condition	to	restrict	access.	The	condition	acts	as	both	a	filter	and	constraint.	Even
though	RoleA	opens	up	read/insert	access	to	modelName.tblName,	the	base-role	condition	will	ensure	that	only	values	of	column1
matching	the	current	user	can	be	read	or	inserted.	Note	that	here	the	constraint	enforcement	has	been	disabled.

vdb.xml	allowing	conditional	access

<?xml	version="1.0"	encoding="UTF-8"?>

<vdb	name="sample"	version="1">

				<model	name="modelName">

								<source	name="source-name"	translator-name="oracle"	connection-jndi-name="java:myDS"	/>

				</model>

				<data-role	name="base-role"	any-authenticated="true">

								<description>Conditional	access</description>

								<permission>

												<resource-name>modelName.tblName</resource-name>

												<condition	constraint="false">column1=user()</condition>

								</permission>

				</data-role>

				<data-role	name="RoleA">

								<description>Read/Insert	access.</description>

								<permission>

												<resource-name>modelName.tblName</resource-name>

												<allow-read>true</allow-read>

												<allow-create>true</allow-create>

								</permission>

								<mapped-role-name>role1</mapped-role-name>

				</data-role>

</vdb>

Column	Masking

The	following	shows	a	vdb	xml	utilizing	column	masking.	Here	the	RoleA	column1	mask	takes	precedence	over	the	base-role
mask,	but	only	for	a	subset	of	the	rows	as	specified	by	the	condition.	For	users	without	RoleA,	access	to	column1	will	effectively
be	replaced	with	"CASE	WHEN	column1=user()	THEN	column1	END",	while	for	users	with	RoleA,	access	to	column1	will
effectively	be	replaced	with	"CASE	WHEN	column2=’x’	THEN	column1	WHEN	TRUE	THEN	CASE	WHEN	column1=user()
THEN	column1	END	END".

vdb.xml	with	column	masking

<?xml	version="1.0"	encoding="UTF-8"?>

<vdb	name="sample"	version="1">

				<model	name="modelName">

								<source	name="source-name"	translator-name="oracle"	connection-jndi-name="java:myDS"	/>

				</model>

XML	definition

552

				<data-role	name="base-role"	any-authenticated="true">

								<description>Masking</description>

								<permission>

												<resource-name>modelName.tblName.column1</resource-name>

												<mask>CASE	WHEN	column1=user()	THEN	column1	END</mask>

								</permission>

				</data-role>

				<data-role	name="RoleA">

								<description>Read/Insert	access.</description>

								<permission>

												<resource-name>modelName.tblName</resource-name>

												<allow-read>true</allow-read>

												<allow-create>true</allow-create>

								</permission>

								<permission>

												<resource-name>modelName.tblName.column1</resource-name>

												<condition>column2='x'</condition>

												<mask	order="1">column1</mask>

								</permission>

								<mapped-role-name>role1</mapped-role-name>

				</data-role>

</vdb>

XML	definition

553

Customizing
See	the	Developer’s	Guide	chapters	on	Custom	Authorization	Validators	and	Login	Modules	for	details	on	using	an	alternative
authorization	scheme.

Customizing

554

System	schema
The	built-in	SYS	and	SYSADMIN	schemas	provide	metadata	tables	and	procedures	against	the	current	virtual	database.

By	default,	a	system	schema	for	ODBC	metadata	pg_catalog	is	also	exposed. — however,	that	should	be	considered	for	general
use.

Metadata	visibility
The	SYS	system	schema	tables	and	procedures	are	always	visible	and	accessible.

When	data	roles	are	in	use,	users	can	view	only	the	tables,	views,	and	procedure	metadata	entries	that	they	have	permissions	to
access.	All	columns	of	a	key	must	be	accessible	for	an	entry	to	be	visible.

Note To	make	all	metadata	visible	to	any	authenticated	user,	set	the	environment/system	property
	org.teiid.metadataRequiresPermission		to	false.

Note If	you	use	data	roles,	visibility	of	entries	can	be	affected	by	the	caching	of	system	metadata.

System	schema

555

SYS	schema
System	schema	for	public	information	and	actions.

SYS.Columns
This	table	supplies	information	about	all	the	elements	(columns,	tags,	attributes,	etc)	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

TableName string Table	name

Name string Element	name	(not	qualified)

Position integer Position	in	group	(1-based)

NameInSource string Name	of	element	in	source

DataType string Teiid	runtime	data	type	name

Scale integer Number	of	digits	after	the	decimal
point

ElementLength integer Element	length	(mostly	used	for
strings)

sLengthFixed boolean Whether	the	length	is	fixed	or
variable

SupportsSelect boolean Element	can	be	used	in	SELECT

SupportsUpdates boolean Values	can	be	inserted	or	updated	in
the	element

IsCaseSensitive boolean Element	is	case-sensitive

IsSigned boolean Element	is	signed	numeric	value

IsCurrency boolean Element	represents	monetary	value

IsAutoIncremented boolean Element	is	auto-incremented	in	the
source

NullType string Nullability:	"Nullable",	"No	Nulls",
"Unknown"

MinRange string Minimum	value

MaxRange string Maximum	value

SYS	schema

556

DistinctCount integer Distinct	value	count,	-1	can	indicate
unknown

NullCount integer Null	value	count,	-1	can	indicate
unknown

SearchType string
Searchability:	"Searchable",	"All
Except	Like",	"Like	Only",
Unsearchable"

Format string Format	of	string	value

DefaultValue string Default	value

JavaClass string Java	class	that	will	be	returned

Precision integer Number	of	digits	in	numeric	value

CharOctetLength integer Measure	of	return	value	size

Radix integer Radix	for	numeric	values

GroupUpperName string Upper-case	full	group	name

UpperName string Upper-case	element	name

UID string Element	unique	ID

Description string Description

TableUID string Parent	Table	unique	ID

TypeName string The	type	name,	which	may	be	a
domain	name

TypeCode integer JDBC	SQL	type	code

ColumnSize string
If	numeric,	the	precision,	if	character,
the	length,	and	if	date/time,	then	the
string	length	of	a	literal	value.

SYS.DataTypes
This	table	supplies	information	on	datatypes.

Column	name Type Description

Name string Teiid	type	or	domain	name

IsStandard boolean True	if	the	type	is	basic

Type String One	of	Basic,	UserDefined,
ResultSet,	Domain

TypeName string Design-time	type	name	(same	as
Name)

SYS	schema

557

JavaClass string Java	class	returned	for	this	type

Scale integer Max	scale	of	this	type

TypeLength integer Max	length	of	this	type

NullType string Nullability:	"Nullable",	"No	Nulls",
"Unknown"

IsSigned boolean Is	signed	numeric?

IsAutoIncremented boolean Is	auto-incremented?

IsCaseSensitive boolean Is	case-sensitive?

Precision integer Max	precision	of	this	type

Radix integer Radix	of	this	type

SearchType string
Searchability:	"Searchable",	"All
Except	Like",	"Like	Only",
"Unsearchable"

UID string Data	type	unique	ID

RuntimeType string Teiid	runtime	data	type	name

BaseType string Base	type

Description string Description	of	type

TypeCode integer JDBC	SQL	type	code

Literal_Prefix string literal	prefix

Literal_Prefix string literal	suffix

SYS.KeyColumns
This	table	supplies	information	about	the	columns	referenced	by	a	key.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

TableName string Table	name

Name string Element	name

KeyName string Key	name

SYS	schema

558

KeyType string Key	type:	"Primary",	"Foreign",
"Unique",	etc

RefKeyUID string Referenced	key	UID

UID string Key	UID

Position integer Position	in	key

TableUID string Parent	Table	unique	ID

SYS.Keys
This	table	supplies	information	about	primary,	foreign,	and	unique	keys.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

Table	name string Table	name

Name string Key	name

Description string Description

NameInSource string Name	of	key	in	source	system

Type string Type	of	key:	"Primary",	"Foreign",
"Unique",	etc

IsIndexed boolean True	if	key	is	indexed

RefKeyUID string Referenced	key	UID	(if	foreign	key)

RefTableUID string Referenced	key	table	UID	(if	foreign
key)

RefSchemaUID string Referenced	key	table	schema	UID	(if
foreign	key)

UID string Key	unique	ID

TableUID string Key	Table	unique	ID

SchemaUID string Key	Table	Schema	unique	ID

ColPositions short[] Array	of	column	positions	within	the
key	table

SYS.ProcedureParams
This	supplies	information	on	procedure	parameters.

Column	name Type Description

SYS	schema

559

VDBName string VDB	name

SchemaName string Schema	name

ProcedureName string Procedure	name

Name string Parameter	name

DataType string Teiid	runtime	data	type	name

Position integer Position	in	procedure	args

Type string Parameter	direction:	"In",	"Out",
"InOut",	"ResultSet",	"ReturnValue"

Optional boolean Parameter	is	optional

Precision integer Precision	of	parameter

TypeLength integer Length	of	parameter	value

Scale integer Scale	of	parameter

Radix integer Radix	of	parameter

NullType string Nullability:	"Nullable",	"No	Nulls",
"Unknown"

Description string Description	of	parameter

TypeName string The	type	name,	which	may	be	a
domain	name

TypeCode integer JDBC	SQL	type	code

ColumnSize string
If	numeric,	the	precision,	if	character,
the	length,	and	if	date/time,	then	the
string	length	of	a	literal	value.

DefaultValue string Default	value

SYS.Procedures
This	table	supplies	information	about	the	procedures	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

Name string Procedure	name

NameInSource string Procedure	name	in	source	system

SYS	schema

560

ReturnsResults boolean Returns	a	result	set

UID string Procedure	UID

Description string Description

SchemaUID string Parent	Schema	unique	ID

SYS.FunctionParams
This	supplies	information	on	function	parameters.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

FunctionName string Function	name

FunctionUID string Function	UID

Name string Parameter	name

DataType string Teiid	runtime	data	type	name

Position integer Position	in	procedure	args

Type string Parameter	direction:	"In",	"Out",
"InOut",	"ResultSet",	"ReturnValue"

Precision integer Precision	of	parameter

TypeLength integer Length	of	parameter	value

Scale integer Scale	of	parameter

Radix integer Radix	of	parameter

NullType string Nullability:	"Nullable",	"No	Nulls",
"Unknown"

Description string Description	of	parameter

TypeName string The	type	name,	which	may	be	a
domain	name

TypeCode integer JDBC	SQL	type	code

ColumnSize string
If	numeric,	the	precision,	if	character,
the	length,	and	if	date/time,	then	the
string	length	of	a	literal	value.

SYS.Functions

SYS	schema

561

This	table	supplies	information	about	the	functions	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	name

Name string Function	name

NameInSource string Function	name	in	source	system

UID string Function	UID

Description string Description

IsVarArgs boolean Does	the	function	accept	variable
arguments

SYS.Properties
This	table	supplies	user-defined	properties	on	all	objects	based	on	metamodel	extensions.	Normally,	this	table	is	empty	if	no
metamodel	extensions	are	being	used.

Column	name Type Description

Name string Extension	property	name

Value string Extension	property	value

UID string Key	unique	ID

ClobValue clob Clob	Value

SYS.ReferenceKeyColumns
This	table	supplies	informaton	about	column’s	key	reference.

Column	name Type Description

PKTABLE_CAT string VDB	name

PKTABLE_SCHEM string Schema	name

PKTABLE_NAME string Table/View	name

PKCOLUMN_NAME string Column	name

FKTABLE_CAT string VDB	name

FKTABLE_SCHEM string Schema	name

FKTABLE_NAME string Table/View	name

FKCOLUMN_NAME string Column	name

SYS	schema

562

KEY_SEQ short Key	Sequence

UPDATE_RULE integer Update	Rule

DELETE_RULE integer Delete	Rule

FK_NAME string FK	name

PK_NAME string PK	Nmae

DEFERRABILITY integer

SYS.Schemas
This	table	supplies	information	about	all	the	schemas	in	the	virtual	database,	including	the	system	schema	itself	(System).

Column	name Type Description

VDBName string VDB	name

Name string Schema	name

IsPhysical boolean True	if	this	represents	a	source

UID string Unique	ID

Description string Description

PrimaryMetamodelURI string
URI	for	the	primary	metamodel
describing	the	model	used	for	this
schema

SYS.Tables
This	table	supplies	information	about	all	the	groups	(tables,	views,	documents,	and	so	forth)	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	Name

Name string Short	group	name

Type string Table	type	(Table,	View,	Document,
…)

NameInSource string Name	of	this	group	in	the	source

IsPhysical boolean True	if	this	is	a	source	table

SupportsUpdates boolean True	if	group	can	be	updated

UID string Group	unique	ID

SYS	schema

563

Cardinality integer Approximate	number	of	rows	in	the
group

Description string Description

IsSystem boolean True	if	in	system	table

SchemaUID string Parent	Schema	unique	ID

SYS.VirtualDatabases
This	table	supplies	information	about	the	currently	connected	virtual	database,	of	which	there	is	always	exactly	one	(in	the	context
of	a	connection).

Column	name Type Description

Name string The	name	of	the	VDB

Version string The	version	of	the	VDB

Description string The	description	of	the	VDB

LoadingTimestamp timestamp The	timestamp	loading	began

ActiveTimestamp timestamp The	timestamp	when	the	vdb	became
active.

SYS.spatial_sys_ref
See	also	the	PostGIS	Documentation

Column	name Type Description

srid integer Spatial	Reference	Identifier

auth_name string Name	of	the	standard	or	standards
body

auth_srid integer SRID	for	the	auth_name	authority

srtext string Well-Known	Text	representation

proj4text string For	use	with	the	Proj4	library

SYS.GEOMETRY_COLUMNS
See	also	the	PostGIS	Documentation

Column	name Type Description

F_TABLE_CATALOG string catalog	name

F_TABLE_SCHEMA string schema	name

F_TABLE_NAME string table	name

F_GEOMETRY_COLUMN string column	name

SYS	schema

564

http://postgis.net/docs/using_postgis_dbmanagement.html#spatial_ref_sys
http://postgis.net/docs/using_postgis_dbmanagement.html#geometry_columns

COORD_DIMENSION integer Number	of	coordinate	dimensions

SRID integer Spatial	Reference	Identifier

TYPE string Geometry	type	name

Note:	The		coord_dimension		and		srid	properties		are	determined	from	the
	{http://www.teiid.org/translator/spatial/2015}coord_dimension		and
	{http://www.teiid.org/translator/spatial/2015}srid		extension	properties	on	the	column.	When	possible,	these	values	are	set
automatically	by	the	relevant	importer.	If	the	values	are	not	set,	they	will	be	reported	as		2		and		0	,	respectively.	If	client	logic
expects	actual	values,	such	as	integration	with	GeoServer,	you	can	set	these	values	manually.

SYS.ArrayIterate
Returns	a	resultset	with	a	single	column	with	a	row	for	each	value	in	the	array.

SYS.ArrayIterate(IN	val	object[])	RETURNS	TABLE	(col	object)

Example:	ArrayIterate

select	array_get(cast(x.col	as	string[]),	2)	from	(exec	arrayiterate((('a',	'b'),('c','d'))))	x

This	will	produce	two	rows	-	'b',	and	'd'.

SYS	schema

565

SYSADMIN	schema
System	schema	for	administrative	information	and	actions.

SYSADMIN.Usage
The	following	table	supplies	information	about	how	views	and	procedures	are	defined.

Column	name Type Description

VDBName string VDB	name

UID string Object	UID

object_type string
Type	of	object	(StoredProcedure,
ForeignProcedure,	Table,	View,
Column,	etc.)

Name string Object	Name	or	parent	name

ElementName string

Name	of	column	or	parameter,	may
be	null	to	indicate	a	table/procedure.
Parameter	level	dependencies	are
currently	not	implemented.

Uses_UID string Used	object	UID

Uses_object_type string Used	object	type

Uses_SchemaName string Used	object	schema

Uses_Name string Used	object	name	or	parent	name

Uses_ElementName string
Used	column	or	parameter	name,
may	be	null	to	indicate	a
table/procedure	level	dependency

Every	column,	parameter,	table,	or	procedure	referenced	in	a	procedure	or	view	definition	will	be	shown	as	used.	Likewise	every
column,	parameter,	table,	or	procedure	referenced	in	the	expression	that	defines	a	view	column	will	be	shown	as	used	by	that
column.	No	dependency	information	is	shown	for	procedure	parameters.	Column	level	dependencies	are	not	yet	inferred	through
intervening	temporary	or	common	tables.

Example:	SYSADMIN.Usage

SELECT	*	FROM	SYSADMIN.Usage

Recursive	common	table	queries	can	be	used	to	determine	transitive	relationships.

Example:	Finding	all	incoming	usage

with	im_using	as	(

				select	0	as	level,	uid,	Uses_UID,	Uses_Name,	Uses_Object_Type,	Uses_ElementName

						from	usage	where	uid	=	(select	uid	from	sys.tables	where	name='table	name'	and	schemaName='schema	name')

				union	all

				select	level	+	1,	usage.uid,	usage.Uses_UID,	usage.Uses_Name,	usage.Uses_Object_Type,	usage.Uses_ElementNam

e

						from	usage,	im_using	where	level	<	10	and	usage.uid	=	im_using.Uses_UID)	select	*	from	im_using

SYSADMIN	schema

566

Example:	Finding	all	outgoing	usage

with	uses_me	as	(

				select	0	as	level,	uid,	Uses_UID,	Name,	Object_Type,	ElementName

						from	usage	where	uses_uid	=	(select	uid	from	sys.tables	where	name='table	name'	and	schemaName='schema	na

me')

				union	all

				select	level	+	1,	usage.uid,	usage.Uses_UID,	usage.Name,	usage.Object_Type,	usage.ElementName

						from	usage,	uses_me	where	level	<	10	and	usage.uses_uid	=	uses_me.UID)	select	*	from	uses_me

SYSADMIN.MatViews
The	following	table	supplies	information	about	all	the	materailized	views	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	Name

Name string Short	group	name

TargetSchemaName string
Name	of	the	materialized	table
schema.	Will	be	null	for	internal
materialization.

TargetName string Name	of	the	materialized	table

Valid boolean
True	if	materialized	table	is	currently
valid.	Will	be	null	for	external
materialization.

LoadState boolean

The	load	state,	can	be	one	of
	NEEDS_LOADING	,		LOADING	,
	LOADED	,		FAILED_LOAD	.	Will	be
null	for	external	materialization.

Updated timestamp
The	timestamp	of	the	last	full	refresh.
Will	be	null	for	external
materialization.

Cardinality integer
The	number	of	rows	in	the
materialized	view	table.	Will	be	null
for	external	materialization.

Valid,	LoadState,	Updated,	and	Cardinality	may	be	checked	for	external	materialized	views	with	the		SYSADMIN.matViewStatus	
procedure.

Example:	SYSADMIN.MatViews

SELECT	*	FROM	SYSADMIN.MatViews

SYSADMIN.VDBResources
The	following	table	provides	the	current	VDB	contents.

Column	Name Type Description

resourcePath string The	path	to	the	contents.

SYSADMIN	schema

567

contents blob The	contents	as	a	blob.

Example:	SYSADMIN.VDBResources

SELECT	*	FROM	SYSADMIN.VDBResources

SYSADMIN.Triggers
The	following	table	provides	the	triggers	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	Name

TableName string Table	name

Name string Trigger	name

TriggerType string Trigger	Type

TriggerEvent string Triggering	Event

Status string Is	Enabled

Body clob Trigger	Action	(FOR	EACH	ROW
…)

TableUID string Table	Unique	ID

Example:	SYSADMIN.Triggers

SELECT	*	FROM	SYSADMIN.Triggers

SYSADMIN.Views
The	following	table	provides	the	views	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	Name

Name string View	name

Body clob View	Definition	Body	(SELECT	…)

UID string Table	Unique	ID

Example:	SYSADMIN.Views

SELECT	*	FROM	SYSADMIN.Views

SYSADMIN	schema

568

SYSADMIN.StoredProcedures
The	following	table	provides	the	StoredProcedures	in	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SchemaName string Schema	Name

Name string Procedure	name

Body clob Procedure	Definition	Body	(BEGIN
…)

UID string Unique	ID

Example:	SYSADMIN.StoredProcedures

SELECT	*	FROM	SYSADMIN.StoredProcedures

SYSADMIN.Requests
The	following	table	provides	active	requests	against	the	virtual	database.

VDBName	string(255)	NOT	NULL,

Column	name Type Description

VDBName string VDB	name

SessionId string session	identifier

ExecutionId long execution	identifier

Command clob The	query	being	executed

StartTimestamp timestamp Start	timestamp

TransactionId string transaction	identifier	as	reported	by
the	Transaction	Manager

ProcessingState string
processing	state,	can	be	one	of
PROCESSING,	DONE,
CANCELED

ThreadState string thread	state,	can	be	one	of
RUNNING,	QUEUED,	IDLE

SYSADMIN.Sessions
The	following	table	provides	the	Sessions	active	for	the	virtual	database.

Column	name Type Description

VDBName string VDB	name

SYSADMIN	schema

569

SessionId string session	identifier

UserName string username

CreatedTime timestamp timestamp	of	when	the	session	was
created

ApplicationName string application	name	as	reported	by	the
client

IPAddress string IP	Address	as	reported	by	the	client

SYSADMIN.Transactions
The	following	table	provides	the	active	Transactions.

Column	name Type Description

TransactionId string transaction	identifier	as	reported	by
the	Transaction	Manager

SessionId string
session	identifier	if	a	session	is
currently	associated	with	the
transaction

StartTimestamp timestamp start	time	of	the	transaction

Scope string

scope	of	the	transaction,	can	be	one
of	GLOBAL,	LOCAL,	REQUEST,
INHERITED.	INHERITED	means
that	a	Transaction	was	already
associated	with	the	calling	thread
(embedded	usage).

Note:	Transactions	that	are	not	associated	with	a	given	session	will	always	be	shown.	Transactions	that	are	associated	with	a
session	must	be	for	a	session	with	the	current	VDB.

SYSADMIN.isLoggable
Tests	if	logging	is	enabled	at	the	given	level	and	context.

SYSADMIN.isLoggable(OUT	loggable	boolean	NOT	NULL	RESULT,	IN	level	string	NOT	NULL	DEFAULT	'DEBUG',	IN	context	

string	NOT	NULL	DEFAULT	'org.teiid.PROCESSOR')

Returns	true	if	logging	is	enabled.	level	can	be	one	of	the	log4j	levels:	OFF,	FATAL,	ERROR,	WARN,	INFO,	DEBUG,	TRACE.
level	defaults	to	'DEBUG'	and	context	defaults	to	'org.teiid.PROCESSOR'

Example:	isLoggable

IF	((CALL	SYSADMIN.isLoggable(context=>'org.something'))

BEGIN

			DECLARE	STRING	msg;

			//	logic	to	build	the	message	...

			CALL	SYSADMIN.logMsg(msg=>msg,	context=>'org.something')

END

SYSADMIN.logMsg
Log	a	message	to	the	underlying	logging	system.

SYSADMIN	schema

570

SYSADMIN.logMsg(OUT	logged	boolean	NOT	NULL	RESULT,	IN	level	string	NOT	NULL	DEFAULT	'DEBUG',	IN	context	string

	NOT	NULL	DEFAULT	'org.teiid.PROCESSOR',	IN	msg	object)

Returns	true	if	the	message	was	logged.	level	can	be	one	of	the	log4j	levels:	OFF,	FATAL,	ERROR,	WARN,	INFO,	DEBUG,
TRACE.	The	level	defaults	to	'DEBUG'	and	context	defaults	to	'org.teiid.PROCESSOR'.	A	null	msg	object	will	be	logged	as	the
string	'null'.

Example:	logMsg

CALL	SYSADMIN.logMsg(msg=>'some	debug',	context=>'org.something')

The	preceding	example	will	log	the	message	'some	debug'	at	the	default	level	DEBUG	to	the	context	org.something.

Table	of	Contents
SYSADMIN.refreshMatView
SYSADMIN.refreshMatViewRow
SYSADMIN.refreshMatViewRows
SYSADMIN.schemaSources
SYSADMIN.setColumnStats
SYSADMIN.setProperty
SYSADMIN.setTableStats
SYSADMIN.loadMatView
SYSADMIN.updateMatView
SYSADMIN.cancelRequest
SYSADMIN.terminateSession
SYSADMIN.terminateTransaction

SYSADMIN.refreshMatView

Full	refresh/load	of	an	internal	materialized	view.	Returns	integer	RowsUpdated.	-1	indicates	a	load	is	in	progress,	otherwise	the
cardinality	of	the	table	is	returned.	See	the	Caching	Guide	for	more	information.

See	also	SYSADMIN.loadMatView

SYSADMIN.refreshMatView(OUT	RowsUpdated	integer	NOT	NULL	RESULT,	IN	ViewName	string	NOT	NULL,	IN	Invalidate	boo

lean	NOT	NULL	DEFAULT	'false')

SYSADMIN.refreshMatViewRow
Refreshes	a	row	in	an	internal	materialized	view.

Returns	integer	RowsUpdated.	-1	indicates	the	materialized	table	is	currently	invalid.	0	indicates	that	the	specified	row	did	not
exist	in	the	live	data	query	or	in	the	materialized	table.	See	the	Caching	Guide	for	more	information.

SYSADMIN.CREATE	FOREIGN	PROCEDURE	refreshMatViewRow(OUT	RowsUpdated	integer	NOT	NULL	RESULT,	IN	ViewName	string

	NOT	NULL,	IN	Key	object	NOT	NULL,	VARIADIC	KeyOther	object)

Example:	SYSADMIN.refreshMatViewRow

The	materialized	view		SAMPLEMATVIEW		has	3	rows	under	the		TestMat		Model	as	below:

SYSADMIN	schema

571

Assuming	the	primary	key	only	contains	one	column,	id,	update	the	second	row:

EXEC	SYSADMIN.refreshMatViewRow('TestMat.SAMPLEMATVIEW',	'101')

Assuming	the	primary	key	contains	more	columns,	a	and	b,	update	the	second	row:

EXEC	SYSADMIN.refreshMatViewRow('TestMat.SAMPLEMATVIEW',	'101',	'a1',	'b1')

SYSADMIN.refreshMatViewRows

Refreshes	rows	in	an	internal	materialized	view.

Returns	integer	RowsUpdated.	-1	indicates	the	materialized	table	is	currently	invalid.	Any	row	that	does	not	exist	in	the	live	data
query	or	in	the	materialized	table	will	not	count	toward	the	RowsUpdated.	For	more	information,	see	the	Teiid	Caching	Guide.

SYSADMIN.refreshMatViewRows(OUT	RowsUpdated	integer	NOT	NULL	RESULT,	IN	ViewName	string	NOT	NULL,	VARIADIC	Key	

object[]	NOT	NULL)

Example:	SYSADMIN.refreshMatViewRows

Continuing	use	the		SAMPLEMATVIEW		in	Example	of	SYSADMIN.refreshMatViewRow.	Assuming	the	primary	key	only	contains
one	column,	id,	update	all	rows:

EXEC	SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW',	('100',),	('101',),	('102',))

Assuming	the	primary	key	comtain	more	columns,	id,	a	and	b	compose	of	the	primary	key,	update	all	rows:

EXEC	SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW',	('100',	'a0',	'b0'),	('101',	'a1',	'b1'),	('102',	'a2

',	'b2'))

SYSADMIN.schemaSources

Get	the	sources	assoicated	for	a	given	schema.

SYSADMIN.setColumnStats(IN	tableName	string	NOT	NULL,	IN	columnName	string	NOT	NULL,	IN	distinctCount	long,	IN	

nullCount	long,	IN	max	string,	IN	min	string)

All	stat	values	are	nullable.	Passing	a	null	stat	value	will	leave	corresponding	metadata	value	unchanged.

SYSADMIN.setColumnStats
Set	statistics	for	the	given	column.

SYSADMIN	schema

572

http://teiid.github.io/teiid-documents/master/sb/caching/Caching_Guide.html

SYSADMIN.setColumnStats(IN	tableName	string	NOT	NULL,	IN	columnName	string	NOT	NULL,	IN	distinctCount	long,	IN	

nullCount	long,	IN	max	string,	IN	min	string)

All	stat	values	are	nullable.	Passing	a	null	stat	value	will	leave	corresponding	metadata	value	unchanged.

SYSADMIN.setProperty

Set	an	extension	metadata	property	for	the	given	record.	Extension	metadata	is	typically	used	by	Translators.

SYSADMIN.setProperty(OUT	OldValue	clob	NOT	NULL	RESULT,	IN	UID	string	NOT	NULL,	IN	Name	string	NOT	NULL,	IN	"Va

lue"	clob)

Setting	a	value	to	null	will	remove	the	property.

Example:	Property	Set

CALL	SYSADMIN.setProperty(uid=>(SELECT	uid	FROM	TABLES	WHERE	name='tab'),	name=>'some	name',	value=>'some	value'

)

The	preceding	example	will	set	the	property	'some	name'='some	value'	on	table	tab.

Note The	use	of	this	procedure	will	not	trigger	replanning	of	associated	prepared	plans.

Properties	from	built-in	teiid_*	namespaces	can	be	set	using	the	the	short	form	-	namespace:key	form.

SYSADMIN.setTableStats

Set	statistics	for	the	given	table.

SYSADMIN.setTableStats(IN	tableName	string	NOT	NULL,	IN	cardinality	long	NOT	NULL)

Note SYSADMIN.setColumnStats,	SYSADMIN.setProperty,	SYSADMIN.setTableStats	are	Metadata	Procedures.

A	MetadataRepository	must	be	configured	to	make	a	non-temporary	metadata	update	persistent.	See	the	Developer’s	Guide
Runtime	Metadata	Updates	section	for	more	information.

SYSADMIN.matViewStatus
matViewStatus	is	used	to	retrieve	the	status	of	materialized	views	via	schemaName	and	viewName.

Returns	tables	which	contains	TargetSchemaName,	TargetName,	Valid,	LoadState,	Updated,	Cardinality,	LoadNumber,
OnErrorAction.

SYSADMIN.matViewStatus(IN	schemaName	string	NOT	NULL,	IN	viewName	string	NOT	NULL)	RETURNS	TABLE	(TargetSchemaN

ame	varchar(50),	TargetName	varchar(50),	Valid	boolean,	LoadState	varchar(25),	Updated	timestamp,	Cardinality	l

ong,	LoadNumber	long,	OnErrorAction	varchar(25))

SYSADMIN.loadMatView

loadMatView	is	used	to	perform	a	complete	refresh	of	an	internal	or	external	materialized	table.

SYSADMIN	schema

573

Returns	integer	RowsInserted.	-1	indicates	the	materialized	table	is	currently	loading.	And	-3	indicates	there	was	an	exception
when	performing	the	load.	See	the	Caching	Guide	for	more	information.

SYSADMIN.loadMatView(IN	schemaName	string	NOT	NULL,	IN	viewName	string	NOT	NULL,	IN	invalidate	boolean	NOT	NULL

	DEFAULT	'false')	RETURNS	integer

Example:	loadMatView

exec	SYSADMIN.loadMatView(schemaName=>'TestMat',viewname=>'SAMPLEMATVIEW',	invalidate=>'true')

SYSADMIN.updateMatView

The	updateMatView	procedure	is	used	to	update	a	subset	of	an	internal	or	external	materialized	table	based	on	the	refresh	criteria.

The	refresh	criteria	might	reference	the	view	columns	by	qualified	name,	but	all	instances	of		.		in	the	view	name	will	be
replaced	by		_	,	because	an	alias	is	actually	being	used.

Returns	integer	RowsUpdated.	-1	indicates	the	materialized	table	is	currently	invalid.	And	-3	indicates	there	was	an	exception
when	performing	the	update.	See	the	Caching	Guide	for	more	information.

SYSADMIN.updateMatView(IN	schemaName	string	NOT	NULL,	IN	viewName	string	NOT	NULL,	IN	refreshCriteria	string)	R

ETURNS	integer

SYSADMIN.updateMatView
Continuing	use	the		SAMPLEMATVIEW		in	Example	of	SYSADMIN.refreshMatViewRow.	Update	view	rows:

EXEC	SYSADMIN.updateMatView('TestMat',	'SAMPLEMATVIEW',	'id	=	''101''	AND	a	=	''a1''')

SYSADMIN.cancelRequest
Cancel	the	user	request	identified	by	execution	id	for	the	given	session.

See	also	SYSADMIN.REQUESTS

SYSADMIN.cancelRequest(OUT	cancelled	boolean	NOT	NULL	RESULT,	IN	SessionId	string	NOT	NULL,	IN	executionId	long

	NOT	NULL)

Example:	Cancel

CALL	SYSADMIN.cancelRequest('session	id',	1)

SYSADMIN.terminateSession

Terminate	the	session	with	the	given	identifier.

See	also	SYSADMIN.SESSIONS

SYSADMIN.terminateSession(OUT	terminated	boolean	NOT	NULL	RESULT,	IN	SessionId	string	NOT	NULL)

Example:	Termination

CALL	SYSADMIN.terminateSession('session	id')

SYSADMIN	schema

574

SYSADMIN.terminateTransaction

Terminate	the	transaction	associated	with	a	session	by	marking	the	transaction	as	rollback	only.

See	also	SYSADMIN.TRANSACTIONS

SYSADMIN.terminateTransaction(IN	sessionid	string	NOT	NULL)

Note You	cannot	only	cancel	transactions	that	are	associated	with	a	session.

Example:	Terminate

CALL	SYSADMIN.terminateTransaction('session	id')

SYSADMIN	schema

575

Translators
Teiid	uses	the	Teiid	Connector	Architecture	(TCA),	which	provides	a	robust	mechanism	for	integrating	with	external	systems.	The
TCA	defines	a	common	client	interface	between	Teiid	and	an	external	system	that	includes	metadata	as	to	what	SQL	constructs
are	available	for	pushdown	and	the	ability	to	import	metadata	from	the	external	system.

A	Translator	is	the	heart	of	the	TCA	and	acts	as	the	bridge	logic	between	Teiid	and	an	external	system.

Refer	to	the	Teiid	Developers	Guide	for	details	on	developing	custom	Translators	and	JCA	resource	adapters	for	use	with	Teiid.

Tip The	TCA	is	not	the	same	as	the	JCA,	the	JavaEE	Connector	Architecture,	although	the	TCA	is	designed	for	use
with	JCA	resource	adapters.

A	Translator	is	typically	paired	with	a	particular	JCA	resource	adapter.	In	instances	where	pooling,	environment	dependent
configuration	management,	advanced	security	handling,	etc.	are	not	needed,	then	a	JCA	resource	adapter	is	not	needed.	The
configuration	of	JCA	ConnectionFactories	for	needed	resource	adapters	is	not	part	of	this	guide,	please	see	the	Teiid
Administrator	Guide	and	the	kit	examples	for	configuring	resource	adapters	for	use	in	WildFly.

Translators	can	have	a	number	of	configurable	properties.	These	are	broken	down	into	execution	properties,	which	determine
aspects	of	how	data	is	retrieved,	and	import	settings,	which	determine	what	metadata	is	read	for	import.

The	execution	properties	for	a	translator	typically	have	reasonable	defaults.	For	specific	translator	types,	such	as	the	Derby
translator,	base	execution	properties	are	already	tuned	to	match	the	source.	In	most	cases	the	user	will	not	need	to	adjust	their
values.

Table	1.	Base	execution	properties	-	shared	by	all	translators

Name Description Default

Immutable

Set	to		true		to	indicate	that	the
source	never	changes.	The
transactional	capability	is	reported	as
NONE,	and	update	commands	will
fail.

false

RequiresCriteria
Set	to		true		to	indicate	that	source
SELECT/UPDATE/DELETE	queries
require	a	where	clause.

false

SupportsOrderBy Set	to		true		to	indicate	that	the
ORDER	BY	clause	can	be	used. false

SupportsOuterJoins Set	to		true		to	indicate	that	OUTER
JOINs	can	be	used. false

SupportsFullOuterJoins
If		SupportsOuterJoins		is	set	to
	true	,		true		indicates	that	FULL
OUTER	JOINs	can	be	used.

false

SupportsInnerJoins Set	to		true		to	indicate	that	INNER
JOINs	can	be	used. false

SupportedJoinCriteria

If	join	capabilities	are	enabled,
defines	the	criteria	that	can	be	used	as
the	join	criteria.	May	be	one	of
(ANY,	THETA,	EQUI,	or	KEY).

ANY

Translators

576

MaxInCriteriaSize
If	the	use	of		IN		criteria	is	enabled,
specifies	the	maximum	number	of
	IN		entries	per	predicate.		-1	
indicates	no	limit.

-1

MaxDependentInPredicates

If	the	use	of		IN		criteria	is	enabled,
defines	what	the	maximum	number
of	predicates	that	can	be	used	for	a
dependent	join.	Values	less	than	1
indicate	to	use	only	one		IN	
predicate	per	dependent	value	pushed
(which	matches	the	pre-7.4
behavior).

-1

DirectQueryProcedureName

If		SupportsDirectQueryProcedure	
is	set	to		true		for	the	translator,	this
property	indicates	the	name	of	the
procedure.

native

SupportsDirectQueryProcedure
Set	to		true		to	indicate	that	direct
execution	of	commands	is	available
for	the	translator.

false

ThreadBound
Set	to		true		to	indicate	the
translator’s	Executions	should	be
processed	by	only	a	single	thread

false

CopyLobs

If		true	,	then	returned	large	object
(LOB)	data	(clob,	blob,	sql/xml)	is
copied	by	the	engine	in	a	memory
safe	manner.	Use	this	option	if	the
source	does	not	provide	memory	safe
LOBS	or	if	you	want	to	disconnect
LOBS	from	the	source	connection.

false

TransactionSupport

The	highest	level	of	transaction
capability.	Used	by	the	engine	as	a
hint	to	determine	if	a	transaction	is
needed	for		autoCommitTxn=DETECT	
mode.	Can	be	one	of	XA,	NONE,	or
LOCAL.	If	XA	or	LOCAL	then
access	under	a	transaction	will	be
serialized.

XA

Note Only	a	subset	of	the	available	metadata	can	be	set	through	execution	properties	on	the	base	ExecutionFactory.	All
methods	are	available	on	the	BaseDelegatingExecutionFactory.

There	are	no	base	importer	settings.

Override	execution	properties
For	all	translators,	you	can	override	Execution	Properties	in	the	main	vdb	file.

Example:	Overriding	a	translator	property
.

CREATE	FOREIGN	DATA	WRAPPER	"oracle-override"	TYPE	oracle	OPTIONS	(RequiresCriteria	'true');

CREATE	SERVER	ora	FOREIGN	DATA	WRAPPER	"oracle-override"	OPTIONS	("resource-name"	'java:/oracle');

CREATE	SCHEMA	ora	SERVER	ora;

SET	SCHEMA	ora;

Translators

577

IMPORT	FROM	SERVER	ora	INTO	ora;

Or	as	an	XML	vdb:

<model	name="ora">

					<source	name="ora"	translator-name="oracle-override"	connection-jndi-name="java:/oracle"/>

</model>

<translator	name="oracle-override"	type="oracle">

					<property	name="RequiresCriteria"	value="true"/>

</translator>

The	preceding	example	overrides	the	oracle	translator	and	sets	the	RequiresCriteria	property	to	true.	The	modified	translator	is
only	available	in	the	scope	of	this	VDB.	As	many	properties	as	desired	may	be	overriden	together.

See	also	VDB	Definition.

Parameterizable	native	queries
In	some	situations	the		teiid_rel:native-query			property	and	native	procedures	accept	parameterizable	strings	that	can
positionally	reference	IN	parameters.	A	parameter	reference	has	the	form	`$integer	,	for	example,		$1	.	Note	that	one-
based	indexing	is	used	and	that	only	IN	parameters	may	be	referenced.	Dollar-sign	integer	is	therefore	reserved,	but	may	be
escaped	with	another		$`	,	for	example,		$$1	.	The	value	will	be	bound	as	a	prepared	value	or	a	literal	is	a	source	specific
manner.	The	native	query	must	return	a	result	set	that	matches	the	expectation	of	the	calling	procedure.

For	example	the	native-query		select	c	from	g	where	c1	=	$1	and	c2	=	'$$1'		results	in	a	JDBC	source	query	of		select	c
from	g	where	c1	=	?	and	c2	=	'$1'	,	where		?`		will	be	replaced	with	the	actual	value	bound	to	parameter	1.

General	import	properties
Several	import	properties	are	shared	by	all	translators.

When	specifying	an	importer	property,	it	must	be	prefixed	with		importer.	.	For	example,		importer.tableTypes	.

Name Description Default

autoCorrectColumnNames
Replace	any	usage	of		.		in	a	column
name	with		_		as	the	period	character
is	not	valid	in	Teiid	column	names.

true

renameDuplicateColumns

If	true,	rename	duplicate	columns
caused	by	either	mixed	case
collisions	or
	autoCorrectColumnNames		replacing
	.		with		_	.	A	suffix		_n		where		n	
is	an	integer	will	be	added	to	make
the	name	unique.

false

renameDuplicateTables

If	true,	rename	duplicate	tables
caused	by	mixed	case	collisions.	A
suffix		_n		where		n		is	an	integer
will	be	added	to	make	the	name
unique.

false

renameAllDuplicates

If	true,	rename	all	duplicate	tables,
columns,	procedures,	and	parameters
caused	by	mixed	case	collisions.	A
suffix		_n		where		n		is	an	integer
will	be	added	to	make	the	name
unique.	Supersedes	the	individual
rename	duplicate	options.

false

Translators

578

nameFormat

Set	to	a	Java	string	format	to	modify
table	and	procedure	names	on	import.
The	only	argument	will	be	the
original	name	Teiid	name.	For
example	use		prod_%s		to	prefix	all
names	with		prod_	.

Translators

579

S3	translator
The	Simple	Storage	Service	(S3)	translator,	known	by	the	type	name	amazon-s3,	exposes	stored	procedures	to	leverage	Amazon
S3	object	resources.	This	translator	is	deprecated.	Please	use	an	s3	source	with	an	appropriate	translator	such	as	file	or	excel.	The
translator	works	with	a	range	of	S3-compatible	data	sources,	including	Ceph	Storage,	Google	Cloud	Storage	buckets,	MinIO,	and
NooBaa.

This	translator	is	typically	used	with	the		TEXTTABLE		or		XMLTABLE		functions	to	consume	CSV	or	XML	formatted	data,	or	to	read
Microsoft	Excel	files	or	other	object	files	that	are	stored	in	S3.	The	S3	translator	can	access	Amazon	S3	by	using	an	AWS	access
key	ID	and	secret	access	key.

Usage
In	the	following	example,	a	virtual	database	reads	a	CSV	file	with	the	name		g2.txt		from	an	Amazon	S3	bucket	called
	teiidbucket	:

e1,e2,e3

5,'five',5.0

6,'six',6.0

7,'seven',7.0

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="example"	version="1">

				<model	name="s3">

								<source	name="web-connector"	translator-name="user-s3"	connection-jndi-

name="java:/amazon-s3"/>

				</model>

				<model	name="Stocks"	type="VIRTUAL">

								<metadata	type="DDL"><![CDATA[

								CREATE	VIEW	G2	(e1	integer,	e2	string,	e3	double,PRIMARY	KEY	(e1))

												AS		SELECT	SP.e1,	SP.e2,SP.e3

																FROM	(EXEC	s3.getTextFile(name=>'g2.txt'))	AS	f,

																TEXTTABLE(f.file	COLUMNS	e1	integer,	e2	string,	e3	double	HEADER)	

AS	SP;

]]>	</metadata>

				</model>

				<translator	name="user-s3"	type="amazon-s3">

						<property	name="accesskey"	value="xxxx"/>

						<property	name="secretkey"	value="xxxx"/>

						<property	name="region"	value="us-east-1"/>

						<property	name="bucket"	value="teiidbucket"/>

				</translator>

</vdb>

Execution	properties
Use	the	translator	override	mechanism	to	supply	the	following	properties.

Name Description Default

Encoding

The	encoding	that	should	be	used	for
CLOBs	returned	by	the	getTextFiles
procedure.	The	value	should	match The	system	default	encoding.

Amazon	S3	translator

580

an	encoding	known	to	the	JRE.

Accesskey

Amazon	security	access	key.	Log	in
to	Amazon	console	to	find	your
security	access	key.	When	provided,
this	becomes	the	default	access	key.

n/a

Secretkey

Amazon	security	secret	key.	Log	in	to
Amazon	console	to	find	your	security
secret	key.	When	provided,	this
becomes	the	default	secret	key.

n/a

Region
Amazon	region	to	be	used	with	the
request.	When	provided,	this	will	be
default	region	used.

US-EAST-1

Bucket
Amazon	S3	bucket	name.	If
provided,	this	will	serve	as	default
bucket	to	be	used	for	all	the	requests

n/a

Encryption

When	server-side	encryption	with
customer-provided	encryption	keys
(SSE-C)	is	used,	the	key	is	used	to
define	the	"type"	of	encryption
algorithm	used.	You	can	configure
the	translator	to	use	the	AES-256	or
AWS-KMS	encryption	algorithms.	If
provided,	this	will	be	used	as	default
algorithm	for	all	"get"	based	calls.

n/a

Encryptionkey

When	SSE-C	type	encryption	used,
where	customer	supplies	the
encryption	key,	this	key	will	be	used
for	defining	the	"encryption	key".	If
provided,	this	will	be	used	as	default
key	for	all	"get"	based	calls.

n/a

Tip For	information	about	setting	properties,	see	Override	execution	property	in	Translators,	and	review	the	examples
in	the	sections	that	follow.

If	you	are	using	an	S3	service	other	than	AWS,	then	you	need	to	set	the	EndPoint	property	on	the	associated	source	to	the	service
URL,	i.e.	http://my-minio:9000

Procedures	exposed	by	translator
When	you	add	the	a	model	(schema)	like	above	in	the	example,	the	following	procedure	calls	are	available	for	user	to	execute
against	Amazon	S3.

Note
	bucket	,		region	,		accesskey	,		secretkey	,		encryption		and		encryptionkey		are	optional	or	nullable
parameters	in	most	of	the	methods	provided.	Provide	them	only	if	they	are	not	already	configured	by	using
translator	override	properties	as	shown	in	preceding	example.

getTextFile(…)
Retrieves	the	given	named	object	as	a	text	file	from	the	specified	bucket	and	region	by	using	the	provided	security	credentials	as
CLOB.

getTextFile(string	name	NOT	NULL,	string	bucket,	string	region,

			string	endpoint,	string	accesskey,	string	secretkey,string	encryption,	string	encryptionkey,	boolean	stream	

default	false)

			returns	TABLE(file	blob,	endpoint	string,	lastModified	string,	etag	string,	size	long);

Amazon	S3	translator

581

http://my-minio:9000

Note
	endpoint		is	optional.	When	provided	the	endpoint	URL	is	used	instead	of	the	one	constructed	by	the	supplied
properties.	Use		encryption		and		encryptionkey		only	in	when	server	side	security	with	customer	supplied	keys
(SSE-C)	in	force.

If	the	value	of		stream		is	true,	then	returned	LOBs	are	read	only	once	and	are	not	typically	buffered	to	disk.

Examples

exec	getTextFile(name=>'myfile.txt');

SELECT	SP.e1,	SP.e2,SP.e3,	f.lastmodified

			FROM	(EXEC	getTextFile(name=>'myfile.txt'))	AS	f,

			TEXTTABLE(f.file	COLUMNS	e1	integer,	e2	string,	e3	double	HEADER)	AS	SP;

getFile(…)
Retrieves	the	given	named	object	as	binary	file	from	specified	bucket	and	region	using	the	provided	security	credentials	as	BLOB.

getFile(string	name	NOT	NULL,	string	bucket,	string	region,

			string	endpoint,	string	accesskey,	string	secretkey,	string	encryption,	string	encryptionkey,	boolean	stream

	default	false)

			returns	TABLE(file	blob,	endpoint	string,	lastModified	string,	etag	string,	size	long)

Note
	endpoint		is	optional.	When	provided	the	endpoint	URL	is	used	instead	of	the	one	constructed	by	the	supplied
properties.	Use		encryption		and		encryptionkey		only	in	when	server	side	security	with	customer	supplied	keys
(SSE-C)	in	force.

If	the	value	of		stream		is	true,	then	returned	lOBs	are	read	once	and	are	not	typically	buffered	to	disk.

Examples

exec	getFile(name=>'myfile.xml',	bucket=>'mybucket',	region=>'us-east-1',	accesskey=>'xxxx',	secretkey=>'xxxx')

;

select	b.*	from	(exec	getFile(name=>'myfile.xml',	bucket=>'mybucket',	region=>'us-east-1',	accesskey=>'xxxx',	s

ecretkey=>'xxxx'))	as	a,

XMLTABLE('/contents'	PASSING	XMLPARSE(CONTENT	a.result	WELLFORMED)	COLUMNS	e1	integer,	e2	string,	e3	double)	as

	b;

saveFile(…)
Save	the	CLOB,	BLOB,	or	XML	value	to	given	name	and	bucket.	In	the	following	procedure	signature,	the	contents	parameter
can	be	any	of	the	LOB	types.

call	saveFile(string	name	NOT	NULL,	string	bucket,	string	region,	string	endpoint,

			string	accesskey,	string	secretkey,	contents	object)

Note You	cannot	use		saveFile		to	stream	or	chunk	uploads	of	a	file’s	contents.	If	you	try	to	load	very	large	objects,
out-of-memory	issues	can	result.	You	cannot	configure		saveFile		to	use	SSE-C	encryption.

Examples

exec	saveFile(name=>'g4.txt',	contents=>'e1,e2,e3\n1,one,1.0\n2,two,2.0');

deleteFile(…)
Delete	the	named	object	from	the	bucket.

call	deleteFile(string	name	NOT	NULL,	string	bucket,	string	region,	string	endpoint,	string	accesskey,	string	s

ecretkey)

Amazon	S3	translator

582

Examples

exec	deleteFile(name=>'myfile.txt');

list(…)
Lists	the	contents	of	the	bucket	using	a	v2	list	request.

call	list(string	bucket,	string	region,	string	accesskey,	string	secretkey,	nexttoken	string)

				returns	Table(result	clob)

listv1(…)
Lists	the	contents	of	the	bucket	using	a	v1	list	request.

call	listv1(string	bucket,	string	region,	string	accesskey,	string	secretkey)

				returns	Table(result	clob)

The	result	for	either	is	an	XML	file	which	resembles:

<?xml	version="1.0"	encoding="UTF-8"?>/n

<ListBucketResult

				xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

				<Name>teiidbucket</Name>

				<Prefix></Prefix>

				<KeyCount>1</KeyCount>

				<MaxKeys>1000</MaxKeys>

				<IsTruncated>false</IsTruncated>

				<Contents>

								<Key>g2.txt</Key>

								<LastModified>2017-08-08T16:53:19.000Z</LastModified>

								<ETag>"fa44a7893b1735905bfcce59d9d9ae2e"</ETag>

								<Size>48</Size>

								<StorageClass>STANDARD</StorageClass>

				</Contents>

</ListBucketResult>

You	can	parse	this	into	a	view	by	using	a	query	similar	to	the	one	in	the	following	example:

select	b.*	from	(exec	list(bucket=>'mybucket',	region=>'us-east-1'))	as	a,

	XMLTABLE(XMLNAMESPACES(DEFAULT	'http://s3.amazonaws.com/doc/2006-03-01/'),	'/ListBucketResult/Contents'

	PASSING	XMLPARSE(CONTENT	a.result	WELLFORMED)	COLUMNS	Key	string,	LastModified	string,	ETag	string,	Size	string

,

	StorageClass	string,	 NextContinuationToken	string	PATH	'../NextContinuationToken')	as	b;

If	all	properties	(bucket	,		region	,		accesskey	,	and		secretkey)	are	defined	as	translator	override	properties,	you	can	run	the
following	simple	query:

SELECT	*	FROM	Bucket

Note If	there	are	more	then	1000	object	in	the	bucket,	then	the	value	'IsTruncated'	will	be	true.	v2	support	for	a	Bucket
list	with	continuation	support	can	be	automated	in	Teiid	with	an	enhancement	request.

JCA	Resource	Adapter

Amazon	S3	translator

583

The	resource	adapter	for	this	translator	provided	through	"Web	Service	Data	Source",	Refer	to	the	Teiid	Administrator’s	Guide	for
configuration	information.

Amazon	S3	translator

584

Amazon	SimpleDB	Translator
The	Amazon	SimpleDB	Translator,	known	by	the	type	name	simpledb,	exposes	querying	functionality	to	Amazon	SimpleDB	Data
Sources.

Note

"Amazon	SimpleDB"	-	Amazon	SimpleDB	is	a	web	service	for	running	queries	on	structured	data	in	real	time.
This	service	works	in	close	conjunction	with	Amazon	Simple	Storage	Service	(Amazon	S3)	and	Amazon	Elastic
Compute	Cloud	(Amazon	EC2),	collectively	providing	the	ability	to	store,	process	and	query	data	sets	in	the
cloud.	These	services	are	designed	to	make	web-scale	computing	easier	and	more	cost-effective	for	developers.
Read	more	about	it	at	http://aws.amazon.com/simpledb/

This	translator	provides	an	easy	way	connect	to	Amazon	SimpleDB	and	provides	relational	way	using	SQL	to	add	records	from
directly	from	user	or	from	other	sources	that	are	integrated	with	Teiid.	It	also	gives	ability	to	read/update/delete	existing	records
from	SimpleDB	store.

Usage
Amazon	SimpleDB	is	hosted	key/value	store	where	a	single	key	can	contain	host	multiple	attribute	name/value	pairs	where	where
value	can	also	be	a	multi-value.	The	data	structure	can	be	represented	by

Based	on	above	data	structure,	when	you	import	the	metadata	from	SimpleDB	into	Teiid,	the	constructs	are	aligned	as	below

Simple	DB	Name SQL

Domain Table

Item	Name Column	(ItemName)	Primary	Key

attribute	-	single	value Column	-	String	Datatype

attribute	-	multi	value Column	-	String	Array	Datatype

Since	all	attributes	are	by	default	are	considered	as	string	data	types,	columns	are	defined	with	string	data	type.

Note
If	you	did	modify	data	type	be	other	than	string	based,	be	cautioned	and	do	not	use	those	columns	in	comparison
queries,	as	SimpleDB	does	only	lexicographical	matching.	To	avoid	it,	set	the	"SearchType"	on	that	column	to
"UnSearchable".

An	Example	VDB	that	shows	SimpleDB	translator	can	be	defined	as

<vdb	name="myvdb"	version="1">

				<model	name="simpledb">

Amazon	SimpleDB	translator

585

http://aws.amazon.com/simpledb/

								<source	name="node"	translator-name="simpledb"	connection-jndi-name="java:/simpledbDS"/>

				</model>

<vdb>

The	translator	does	NOT	provide	a	connection	to	the	SimpleDB.	For	that	purpose,	Teiid	has	a	JCA	adapter	that	provides	a
connection	to	SimpleDB	using	Amazon	SDK	Java	libraries.	To	define	such	connector,	see	Amazon	SimpleDB	Data	Sources	or
see	an	example	in	"<jboss-as>/docs/teiid/datasources/simpledb"

Properties

The	Amazon	SimpleDB	Translator	currently	has	no	import	or	execution	properties.

Capabilities

The	Amazon	SimpleDB	Translator	provides	a	restrictive	set	of	capabilities	for	SELECT	statements,	including:	comparison
predicates,	IN	predicates,	LIMIT	and	ORDER	BY.	The	translator	also	works	with	Insert,	update,	and	delete	statements.

Queries	on	Attributes	with	Multiple	Values

Attributes	with	multiple	values	will	defined	as	string	array	type.	So	this	column	is	treated	SQL	Array	type.	The	below	table	shows
SimpleDB	way	of	querying	to	Teiid	way	to	query.	The	queries	are	based	on
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/RangeValueQueriesSelect.html

SimpleDB	Query Teiid	Query

select	*	from	mydomain	where	Rating	=	'4	stars'	or	Rating
=	'**' select	*	from	mydomain	where	Rating	=	('4	stars','**')

select	*	from	mydomain	where	Keyword	=	'Book'	and
Keyword	=	'Hardcover'

select	*	from	mydomain	where
intersection(Keyword,'Book','Hardcover')

select	*	from	mydomain	where	every(Rating)	=	'**' select	*	from	mydomain	where	every(Rating)	=	'**'

With	Insert/Update/Delete	you	write	prepare	statements	or	you	can	write	SQL	like

INSERT	INTO	mydomain	(ItemName,	title,	author,	year,	pages,	keyword,	rating)	values	('0385333498',	'The	Sirens	

of	Titan',	'Kurt	Vonnegut',	('1959'),	('Book',	Paperback'),	('*****','5	stars','Excellent'))

Note
Direct	Queries
This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the
source.	To	enable	this	feature,	override	the	execution	property	called	SupportsDirectQueryProcedure	to	true.

Tip By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native.	Override	the	execution
property	DirectQueryProcedureName	to	change	it	to	another	name.

The	SimpleDB	translator	provides	a	procedure	to	execute	any	ad-hoc	simpledb	query	directly	against	the	source	without	Teiid
parsing	or	resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array.
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.	You	can	use	direct	query	with
	SELECT	-based	calls.

SELECT	X.*

		FROM	simpledb_source.native('SELECT	firstname,	lastname	FROM	users')	n,	ARRAYTABLE(n.tuple	COLUMNS	firstname	

string,	lastname	string)	AS	X

Amazon	SimpleDB	translator

586

http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/RangeValueQueriesSelect.html

JCA	Resource	Adapter

The	Teiid	specific	Amazon	SimpleDB	Resource	Adapter	should	be	used	with	this	translator.	See	Amazon	SimpleDB	Data	Sources
for	connecting	to	SimpleDB.

Amazon	SimpleDB	translator

587

Apache	Accumulo	Translator
The	Apache	Accumulo	Translator,	known	by	the	type	name	accumulo,	exposes	querying	functionality	to	Accumulo	Data	Sources.
Apache	Accumulo	is	a	sorted,	distributed	key	value	store	with	robust,	scalable,	high	performance	data	storage	and	retrieval
system.	This	translator	provides	an	easy	way	connect	to	Accumulo	system	and	provides	relational	way	using	SQL	to	add	records
from	directly	from	user	or	from	other	sources	that	are	integrated	with	Teiid.	It	also	gives	ability	to	read/update/delete	existing
records	from	Accumulo	store.	Teiid	has	capability	to	pass-in	logged	in	user’s	roles	as	visibility	properties	to	restrict	the	data
access.

Tip "versions"	-	The	development	was	done	using	Accumulo	1.5.0,	Hadoop	2.2.0	and	Zookeeper	3.4.5

Note This	document	assumes	that	user	is	familiar	with	Accumulo	source	and	has	basic	understanding	of	how	Teiid
works.	This	document	only	contains	details	about	Accumulo	translator.

Intended	Usecases
The	usage	Accumulo	translator	can	be	highly	dependent	on	user’s	usecase(s).	Here	are	some	common	scenarios.

Accumulo	source	can	be	used	in	Teiid,	to	continually	add/update	the	documents	in	the	Accumulo	system	from	other	sources
automatically.

Access	Accumulo	through	SQL	interface.

Make	use	of	cell	level	security	through	enterprise	roles.

Accumulo	translator	can	be	used	as	an	indexing	system	to	gather	data	from	other	enterprise	sources	such	as	RDBMS,	Web
Service,	SalesForce	etc,	all	in	single	client	call	transparently	with	out	any	coding.

Usage

Apache	Accumulo	is	distributed	key	value	store	with	unique	data	model.	It	allows	to	group	its	key-value	pairs	in	a	collection
called	"table".	The	key	structure	is	defined	as

Based	on	above	information,	one	can	define	a	schema	representing	Accumulo	table	structures	in	Teiid	using	DDL	with	help	of
metadata	extension	properties	defined	below.	Since	no	data	type	information	is	defined	on	the	columns,	by	default	all	columns	are
considered	as	string	data	types.	However,	during	modeling	of	the	schema,	one	can	use	various	other	data	types	supported	through
Teiid	to	define	a	data	type	of	column,	that	user	wishes	to	expose	as.

Once	this	schema	is	defined	and	exposed	through	VDB	in	a	Teiid	database,	and	Accumulo	Data	Sources	is	created,	the	user	can
issue	"INSERT/UPDATE/DELETE"	based	SQL	calls	to	insert/update/delete	records	into	the	Accumulo,	and	issue	"SELECT"
based	calls	to	retrieve	records	from	Accumulo.	You	can	use	full	range	of	SQL	with	Teiid	system	integrating	other	sources	along
with	Accumulo	source.

Apache	Accumulo	translator

588

https://accumulo.apache.org/

By	default,	Accumulo	table	structure	is	flat	can	not	define	relationships	among	tables.	So,	a	SQL	JOIN	is	performed	in	Teiid	layer
rather	than	pushed	to	source	even	if	both	tables	on	either	side	of	the	JOIN	reside	in	the	Accumulo.	Currently	any	criteria	based	on
EQUALITY	and/or	COMPARISON	using	complex	AND/OR	clauses	are	handled	by	Accumulo	translator	and	will	be	properly
executed	at	source.

An	Example	VDB	that	shows	Accumulo	translator	can	be	defined	as

<vdb	name="myvdb"	version="1">

				<model	name="accumulo">

								<source	name="node-one"	translator-name="accumulo"	connection-jndi-name="java:/accumuloDS"/>

				</model>

<vdb>

The	translator	does	NOT	provide	a	connection	to	the	Accumulo.	For	that	purpose,	Teiid	has	a	JCA	adapter	that	provides	a
connection	to	Accumulo	using	Accumulo	Java	libraries.	To	define	such	connector,	see	Accumulo	Data	Sources	or	see	an	example
in	"<jboss-as>/docs/teiid/datasources/accumulo"

Properties

Accumulo	translator	is	capable	of	traversing	through	Accumulo	table	structures	and	build	a	metadata	structure	for	Teiid	translator.
The	schema	importer	can	understand	simple	tables	by	traversing	a	single	ROWID	of	data,	then	looks	for	all	the	unique	keys,
based	on	it	it	comes	up	with	a	tabular	structure	for	Accumulo	based	table.	Using	the	following	import	properties,	you	can	further
refine	the	import	behavior.

Import	Properties

Property	Name Description Required Default

ColumnNamePattern How	the	column	name
should	be	formed false {CF}_{CQ}

ValueIn
Where	the	value	for
column	is	defined	CQ	or
VALUE

false {VALUE}

Note
{CQ},	{CF},	{ROWID}	are	expressions	that	you	can	use	to	define	above	properties	in	any	pattern,	and	respective
values	of	Column	Qualifer,	Column	Familiy	or	ROWID	will	be	replaced	at	import	time.	ROW	ID	of	the
Accumulo	table,	is	automatically	created	as	ROWID	column,	and	will	be	defined	as	Primary	Key	on	the	table.

You	can	also	define	the	metadata	for	the	Accumulo	based	model	using	DDL.	When	doing	such	exercise,	the	Accumulo	Translator
currently	defines	following	extended	metadata	properties	to	be	defined	on	its	Teiid	schema	model	to	guide	the	translator	to	make
proper	decisions.	The	following	properties	are	described	under	NAMESPACE	"http://www.teiid.org/translator/accumulo/2013",
for	user	convenience	this	namespace	has	alias	name	teiid_accumulo	defind	in	Teiid.	To	define	a	extension	property	use	expression
like	"teiid_accumulo:{property-name}	value".	All	the	properties	below	are	intended	to	be	used	as	OPTION	properties	on
COLUMNS.	See	DDL	Metadata	for	more	information	on	defining	DDL	based	metadata.

Extension	Metadata	Properties

Property	Name Description Required Default

CF Column	Family true none

CQ Column	Qualifier false empty

Apache	Accumulo	translator

589

VALUE-IN
Value	of	column	defined
in.	Possible	values
(VALUE,	CQ)

false VALUE

How	to	use	above	Properties

Say	for	example	you	have	a	table	called	"User"	in	your	Accumulo	instance,	and	doing	a	scan	returned	following	data

root@teiid>	table	User

root@teiid	User>	scan

		1	name:age	[]				43

		1	name:firstname	[]			John

		1	name:lastname	[]				Does

		2	name:age	[]				10

		2	name:firstname	[]			Jane

		2	name:lastname	[]				Smith

		3	name:age	[]				13

		3	name:firstname	[]			Mike

		3	name:lastname	[]				Davis

If	you	used	the	default	importer	from	the	Accumulo	translator	(like	the	VDB	defined	above),	the	table	generated	will	be	like
below

CREATE	FOREIGN	TABLE	"User"	(

				rowid	string	OPTIONS	(UPDATABLE	FALSE,	SEARCHABLE	'All_Except_Like'),

				name_age	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"	'age'

,	"teiid_accumulo:VALUE-IN"	'{VALUE}'),

				name_firstname	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"

	'firstname',	"teiid_accumulo:VALUE-IN"	'{VALUE}'),

				name_lastname	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"	

'lastname',	"teiid_accumulo:VALUE-IN"	'{VALUE}'),

				CONSTRAINT	PK0	PRIMARY	KEY(rowid)

)	OPTIONS	(UPDATABLE	TRUE);

You	can	use	"Import	Property"	as	"ColumnNamePattern"	as	"{CQ}"	will	generate	the	following	(note	the	names	of	the	column)

CREATE	FOREIGN	TABLE	"User"	(

				rowid	string	OPTIONS	(UPDATABLE	FALSE,	SEARCHABLE	'All_Except_Like'),

				age	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"	'age',	"t

eiid_accumulo:VALUE-IN"	'{VALUE}'),

				firstname	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"	'fi

rstname',	"teiid_accumulo:VALUE-IN"	'{VALUE}'),

				lastname	string	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_accumulo:CF"	'name',	"teiid_accumulo:CQ"	'las

tname',	"teiid_accumulo:VALUE-IN"	'{VALUE}'),

				CONSTRAINT	PK0	PRIMARY	KEY(rowid)

)	OPTIONS	(UPDATABLE	TRUE);

respectively	if	the	column	name	is	defined	by	Column	Family,	you	can	use	"ColumnNamePattern"	as	"{CF}",	and	if	the	value	for
that	column	exists	in	the	Column	Qualifier	then	you	can	use	"ValueIn"	as	"{CQ}".	Using	import	properties	you	can	dictate	how
the	table	should	be	modeled.

JCA	Resource	Adapter
The	Teiid	specific	Accumulo	Resource	Adapter	should	be	used	with	this	translator.	See	Accumulo	Data	Sources	for	connecting	to
a	Accumulo	Source.

Apache	Accumulo	translator

590

Native	Queries

Currently	this	feature	is	not	applicable.	Based	on	user	demand	Teiid	could	expose	a	way	for	user	to	submit	a	MAP-REDUCE	job.

Direct	Query	Procedure

This	feature	is	not	applicable	for	this	translator.

Apache	Accumulo	translator

591

Apache	SOLR	Translator
The	Apache	SOLR	Translator,	known	by	the	type	name	solr,	exposes	querying	functionality	to	Solr	Data	Sources.	Apache	Solr	is
a	search	engine	built	on	top	of	Apache	Lucene	for	indexing	and	searching.	This	translator	provides	an	easy	way	connect	to
existing	or	a	new	Solr	search	system,	and	provides	way	to	add	documents/records	from	directly	from	user	or	from	other	sources
that	are	integrated	with	Teiid.	It	also	gives	ability	to	read/update/delete	existing	documents	from	Solr	Search	system.

Properties

The	Solr	Translator	currently	has	no	import	or	execution	properties.	It	does	not	define	any	extension	metadata.

Intended	Usecases

The	usage	Solr	translator	can	be	highly	dependent	on	user’s	usecase(s).	Here	are	some	common	scenarios.

Solr	source	can	be	used	in	Teiid,	to	continually	add/update	the	documents	in	the	search	system	from	other	sources
automatically.

If	the	search	fields	are	stored	in	Solr	system,	this	can	be	used	as	very	low	latency	data	retrieval	for	serving	high	traffic
applications.

Solr	translator	can	be	used	as	a	fast	full	text	search.	The	Solr	document	can	contain	only	the	index	information,	then	the
results	as	an	inverted	index	to	gather	target	full	documents	from	the	other	enterprise	sources	such	as	RDBMS,	Web	Service,
SalesForce	etc,	all	in	single	client	call	transparently	with	out	any	coding.

Usage

Solr	search	system	provides	searches	based	on	indexed	search	fields.	Each	Solr	instance	is	typically	configured	with	a	single	core
that	defines	multiple	fields	with	different	type	information.	Teiid	metadata	querying	mechanism	is	equipped	with	"Luke"	based
queries,	that	at	deploy	time	of	the	VDB	use	this	mechanism	to	retrieve	all	the	stored/indexed	fields.	Currently	Teiid	does	NOT
support	dynamic	fields	and	non-stored	fields.	Based	on	retrieved	fields,	Solr	translator	exposes	a	single	table	that	contains	all	the
fields.	If	a	field	is	multi-value	based,	it’s	type	is	represented	as	Array	type.

Once	this	table	is	exposed	through	VDB	in	a	Teiid	database,	and	Solr	Data	Sources	is	created,	the	user	can	issue
"INSERT/UPDATE/DELETE"	based	SQL	calls	to	insert/update/delete	documents	into	the	Solr,	and	issue	"SELECT"	based	calls
to	retrieve	documents	from	Solr.	You	can	use	full	range	of	SQL	with	Teiid	system	integrating	other	sources	along	with	Solr
source.

The	Solr	Translator	supports	SELECT	statements	with	a	restrictive	set	of	capabilities	including:	comparison	predicates,	IN
predicates,	LIMIT	and	Order	By.

An	Example	VDB	that	shows	Solr	translator	can	be	defined	as

<vdb	name="search"	version="1">

				<model	name="solr">

								<source	name="node-one"	translator-name="solr"	connection-jndi-name="java:/solrDS"/>

				</model>

<vdb>

JCA	Resource	Adapter

Apache	SOLR	translator

592

The	Teiid	specific	Solr	Resource	Adapter	should	be	used	with	this	translator.	See	Solr	Data	Sources	or	see	an	example	in	"<jboss-
as>/docs/teiid/datasources/solr"	for	connecting	to	a	Solr	Search	Engine.

Native	Queries

This	feature	is	not	applicable	for	Solr	translator.

Direct	Query	Procedure

This	feature	is	not	available	for	Solr	translator	currently.

Apache	SOLR	translator

593

Cassandra	Translator
The	Cassandra	Translator,	known	by	the	type	name	cassandra,	exposes	querying	functionality	to	Cassandra	Data	Sources.	The
translator	translates	Teiid	push	down	commands	into	Cassandra	CQL.

Properties

The	Cassandra	Translator	currently	has	no	import	or	execution	properties.

Usage
The	Cassandra	Translator	supports	INSERT/UPDATE/DELETE/SELECT	statements	with	a	restrictive	set	of	capabilities
including:	count(*),	comparison	predicates,	IN	predicates,	and	LIMIT.	Only	indexed	columns	are	searchable.	Consider	a	custom
extension	or	create	an	enhancement	request	should	your	usage	require	additional	capabilities.

Cassandra	updates	always	return	an	update	count	of	1	per	update	regardless	of	the	number	of	rows	affected.

Cassandra	inserts	are	functionally	upserts,	that	is	if	a	given	row	exists	it	will	be	updated	rather	than	causing	an	exception.

JCA	Resource	Adapter
The	Teiid	specific	Cassandra	Resource	Adapter	should	be	used	with	this	translator.	See	Cassandra	Data	Sources	for	connecting	to
a	Cassandra	cluster.

Native	Queries
Cassandra	source	procedures	may	be	created	using	the	teiid_rel:native-query	extension	-	see	Parameterizable	Native	Queries.	The
procedure	will	invoke	the	native-query	similar	to	a	direct	procedure	call	with	the	benefits	that	the	query	is	predetermined	and	that
result	column	types	are	known,	rather	than	requiring	the	use	of	ARRAYTABLE	or	similar	functionality.

Direct	Query	Procedure

This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the	source.	To
enable	this	feature,	override	the	execution	property	called	_SupportsDirectQueryProcedure	to	true.

By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native.	Override	the	execution	property
_DirectQueryProcedureName	to	change	it	to	another	name.

The	Cassandra	translator	provides	a	procedure	to	execute	any	ad-hoc	CQL	query	directly	against	the	source	without	Teiid	parsing
or	resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array.
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.

Example	CQL	Direct	Query

SELECT	X.*

		FROM	cassandra_source.native('SELECT	firstname,	lastname	FROM	users	WHERE	birth_year	=	$1	AND	country	=	$2	AL

LOW	FILTERING',	1981,	'US')	n,

							ARRAYTABLE(n.tuple	COLUMNS	firstname	string,	lastname	string)	AS	X

Cassandra	translator

594

http://cassandra.apache.org/doc/cql/CQL.html

Cassandra	translator

595

Couchbase	Translator
The	Couchbase	Translator,	known	by	the	type	name	couchbase,	exposes	querying	functionality	to	Couchbase	Data	Sources.	The
Couchbase	Translator	provide	a	SQL	Integration	solution	for	integrating	Couchbase	JSON	document	with	relational	model,	which
allows	applications	to	use	normal	SQL	queries	against	Couchbase	Server,	translating	standard	SQL-92	queries	into	equivalent
N1QL	client	API	calls.	The	translator	translates	Teiid	push	down	commands	into	Couchbase	N1QL.

Table	of	Contents
Usage
JCA	Resource	Adapter
Execution	Properties
Schema	Definition

Generating	a	Schema
Creating	a	Schema
An	example	of	Schema	Generation

Procedures
Native	Queries
getDocuments
getDocument

Usage

The	Couchbase	Translator	supports	INSERT,	UPSERT,	UPDATE,	DELETE,	SELECT	and	bulk	INSERT	statements	with	a
restrictive	set	of	capabilities	including:	count(*),	comparison	predicates,	Order	By,	Group	By,	LIMIT	etc.	Consider	a	custom
extension	or	create	an	enhancement	request	should	your	usage	require	additional	capabilities.

JCA	Resource	Adapter

The	Teiid	specific	Couchbase	Resource	Adapter	should	be	used	with	this	translator.	See	Couchbase	Data	Sources	for	connecting
to	a	Couchbase	cluster.

Execution	Properties

Use	the	translator	override	mechanism	to	supply	the	following	properties.

Name Description Default

UseDouble

Use	double	rather	than	allowing	for
more	precise	types,	such	as	long,
bigdecimal,	and	biginteger.	This
affects	both	import	and	execution.
See	the	issue	that	describes	problems
with	Couchbase	and	precision	loss.

false

Schema	Definition
Couchbase	is	able	to	store	data	that	does	not	follow	the	rules	of	data	typing	and	structure	that	apply	to	traditional	relational	tables
and	columns.	Couchbase	data	is	organized	into	buckets(keyspaces)	and	documents.

Couchbase	translator

596

https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/index.html
https://issues.redhat.com/browse/TEIID-5077

Logical	Hierarchy	of	Couchbase	Cluster

The	document	in	a	keyspace	are	structureless,	it	may	have	complex	structure,	like	contain	nested	object,	nested	arrays,	or	arrays	of
differently-typed	elements.

Note The	datastores	are	higher	level	abstraction,	but	the	Couchbase	Translator	focus	on	one	specific	namespace,	all
documents	in	a	namespace	across	different	keyspaces	will	be	map	to	tables	of	Teiid	source	metadata.

Because	Teiid	metadata/traditional	JDBC	toolsets	might	not	support	these	data	structures,	the	data	needs	to	be	mapped	to	a
relational	form.	To	achieve	this,	the	Couchbase	Translator	provide	a	way	to	automatically	generates	schema	during	VDB
deploying.	Refer	to	Generating	a	Schema	for	more	details.

Alternatively,	create	the	schema	manually	in	a	Teiid	Source	module	are	supported,	creating	a	schema	should	base	on	the	sample
rules	of	generating	a	schema.	Refer	to	Creating	a	Schema	for	more	details.

Note Use	Generating	a	Schema	are	recommend.

Generating	a	Schema

Schema	Generation	is	a	way	that	the	Couchbase	Translator	sample	some	data	from	a	Couchbase	cluster(namespace),	and	scan
these	documents	data,	generate	a	data	typing	and	structure	based	schema	that	is	needed	for	Teiid	or	traditional	JDBC	toolsets.	The
Importer	Properties	are	used	to	control	the	behavior	of	data	sampling.

The	generated	schema	are	tables	and	procedures,	the	procedures	provide	additional	flexibility	to	execute	native	query;	the	tables
are	used	to	map	to	documents	in	a	specific	namespace.	There	are	two	kinds	of	table,

Regular	Table	-	map	to	a	keyspace	in	a	couchbase(namespace)

Array	Table	-	map	to	a	array	in	any	documents

A	table	option	used	to	differentiate	Regular	Table	and	Array	Table,	refer	to	Additional	Table	Options	for	details.

The	principle	use	to	generate	schema	are	following:

Basically,	a	keyspace	be	map	to	a	table,	keyspace	name	is	the	table	name,	all	documents'	no-array	attribute	are	column
names,	each	document	are	a	row	in	table.	if		TypeNameList		defined,	a	keyspace	may	map	to	several	tables,	all	same	type
referenced	values	are	table	names,	all	same	type	value	referenced	no-array	attribute	are	map	to	column	names
correspondently.	If	multiple	keyspaces	has	same	typed	value,	the	typed	value	table	name	will	add	each	keyspace	as	prefix.
For	example,

TypeNameList=`default`:`type`,`default2`:`type`

both	default	and	default2	has	document	defined	{"type":	"Customer"},	then	the	default’s	table	name	is	'Customer',	default2’s	table
name	is	'default2_Customer'.

Each	generate	table	has	a	documentID	column	map	to	a	couchbase	document	ID,	the	documentID	in	Regular	Table	play	a
role	as	primary	key,	the	documentID	in	Array	Table	play	a	role	as	foreign	key.

Any	of	array	in	documents	will	be	map	to	a	Array	Table,	array	index,	array	item	or	nested	object	item	attribute	are	column
names.	If	array	contains	differently-typed	elements	and	no	elements	are	object,	all	elements	be	map	to	same	column	with
Object	type;	If	array	contains	object,	all	object	attribute	be	map	to	column	names,	and	reference	value	data	type	be	map	to
column	data	type;

Couchbase	translator

597

Each	Array	Table	has	at	least	one	index	column	with	the	suffix		_idx		to	indicate	the	position	of	the	element	within	the	array.
If	the	dimension	of	array	large	than	1,	multiple	index	column	are	created,	the	column	name	with	explicity	dimension	identity
	_dimX	,	separated	by	underscore	character.	For	example,	a	three	dimension	nested	array	document

"default":	{"nested":	[[["dimension	3"]]]}

the	index	columns	might	like:	default_nested_idx,	default_nested_dim2_idx,	default_nested_dim2_dim3_idx.

Each	Table	must	define	a	NAMEINSOURCE	to	indicate	the	keyspace	name	or	he	path	pattern	in	couchbase,	the
NAMEINSOURCE	of	Regular	Table	are	keyspacename,	the	NAMEINSOURCE	of	Array	Table	are	path	pattern	with	square
brackets	suffix	to	indicate	dimension	of	nested	array.	Use	above	three	dimension	nested	array	document	as	example,	the
NAMEINSOURCE	of	table	might	be		default	.nestedArray[][][].

Each	no	documentID,	no	array	index	columns	must	be	define	a	NAMEINSOURCE	to	indicate	the	path	pattern	in	couchbase,
the	dot	are	use	to	separate	the	paths.	For	example,	the		p_asia		are	nested	object	attribute	of	a	document	in	keyspace
	travel-sample	:

default:`travel-sample`/geo/`p_asia`

the		p_asia		referenced	column	must	define	a	NAMEINSOURCE	with	value		travel-sample	.geo.	p_asia	.

The	Array	Table	column’s	NAMEINSOURCE	must	use	a	square	brackets	for	each	hierarchy	level	in	which	dimension	the	array	is
nested.	For	example,	the		nestedArray		are	nested	array	attribute	of	a	document	in	keyspace		travel-sample	,	it’s	dimension	3
nested	array	at	least	has	two	items,	dimension	4	nested	array	at	least	has	two	items:

default:`travel-sample`/nestedArray[0][0][1][1]

the	dimension	4	nested	array	coulmn	must	define	a	NAMEINSOURCE	with	value		travel-sample	.nestedArray[][][][].	If
dimension	4	item	has	object	item,	then	the	coulmn	NAMEINSOURCE	might	be		travel-sample	.nestedArray[][][][].id,		travel-
sample	.nestedArray[][][][].	address_name	,	etc.

If	a	table	name	defined	by	TypeNameList,	another	NAMEDTYPEPAIR	option	are	used	to	define	the	type	attribute,	more
details	refer	to	Additional	Table	Options.

Importer	Properties

To	ensure	consistent	support	for	your	Couchbase	data,	use	the	importer	properties	to	do	futher	defining	in	shcema	generation.

An	example	of	importer	properties

<model	name="CouchbaseModel">

				<property	name="importer.sampleSize"	value="100"/>

				<property	name="importer.typeNameList"	value="`test`:`type`"/>

				<source	name="couchbase"	translator-name="translator-couchbase"	connection-jndi-name="java:/couchbaseDS"/>

</model>

Name Description

sampleSize Set	the	SampleSize	property	to	the	number	of	documents	per	buckets	that	you	want	the	connector	to
sample	the	documents	data.

sampleKeyspaces
A	comma-separate	list	of	the	keyspace	names,	used	to	fine-grained	control	which	keyspaces	should	be
mapped,	by	default	map	all	keyspaces.	The	smaller	scope	of	keyspaces,	the	larger	sampleSize,	if	user
focus	on	specific	keyspace,	and	want	more	precise	metadata,	this	property	is	recommended.

Couchbase	translator

598

typeNameList

A	comma-separate	list	of	key/value	pair	that	the	buckets(keyspaces)	use	to	specify	document	types.	Each
list	item	must	be	a	bucket(keyspace)	name	surrounded	by	back	quotes,	a	colon,	and	an	attribute	name
surrounded	by	back	quotes.	.Syntax	of	typeNameList

`KEYSPACE`:`ATTRIBUTE`,`KEYSPACE`:`ATTRIBUTE`,`KEYSPACE`:`ATTRIBUTE`

KEYSPACE	-	the	keyspaces	must	be	under	same	namespace	it	either	can	be	different	one,	or	are
same	one.

ATTRIBUTE	-	the	attribute	must	be	non	object/array,	resident	on	the	root	of	keyspace,	and	it’s	type
should	be	equivalent	String.	If	a	typeNameList	set	a	specifc	bucket(keyspace)	has	multiple	types,	and
a	document	has	all	these	types,	the	first	one	will	be	chose.

For	example,	the	TypeNameList	below	indicates	that	the	buckets(keyspaces)	test,	default,	and	beer-sample
use	the	type	attribute	to	specify	the	type	of	each	document,	during	schema	generation,	all	type	referenced
value	will	be	treated	as	table	name.

TypeNameList=`test`:`type`,`default`:`type`,`beer-sample`:`type`

The	TypeNameList	below	indicates	that	the	bucket(keyspace)	test	use	type,	name	and	category	attribute	to
specify	the	type	of	each	document,	during	schema	generation,	the	teiid	connector	scan	the	documents
under	test,	if	a	document	has	attribute	as	any	of	type,	name	and	category,	it’s	referenced	value	will	be
treated	as	table	name.

TypeNameList=`test`:`type`,`test`:`name`,`test`:`category`

Additional	Table	Options

Name Description

teiid_couchbase:NAMEDTYPEPAIR
A		NAMEDTYPEPAIR		OPTION	in	table	declare	the	name	of	typed	key/value	pair.
This	option	is	used	once	the	typeNameList	importer	property	is	used	and	the
table	is	typeName	referenced	table.

teiid_couchbase:ISARRAYTABLE

A		ISARRAYTABLE		OPTION	in	table	used	to	differentiate	the	array	table	and
regular	table.

A	regular	table	represent	data	from	collections	of	Couchbase	documents.
Documents	appear	as	rows,	and	all	attributes	that	are	not	arrays	appear	as
columns.	In	each	table,	the	primary	key	column	named	as	documentID	that
that	identifies	which	Couchbase	document	each	row	comes	from.	If	no
typed	name	defined	the	table	name	is	the	keyspace	name,	but	in	the
Couchbase	layer,	the	name	of	the	table	will	be	translate	to	keyspace	name.

If	a	table	defined	the		ISARRAYTABLE		OPTION,	then	it	provide	support	for
arrays,	each	array	table	contains	the	data	from	one	array,	and	each	row	in
the	table	represents	an	element	from	the	array.	If	an	element	contains	an
nested	array,	an	additional	virtual	tables	as	needed	to	expand	the	nested
data.	In	each	array	table	there	also	has	a	documentID	column	play	as	a
foreign	key	that	identifies	the	Couchbase	document	the	array	comes	from
and	references	the	documentID	from	normal	table.	An	index	column	(with
the	suffix	_IDX	in	its	name)	to	indicate	the	position	of	the	element	within
the	array.

Creating	a	Schema

Creating	a	schema	should	strict	base	on	the	principles	listed	in	Generating	a	Schema.

Couchbase	supported	Teiid	types	are	String,	Boolean,	Integer,	Long,	Double,	BigInteger,	and	BigDecimal.	Creating	a	source
model	with	other	types	is	not	fully	supported.

Couchbase	translator

599

Each	table	is	expected	to	have	a	document	ID	column.	It	may	be	arbitrarily	named,	but	it	needs	to	be	a	string	column	marked	as
the	primary	key.

An	example	of	Schema	Generation

The	following	example	shows	the	tables	that	the	Couchbase	connector	would	generate	if	it	connected	to	a	Couchbase,	the
keyspace	named		test		under	namespace		default		contains	two	kinds	of	documents	named		Customer		and		Order	.

The		Customer		document	is	of	type	Customer	and	contains	the	following	attributes.	The	SavedAddresses	attribute	is	an	array.

{

		"ID":	"Customer_12345",

		"Name":	"John	Doe",

		"SavedAddresses":	[

				"123	Main	St.",

				"456	1st	Ave"

],

		"type":	"Customer"

}

The		Order		document	is	of	type	Order	and	contains	the	following	attributes.	The	CreditCard	attribute	is	an	object,	and	the	Items
attribute	is	an	array	of	objects.

{

		"CreditCard":	{

				"CVN":	123,

				"CardNumber":	"4111	1111	1111	111",

				"Expiry":	"12/12",

				"Type":	"Visa"

		},

		"CustomerID":	"Customer_12345",

		"Items":	[

				{

						"ItemID":	89123,

						"Quantity":	1

				},

				{

						"ItemID":	92312,

						"Quantity":	5

				}

],

		"Name":	"Air	Ticket",

		"type":	"Order"

}

When	the	VDP	deploy	and	load	metedata,	the	connector	exposes	these	collections	as	two	tables	show	as	below:

Customer

Order

The	SavedAddresses	array	from	the	Customer	and	the	Items	array	from	the	Order	document	do	not	appear	in	above	table.	Instead,
the	following	tables	are	generated	for	each	array:

Customer_SavedAddresses

Couchbase	translator

600

Order_Items

Procedures

Native	Queries

Couchbase	source	procedures	may	be	created	using	the	teiid_rel:native-query	extension	-	see	Parameterizable	Native	Queries.	The
procedure	will	invoke	the	native-query	similar	to	a	direct	procedure	call	with	the	benefits	that	the	query	is	predetermined	and	that
result	column	types	are	known,	rather	than	requiring	the	use	of	ARRAYTABLE	or	similar	functionality.

Example	of	executing	N1QL	directly

EXEC	CouchbaseVDB.native('DELETE	FROM	test	USE	KEYS	["customer-3",	"order-3"]')

getDocuments

Returns	the	json	documents	that	match	the	given	document	id	or	id	pattern	as	BLOBs.

getDocuments(id,	keyspace)

id	-	The	document	id	or	SQL	like	pattern	of	what	documents	to	return,	for	example,	the	'%'	sign	is	used	to	define	wildcards
(missing	letters)	both	before	and	after	the	pattern.

keyspace	-	The	keyspace	name	used	to	retrieve	the	documents.

Example	of	getDocuments()

call	getDocuments('customer%',	'test')

getDocument

Returns	a	json	document	that	match	the	given	document	id	as	BLOB.

getDocument(id,	keyspace)

id	-	The	document	id	of	what	document	to	return.

keyspace	-	The	keyspace	name	used	to	retrieve	the	document.

Example	of	getDocument()

call	getDocument('customer-1',	'test')

Couchbase	translator

601

Couchbase	translator

602

Delegator	translators
You	can	use	the	delegator	translator,	which	is	available	in	the	core	Teiid	installation,	to	modify	the	capabilities	of	a	existing
translator.	Often	times	for	debugging	purposes,	or	in	special	situations,	you	might	want	to	turn	certain	capabilities	of	a	translator
on	or	off.	For	example,	say	that	the	latest	version	of	a	Hive	database	supports	the		ORDER	BY		construct,	but	the	current	Teiid
version	of	the	Hive	translator	does	not.	You	could	use	the	delegator	translator	to	enable		ORDER	BY		compatibility	without	actually
writing	any	code.	Similarly,	you	could	do	the	reverse,	and	turn	off	certain	capabilities	to	produce	a	better	plan.

To	use	the	delegator	translator,	you	must	define	it	in	the	DDL.	The	following	example	shows	how	to	override	the	"hive"	translator
and	turn	off	the		ORDER	BY		capability.

CREATE	DATABASE	myvdb;

USE	DATABASE	myvdb;

CREATE	FOREIGN	DATA	WRAPPER	"hive-delegator"	TYPE	delegator	OPTIONS	(delegateName	'hive',	supportsOrderBy	'fals

e');

CREATE	SERVER	source	FOREIGN	DATA	WRAPPER	"hive-delegator"	OPTIONS	("resource-name"	'java:hive-ds');

CREATE	SCHEMA	mymodel	SERVER	source;

SET	SCHEMA	mymodel;

IMPORT	FROM	SERVER	source	INTO	mymodel;

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="myvdb"	version="1">

				<model	name="mymodel">

								<source	name="source"	translator-name="hive-delegator"	connection-jndi-name="java:hive-ds"/>

				</model>

				<!--	the	below	it	is	called	translator	overriding,	where	you	can	set	different	properties	-->

				<translator	name="hive-delegator"	type="delegator"	>

								<property	name="delegateName"	value="hive"	/>

								<property	name="supportsOrderBy"	value="false"/>

			</translator>

</vdb>

For	more	information	about	the	translator	capabilities	that	you	can	override	by	using	execution	properties,	see
Translator_Capabilities	in	the	Translator	Development	Guide.	The	preceding	example	shows	how	you	might	modify	the	default
	ORDER	BY		compatibility	of	the	Hive	translator.

Delegator	translators

603

Extending	the	delegator	translator
You	can	create	a	delegating	translator	by	extending	the		org.teiid.translator.BaseDelegatingExecutionFactory	.	After	your
classes	are	packaged	as	a	custom	translator,	you	can	wire	another	translator	instance	into	your	delegating	translator	at	runtime	in
order	to	intercept	all	of	the	calls	to	the	delegate.	This	base	class	does	not	provide	any	functionality	on	its	own,	other	than
delegation.	You	can	hard	code	capabilities	into	the	translator	instead	of	defining	them	as	part	of	the	DDL	configuration.	You	can
also	override	methods	to	provide	alternate	behavior.

Table	1.	Execution	properties

Name Description Default

delegateName Translator	instance	name	to	delegate
to. n/a

cachePattern
Regex	pattern	of	queries	that	should
be	cached	using	the	translator
caching	API.

n/a

cacheTtl Time	to	live	in	milliseconds	for
queries	matching	the	cache	pattern. n/a

For	example,	if	you	use	the	oracle	translator	in	your	virtual	database,	and	you	want	to	intercept	calls	that	go	through	the	translator,
you	could	write	a	custom	delegating	translator,	as	in	the	following	example:

@Translator(name="interceptor",	description="interceptor")

public	class	InterceptorExecutionFactory	extends	org.teiid.translator.BaseDelegatingExecutionFactory{

				@Override

				public	void	getMetadata(MetadataFactory	metadataFactory,	C	conn)	throws	TranslatorException	{

								//	do	intercepting	code	here..

								//	If	you	want	call	the	original	delegate,	do	not	call	if	do	not	need	to.

								//	but	if	you	did	not	call	the	delegate	fullfill	the	method	contract

								super.getMetadata(metadataFactory,	conn);

								//	do	more	intercepting	code	here..

				}

}

You	could	then	deploy	this	translator	in	the	Teiid	engine.	Then	in	your	DDL	file,	define	an	interceptor	translator	as	in	the
following	example:

CREATE	DATABASE	myvdb	VERSION	'1';

USE	DATABASE	myvdb	VERSION	'1';

CREATE	FOREIGN	DATA	WRAPPER	"oracle-interceptor"	TYPE	interceptor	OPTIONS	(delegateName	'oracle');

CREATE	SERVER	source	FOREIGN	DATA	WRAPPER	"oracle-interceptor"	OPTIONS	("resource-name"	'java:oracle-ds');

CREATE	SCHEMA	mymodel	SERVER	source;

SET	SCHEMA	mymodel;

IMPORT	FROM	SERVER	source	INTO	mymodel;

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="myvdb"	version="1">

				<model	name="mymodel">

								<source	name="source"	translator-name="oracle-interceptor"	connection-jndi-name="java:oracle-ds"/>

				</model>

Delegator	translators

604

				<!--	the	below	it	is	called	translator	overriding,	where	you	can	set	different	properties	-->

				<translator	name="orcle-interceptor"	type="interceptor"	>

								<property	name="delegateName"	value="oracle"	/>

			</translator>

</vdb>

We	have	defined	a	"translator"	override	called		oracle-interceptor	,	which	is	based	on	the	custom	translator	"interceptor"	from
above,	and	supplied	the	translator	it	needs	to	delegate	to	"oracle"	as	its	delegateName.	Then,	we	used	this	override	translator
	oracle-interceptor		in	the	VDB.	Future	calls	going	into	this	VDB	model’s	translator	are	intercepted	by	your	code	to	do
whatever	you	want	to	do.

Delegator	translators

605

File	translator
The	file	translator,	known	by	the	type	name	file,	exposes	stored	procedures	to	leverage	file	resources.	The	translator	is	typically
used	with	the		TEXTTABLE		or		XMLTABLE		functions	to	consume	CSV	or	XML	formatted	data.

Table	1.	Execution	properties

Name Description Default

Encoding

The	encoding	that	should	be	used	for
CLOBs	returned	by	the	getTextFiles
procedure.	The	value	should	match
an	encoding	known	to	Teiid.	For
more	information,	see	TO_CHARS
and	TO_BYTES	in	String	functions.

The	system	default	encoding.

ExceptionIfFileNotFound
Throw	an	exception	in	getFiles	or
getTextFiles	if	the	specified
file/directory	does	not	exist.

true

Tip For	information	about	how	to	set	properties,	see	the	following	example,	and	Override	execution	properties	in
Translators.

Example:	Virtual	datbase	DDL	override

CREATE	SERVER	"file-override"

				FOREIGN	DATA	WRAPPER	file

				OPTIONS(

								Encoding	'ISO-8859-1',	"ExceptionIfFileNotFound"	false

);

CREATE	SCHEMA	file	SERVER	"file-override";

VDB	XML	Override	Example

<model	name="file">

				<source	name="file"	translator-name="file-override"	connection-jndi-name="java:/file"/>

</model>

<translator	name="file-override"	type="file">

				<property	name="Encoding"	value="ISO-8859-1"/>

				<property	name="ExceptionIfFileNotFound"	value="false"/>

</translator>

getFiles

getFiles(String	pathAndPattern)	returns

TABLE(file	blob,	filePath	string,	lastModified	timestamp,	created	timestamp,	size	long)

Retrieve	all	files	as	BLOBs	matching	the	given	path	and	pattern.

call	getFiles('path/*.ext')

If	the	path	is	a	directory,	then	all	files	in	the	directory	are	returned.	If	the	path	matches	a	single	file,	the	file	is	returned.

The		*		character	is	treated	as	a	wildcard	to	match	any	number	of	characters	in	the	path	name.	Zero	or	matching	files	will	be
returned.

File	translator

606

If		*’	is	not	used,	and	if	the	path	doesn’t	exist	and	`ExceptionIfFileNotFound		is	true,	then	an	exception	is	raised.

getTextFiles

getTextFiles(String	pathAndPattern)	returns

TABLE(file	clob,	filePath	string,	lastModified	timestamp,	created	timestamp,	size	long)

Note The	size	reports	the	number	of	bytes.

Retrieve	all	files	as	CLOBs	matching	the	given	path	and	pattern.

call	getTextFiles('path/*.ext')

Retrieves	the	same	files		getFiles	,	but	with	the	difference	that	the	results	are	CLOB	values	that	use	the	encoding	execution
property	as	the	character	set.

saveFile
Save	the	CLOB,	BLOB,	or	XML	value	to	given	path

call	saveFile('path',	value)

deleteFile
Delete	the	file	at	the	given	path

call	deleteFile('path')

The	path	should	reference	an	existing	file.	If	the	file	does	not	exist	and		ExceptionIfFileNotFound		is	true,	then	an	exception	will
be	thrown.	An	exception	is	also	thrown	if	the	file	cannot	be	deleted.

JCA	resource	adapter
For	configuration	information,	see	File	Data	Source,	the	FTP	Data	Source,	the	HDFS	Data	Source,	the	S3	Data	Source,	and	the
Administrator’s	Guide	in	general.

Note Native	queries
This	feature	is	not	applicable	for	the	File	translator.

Note Direct	query	procedure
This	feature	is	not	applicable	for	the	File	translator.

File	translator

607

Google	spreadsheet	translator
The	google-spreadsheet	translator	is	used	to	connect	to	a	Google	Sheets	spreadsheet.

The	query	approach	expects	that	the	data	in	the	worksheet	has	the	following	characteristics:

All	columns	that	contains	data	can	be	queried.

Any	column	with	an	empty	cell	has	the	value	retrieved	as	null.	However,	differentiating	between	null	string	and	empty	string
values	may	not	always	be	possible	as	Google	treats	them	interchangeably.	Where	possible,	the	translator	may	provide	a
warning	or	throw	an	exception	if	it	cannot	differentiate	between	null	and	empty	strings.

If	the	first	row	is	present	and	contains	string	values,	then	the	row	is	assumed	to	represent	the	column	labels.

If	you	are	using	the	default	native	metadata	import,	the	metadata	for	your	Google	account	(worksheets	and	information	about
columns	in	worksheets)	is	loaded	upon	translator	start	up.	If	you	make	any	changes	in	data	types,	it	is	advisable	to	restart	your
virtual	database.

The	translator	can	submit	queries	against	a	single	sheet	only.	It	provides	ordering,	aggregation,	basic	predicates,	and	most	of	the
functions	available	in	the	spreadsheet	query	language.

The	google-spreadsheet	translator	does	not	provide	importer	settings,	but	it	can	provide	metadata	for	VDBs.

Warning
If	you	remove	all	data	rows	from	a	sheet	with	a	header	that	is	defined	in	Teiid,	you	can	no	longer	access	the
sheet	through	Teiid.	The	Google	API	will	treat	the	header	as	a	data	row	at	that	point,	and	queries	to	it	will	no
longer	be	valid.

Warning
Non-string	fields	are	updated	using	the	canonical	Teiid	SQL	value.	In	cases	where	the	spreadsheet	is	using	a
non-conforming	locale,	consider	disallowing	updates.	For	more	information,	see	TEIID-4854	and	the
following	information	about	the		allTypesUpdatable		import	property.

Importer	properties
allTypesUpdatable-	Set	to	true	to	mark	all	columns	as	updatable.	Set	to	false	to	enable	update	only	on	string	or	Boolean
columns	that	are	not	affected	by	TEIID-4854.	Defaults	to	true.

JCA	resource	adapter
The	Teiid	specific	Google	Spreadsheet	Data	Sources	Resource	Adapter	should	be	used	with	this	translator.

Native	queries
Google	spreadsheet	source	procedures	may	be	created	using	the		teiid_rel:native-query		extension.	For	more	information,	see
Parameterizable	native	queries	in	Translators.	The	procedure	will	invoke	the	native-query	similar	to	an	native	procedure	call,	with
the	benefits	that	the	query	is	predetermined,	and	that	result	column	types	are	known,	rather	than	requiring	the	use	of
ARRAYTABLE	or	similar	functionality.	For	more	information,	see	the	Select	section	that	follows.

Note

Direct	query	procedure
This	feature	is	turned	off	by	default,	because	of	the	security	risk	in	permitting	any	command	to	execute	against
the	data	source.	To	enable	this	feature,	set	the	property	SupportsDirectQueryProcedure	to	true.	For	more
information,	see	Override	execution	properties	in	Translators.

Tip
By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native.	You	can	change	its	name
by	overriding	the	execution	property	DirectQueryProcedureName.	For	more	information,	see	Override	execution
properties	in	Translators.

The	Google	spreadsheet	translator	provides	a	procedure	to	execute	any	ad-hoc	query	directly	against	the	source	without	any	Teiid
parsing	or	resolving.	Because	the	metadata	of	this	procedure’s	execution	results	are	not	known	to	Teiid,	they	are	returned	as	an
object	array.	You	can	use	ARRAYTABLE	to	construct	tabular	output	for	consumption	by	client	applications.	For	more
information,	see	ARRAYTABLE.

Google	spreadsheet	translator

608

https://issues.redhat.com/browse/TEIID-4854
https://issues.redhat.com/browse/TEIID-4854

Teiid	exposes	this	procedure	with	a	simple	query	structure	as	shown	in	the	following	example:

Select	example

SELECT	x.*	FROM	(call	google_source.native('worksheet=People;query=SELECT	A,	B,	C'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"id"	string	,	"type"	string,	"name"	String)	AS	x

The	first	argument	takes	semicolon-separated	(;)	name-value	pairs	of	the	following	properties	to	execute	the	procedure:

Property Description Required

worksheet Google	spreadsheet	name. yes

query Spreadsheet	query. yes

limit Number	of	rows	to	fetch. no

offset Offset	of	rows	to	fetch	from	limit	or
beginning. no

Google	spreadsheet	translator

609

Infinispan	Translator
The	Infinispan	translator,	known	by	the	type	name	"infinispan-hotrod"	exposes	the	Infinispan	cache	store	to	be	queried	using	SQL
language,	and	it	uses	HotRod	protocol	to	connect	the	remote	Infinispan	cluster	farm.	This	translator	does	NOT	work	with	any
arbitary	key/value	mappings	in	the	Infinispan.	However,	if	the	Infinispan	store	is	defined	with	"probuf"	file	then	this	translator
works	with	definition	objects	in	the	protobuf	file.	Typical	usage	of	HotRod	protocol	also	dictates	this	requirement.

Note What	is	Infinispan	-	Infinispan	is	a	distributed	in-memory	key/value	data	store	with	optional	schema,	available
under	the	Apache	License	2.0

The	following	will	be	explained

Usage

Configuration	of	Translator

Defining	the	Metadata

Details	on	Protobuf	to	DDL	conversion

Protobuf	Translation	Rules

Execution	Properties

Importer	Properties

Limitations

JCA	Resource	Adapter

Usage

Below	is	a	sample	VDB	that	can	read	metadata	from	a	protobuf	file	based	on	the	AddressBook	quick	start	on	http://infinispan.org
site.

<vdb	name="addressbook"	version="1">

				<model	name="ispn">

								<property	name="importer.ProtobufName"	value="addressbook.proto"/>

								<source	name="localhost"	translator-name="infinispan-hotrod"	connection-jndi-name="java:/ispnDS"/>

								<metadata	type	=	"NATIVE"/>

				</model>

</vdb>

For	the	above	VDB	to	work,	a	connection	to	Infinispan	is	required.	Below	shows	an	example	configuration	for	the	resource-
adapter	that	is	needed.	Be	sure	to	edit	the	"RemoteServerList"	to	reflect	your	Infinispan	server	location.	If	you	are	working	with
"WilfFly"	based	Teiid	installation,	you	need	to	edit	the	/wf-install/standalone/configuration/standalone-teiid.xml	file	and	add	the
following	segment	to	the	"resource-adapters"	subsystem	of	the	configuration.

<resource-adapter	id="infinispanDS">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.infinispan.hotrod"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.infinispan.hotrod.InfinispanManagedConnec

tionFactory"

												jndi-name="java:/ispnDS"	enabled="true"	use-java-context="true"	pool-name="teiid-ispn-ds">

												<config-property	name="RemoteServerList">

																localhost:11222

Infinispan	translator

610

http://infinispan.org/
http://infinispan.org

												</config-property>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

Once	you	configure	above	resource-adapter	and	deploy	the	VDB	successfully,	then	you	can	connect	to	the	VDB	using	Teiid	JDBC
driver	and	issue	SQL	statements	like

select	*	from	Person;

select	*	PhoneNumber	where	number	=	<value>;

insert	into	Person	(...)	values	(...);

update	Person	set	name	=	<value>	where	id	=	<value>;

delete	from	person	where	id	=	<value>;

Configuration	of	Translator

Defining	the	Metadata

There	are	three	different	ways	to	define	the	metadata	for	the	Infinispan	model	in	Teiid.	Choose	what	best	fits	the	needs.

Metadata	From	New	Protobuf	File:

User	can	register	a	.proto	file	with	translator	configuration,	which	will	be	read	in	Teiid	and	get	converted	to	the	model’s	schema.
Then	Teiid	will	register	this	protobuf	file	in	Infinispan.	For	details	see	Importer	Properties

Example

<vdb	name="vdbname"	version="1">

				<model	name="modelname">

..

								<property	name="importer.ProtoFilePath"	value="/path/to/myschema.proto"/>

..

				</model>

</vdb>

Metadata	From	Existing	Registered	Protobuf	File

If	the	protobuf	file	has	already	been	registered	in	your	Infinispan	node,	Teiid	can	obtain	it	and	read	the	protobuf	directly	from	the
cache.	For	details	see	Importer	Properties

Example

ProtobufName

<vdb	name="vdbname"	version="1">

				<model	name="modelname">

..

								<property	name="importer.ProtobufName"	value="existing.proto"/>

..

				</model>

</vdb>

Define	Metadata	in	DDL

Like	any	other	translator,	you	can	use	the	<metadata>	tags	to	define	the	DDL	directly.	For	example

Infinispan	translator

611

Example

				<model	name="ispn">

								<source	name="localhost"	translator-name="infinispan-hotrod"	connection-jndi-name="java:/ispnDS"/>

								<metadata	type	=	"DDL"><![CDATA[

												CREATE	FOREIGN	TABLE	G1	(e1	integer	PRIMARY	KEY,	e2	varchar(25),	e3	double)	OPTIONS(UPDATABLE	true,

	,	"teiid_ispn:cache"	'g1Cache');

]]>

							</metadata>

							<metadata	type	=	"NATIVE"/>

				</model>

Note

The	"<metadata	type	=	"NATIVE"/>"	is	required	in	order	to	trigger	the	registration	of	the	generated	protobuf	file.
The	name	of	the	protobuf	registered	in	Infinispan	will	use	the	format	of:	schemaName	+	".proto".	So	in	the	above
example,	it	would	be	named	ispn.proto.	This	would	be	useful	if	another	VDB	wished	to	reference	that	same
cache	and	would	then	use	the	Importer	Property	"importer.ProtobufName"	to	read	it.	The	model	must	not	contain
dash	("-")	in	it’s	name.

For	this	option,	a	compatible	protobuf	definition	is	generated	automatically	during	the	deployment	of	the	VDB	and	registered	in
Infinispan.	Please	note,	if	for	any	reason	the	DDL	is	modified	(Name	changed,	type	changed,	add/remove	columns)	after	the
initial	VDB	is	deployed,	then	previous	version	of	the	protobuf	file	and	data	contents	need	to	be	manually	cleared	before	next
revision	of	the	VDB	is	deployed.	Failure	to	clear	will	result	in	data	encoding/corruption	issues.

Details	on	Protobuf	to	DDL	conversion

This	section	show	cases	an	example	protobuf	file	and	shows	how	that	file	converted	to	relational	schema	in	the	Teiid.	This	below
is	taken	from	the	quick	start	examples	of	Infinispan.

package	quickstart;

/*	@Indexed	*/

message	Person	{

			/*	@IndexedField	*/

			required	string	name	=	1;

			/*	@Id	@IndexedField(index=false,	store=false)	*/

			required	int32	id	=	2;

			optional	string	email	=	3;

			enum	PhoneType	{

						MOBILE	=	0;

						HOME	=	1;

						WORK	=	2;

			}

			/*	@Indexed	*/

			message	PhoneNumber	{

						/*	@IndexedField	*/

						required	string	number	=	1;

						/*	@IndexedField(index=false,	store=false)	*/

						optional	PhoneType	type	=	2	[default	=	HOME];

			}

			/*	@IndexedField(index=true,	store=false)	*/

			repeated	PhoneNumber	phone	=	4;

}

Infinispan	translator

612

When	Teiid’s	translator	processes	the	above	protobuf	file,	the	following	DDL	is	generated	automatically	for	Teiid	model	as	the
relational	representation.

CREATE	FOREIGN	TABLE	Person	(

				name	string	NOT	NULL	OPTIONS	(ANNOTATION	'@IndexedField',	SEARCHABLE	'Searchable',	NATIVE_TYPE	'string',	"t

eiid_ispn:TAG"	'1'),

				id	integer	NOT	NULL	OPTIONS	(ANNOTATION	'@Id	@IndexedField(index=false,	store=false)',	NATIVE_TYPE	'int32',	

"teiid_ispn:TAG"	'2'),

				email	string	OPTIONS	(SEARCHABLE	'Searchable',	NATIVE_TYPE	'string',	"teiid_ispn:TAG"	'3'),

				CONSTRAINT	PK_ID	PRIMARY	KEY(id)

)	OPTIONS	(ANNOTATION	'@Indexed',	NAMEINSOURCE	'quickstart.Person',	UPDATABLE	TRUE,	"teiid_ispn:cache"	'personC

ache');

CREATE	FOREIGN	TABLE	PhoneNumber	(

				number	string	NOT	NULL	OPTIONS	(ANNOTATION	'@IndexedField',	SEARCHABLE	'Searchable',	NATIVE_TYPE	'string',	

"teiid_ispn:TAG"	'1'),

				type	integer	DEFAULT	'1'	OPTIONS	(ANNOTATION	'@IndexedField(index=false,	store=false)',	NATIVE_TYPE	'PhoneT

ype',	"teiid_ispn:TAG"	'2'),

				Person_id	integer	OPTIONS	(NAMEINSOURCE	'id',	SEARCHABLE	'Searchable',	"teiid_ispn:PSEUDO"	'phone'),

				CONSTRAINT	FK_PERSON	FOREIGN	KEY(Person_id)	REFERENCES	Person	(id)

)	OPTIONS	(ANNOTATION	'@Indexed',	NAMEINSOURCE	'quickstart.Person.PhoneNumber',

				UPDATABLE	TRUE,	"teiid_ispn:MERGE"	'model.Person',	"teiid_ispn:PARENT_COLUMN_NAME"	'phone',

				"teiid_ispn:PARENT_TAG"	'4');

Protobuf	Translation	Rules

You	can	see	from	above	DDL,	Teiid	makes	use	of	the	extension	metadata	properties	to	capture	all	the	information	required	from
.proto	file	into	DDL	form	so	that	information	can	be	used	at	runtime.	The	following	are	some	rules	the	translation	engine	follows.

Infinispan Mapped	to	Relational	Entity Example

Message Table Person,	PhoneNumber

enum integer	attribute	in	table n/a

repeated
As	an	array	for	simple	types	or	as	a
separate	table	with	one-2-many
relationship	to	parent	message.

PhoneNumber

All	required	fields	will	be	modeled	as	NON	NULL	columns

All	indexed	columns	will	be	marked	as	Searchable.

The	default	values	are	captured.

To	enable	updates,	the	top	level	message	object	MUST	define	@id	annotation	on	one	of	its	columns

Note

Notice	the	@Id	annotation	on	the	Person	message’s	"id"	attribute	in	protobuf	file.	This	is	NOT	defined	by
Infinispan,	but	required	by	Teiid	to	identify	the	key	column	of	the	cache	entry.	In	the	absence	of	this	annotation,
only	"read	only"	access	(SELECT)	is	provided	to	top	level	objects.	Any	access	to	complex	objects
(PhoneNumber	from	above	example)	will	not	be	provided.

IMPOTANT:	When	.proto	file	has	more	than	single	top	level	"message"	objects	to	be	stored	as	the	root	object	in	the	cache,	each
of	the	objects	must	be	stored	in	a	different	cache	to	avoid	the	key	conflicts	in	a	single	cache	store.	This	is	restriction	imposed	by
Infinispan,	however	Teiid’s	single	model	can	have	multiple	of	these	message	types.	Since	each	of	the	message	will	be	in	different
cache	store,	you	can	define	the	cache	store	name	for	the	"message"	object.	For	this,	define	an	extension	property
"teiid_ispn:cache"	on	the	corresponding	Teiid’s	table.	See	below	code	example.

				<model	name="ispn">

Infinispan	translator

613

								<property	name="importer.ProtobufName"	value="addressbook.proto"/>

								<source	name="localhost"	translator-name="infinispan-hotrod"	connection-jndi-name="java:/ispnDS"/>

								<metadata	type	=	"NATIVE"/>

								<metadata	type	=	"DDL"><![CDATA[

												ALTER	FOREIGN	TABLE	Person	OPTIONS	(SET	"teiid_ispn:cache"	'<cache-name>');

]]>

							</metadata>

				</model>

Execution	Properties
Execution	properties	extend/limit	the	functionality	of	the	translator	based	on	the	physical	source	capabilities.	Sometimes	default
properties	may	need	to	adjusted	for	proper	execution	of	the	translator	in	your	environment.

Currently	there	are	no	defined	execution	properties	for	this	translator.

Importer	Properties

Importer	properties	define	the	behavior	options	of	the	translator	during	the	metadata	import	from	the	physical	source.

Name Description Default

ProtoFilePath
The	file	path	to	a	Protobuf	.proto	file
accessible	to	the	server	to	be	read	and
convert	into	metadata.

n/a

ProtobufName

The	name	of	the	Protobuf	.proto	file
that	has	been	registered	with	the
Infinispan	node,	that	Teiid	will	read
and	convert	into	metadata.	The
property	value	MUST	exactly	match
registered	name.

null

Examples

ProtoFilePath

<vdb	name="vdbname"	version="1">

				<model	name="modelname">

..

								<property	name="importer.ProtoFilePath"	value="/path/to/myschema.proto"/>

..

				</model>

</vdb>

Limitations

Bulk	update	support	is	not	available.

Aggregate	functions	like	SUM,	AVG	etc	are	not	supported	on	inner	objects	(ex:	PhoneNumber)

UPSERT	support	on	complex	objects	is	always	results	in	INSERT

LOBS	are	not	streamed,	use	caution	as	this	can	lead	to	OOM	errors.

There	is	no	function	library	in	Infinispan

Infinispan	translator

614

Array	objects	can	not	be	projected	currently,	but	they	will	show	up	in	the	metadata

When	using	DATE/TIMESTAMP/TIME	types	in	Teiid	metadata,	they	are	by	default	marshaled	into	a	LONG	type	in
Infinispan.

SSL	and	identity	support	is	not	currently	available	(see	TEIID-4904)

JCA	Resource	Adapter
The	resource	adapter	for	this	translator	is	a	Infinispan	Data	Source.

Native	Queries

Note This	feature	is	not	applicable	for	the	Infinispan	translator.

Direct	Query	Procedure

Note This	feature	is	not	applicable	for	the	Infinispan	translator.

Infinispan	translator

615

JDBC	translators
The	JDBC	translators	bridge	the	SQL	semantics	and	data	type	differences	between	Teiid	and	a	target	RDBMS.	Teiid	has	a	range
of	specific	translators	that	target	the	most	popular	open	source	and	proprietary	relational	databases.

Usage
Usage	of	a	JDBC	source	is	straight-forward.	Using	Teiid	SQL,	the	source	can	be	queried	as	if	the	tables	and	procedures	were	local
to	the	Teiid	system.

If	you	are	using	a	relational	data	source,	or	a	data	source	that	has	a	JDBC	driver,	and	you	do	not	find	a	specific	translator	available
for	that	data	source	type,	then	start	with	the	JDBC	ANSI	translator.	The	JDBC	ANSI	translator	should	enable	you	to	perform	the
SQL	basics.	If	there	specific	data	source	capabilities	that	are	not	available,	you	can	define	a	custom	translator	that	does	what	you
need.	For	more	information,	see	Translator	Development.

Type	conventions
UID	types	including	UUID,	GUID,	or	UNIQUEIDENTIFIER	are	typically	mapped	to	the	Teiid	string	type.	JDBC	data	sources
treat	UID	strings	as	non-case	sensitive,	but	they	are	case-sensitive	in	Teiid.	If	the	source	does	not	support	the	implicit	conversion
to	the	string	type,	then	usage	in	functions	that	expect	a	string	value	might	fail	at	the	source.

The	following	table	lists	the	execution	properties	that	are	shared	by	all	JDBC	translators.

Table	1.	Execution	properties — Shared	by	all	JDBC	translators

Name Description Default

DatabaseTimeZone
The	time	zone	of	the	database.
Used	when	fetching	date,	time,
or	timestamp	values.

The	system	default	time	zone

DatabaseVersion
The	specific	database	version.
Used	to	further	tune	the	use	of
pushdown	operations.

The	base	compatible	version,	or	the	version	that	is
derived	from	the
DatabaseMetadata.getDatabaseProductVersion
string.	Automatic	detection	requires	a	connection.
If	there	are	circumstances	where	you	are	getting
an	exception	due	to	capabilities	being	unavailable
(for	example,	because	a	connection	is	not
available),	then	set		DatabaseVersion		property.
Use	the
	JDBCExecutionFactory.usesDatabaseVersion()`	

method	to	control	whether	your	translator	requires
a	connection	to	determine	capabilities.

TrimStrings

	true		trims	trailing
whitespace	from	fixed	length
character	strings.	Note	that
Teiid	only	has	a	string,	or
varchar,	type	that	treats	trailing
whitespace	as	meaningful.

false

RemovePushdownCharacters

Set	to	a	regular	expression	to
remove	characters	that	not
allowed	or	undesirable	for	the
source.	For	example
	[\u0000]		will	remove	the
null	character,	which	is
problematic	for	sources	such
as	PostgreSQL	and	Oracle.
Note	that	this	does	effectively
change	the	meaning	of	the

JDBC	translators

616

affected	string	literals	and	bind
values,	which	must	be
carefully	considered.

UseBindVariables

	true		indicates	that
PreparedStatements	should	be
used	and	that	literal	values	in
the	source	query	should	be
replace	with	bind	variables.	If
	false		only	LOB	values	will
trigger	the	use	of
PreparedStatements.

true

UseCommentsInSourceQuery

This	will	embed	a	leading
comment	with	session/request
id	in	the	source	SQL	for
informational	purposes.	Can
be	customized	with	the
CommentFormat	property.

false

CommentFormat

MessageFormat	string	to	be
used	if
	UseCommentsInSourceQuery	

is	enabled.	You	can	set	the
format	to	one	of	the	following
values:

0	-	Session	ID	string.

1	-	Parent	request	ID
string.

2	-	Request	part	ID	string.

3	-	Execution	count	ID
string.

4	-	User	name	string.

5	-	VDB	name	string.

6	-	VDB	version	integer.

7	-	Is	transactional
boolean.

	/*teiid	sessionid:\{0},	requestid:\{1}.\

{2}*/	

MaxPreparedInsertBatchSize The	max	size	of	a	prepared
insert	batch. 2048

StructRetrieval

Specify	one	of	the	following
Struct	retrieval	modes:

OBJECT	-		getObject	
value	returned.

COPY	-	Returned	as	a
	SerialStruct	.

ARRAY	-	Returned	as	an
array.

OBJECT

EnableDependentJoins

Allow	dependent	join
pushdown	for	sources	that	use
temporary	tables	(DB2,	Derby,
H2,	HSQL	2.0+,	MySQL	5.0+,
Oracle,	PostgreSQL,
SQLServer,	SQP	IQ,	Sybase).

false

JDBC	translators

617

http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html

Importer	properties — Shared	by	all	JDBC	translators
When	specifying	the	importer	property,	it	must	be	prefixed	with		importer.	.	Example:		importer.tableTypes	

Name Description Default

catalog See	DatabaseMetaData.getTables	[1] null

schemaName

Recommended	setting	to	import	from
a	single	schema.	The	schema	name
will	be	converted	into	an	escaped
pattern,overriding	schemaPattern	if	it
is	also	set.

null

schemaPattern See	DatabaseMetaData.getTables	[1] null

tableNamePattern See	DatabaseMetaData.getTables	[1] null

procedureNamePattern See
DatabaseMetaData.getProcedures	[1] null

tableTypes

Comma	separated	list — without
spaces — of	imported	table	types.
See		DatabaseMetaData.getTables	
[1]

null

excludeTables

A	case-insensitive	regular	expression
that	when	matched	against	a	fully
qualified	table	name	[2]	will	exclude
it	from	import.	Applied	after	table
names	are	retrieved.	Use	a	negative
look-ahead	(?!<inclusion	pattern>).*
to	act	as	an	inclusion	filter.

null

excludeProcedures

A	case-insensitive	regular	expression
that	when	matched	against	a	fully
qualified	procedure	name	[2]	will
exclude	it	from	import.	Applied	after
procedure	names	are	retrieved.	Use	a
negative	look-ahead	(?!<inclusion
pattern>).*	to	act	as	an	inclusion
filter.

null

importKeys

	true		to	import	primary	and	foreign
keys.

NOTE:	Foreign	keys	to	tables	that
are	not	imported	will	be	ignored.

true

autoCreateUniqueConstraints 	true		to	create	a	unique	constraint	if
one	is	not	found	for	a	foreign	keys true

importIndexes 	true		to	import	index/unique
key/cardinality	information false

importApproximateIndexes

	true		to	import	approximate	index
information.	See
DatabaseMetaData.getIndexInfo	[1].

WARNING:	Setting	to		false		may
cause	lengthy	import	times.

true

JDBC	translators

618

importProcedures

	true		to	import	procedures	and
procedure	columns	-	Note	that	it	is
not	always	possible	to	import
procedure	result	set	columns	due	to
database	limitations.	It	is	also	not
currently	possible	to	import
overloaded	procedures.

false

importSequences

	true		to	import	sequences.
Compatible	only	with	Db2,	Oracle,
PostgreSQL,	SQL	Server,	and	H2.	A
matching	sequence	will	be	imported
to	a	0-argument	Teiid	function
	name_nextval	.

false

sequenceNamePattern
LIKE	pattern	string	to	use	when
importing	sequences.	Null	or		%		will
match	all.

null

useFullSchemaName

When		false	,	directs	the	importer	to
use	only	the	object	name	as	the	Teiid
name.	It	is	expected	that	all	objects
will	come	from	the	same	foreign
schema.	When		true		(not
recommended)	the	Teiid	name	will	be
formed	using	the	catalog	and	schema
names	as	directed	by	the
	useCatalogName		and
	useQualifiedName		properties,	and	it
will	be	allowed	for	objects	to	come
from	multiple	foreign	schema.	This
option	does	not	affect	the	name	in
source	property.

false	(only	change	when	importing
from	multiple	foreign	schema).

useTypeInfo

If	JDBC	DatabaseMetaData
getTypeInfo	should	be	used.	If	false,
array	component	types	and	unsigned
types	may	not	be	able	to	be
determined.

true

useQualifiedName

	true		will	use	name	qualification
for	both	the	Teiid	name	and	name	in
source	as	further	refined	by	the
	useCatalogName		and
	useFullSchemaName		properties.	Set
to		false		to	disable	all	qualification
for	both	the	Teiid	name	and	the	name
in	source,	which	effectively	ignores
the		useCatalogName		and
	useFullSchemaName		properties.

WARNING:	When	you	set	this
option	to		false	,	it	can	lead	to
objects	with	duplicate	names	when
importing	from	multiple	schemas,
which	results	in	an	exception.

true	(rarely	needs	changed)

useCatalogName

	true		will	use	any	non-null/non-
empty	catalog	name	as	part	of	the
name	in	source,	e.g.
"catalog"."schema"."table"."column",
and	in	the	Teiid	runtime	name	if
applicable.		false		will	not	use	the
catalog	name	in	either	the	name	in
source	nor	the	Teiid	runtime	name.

true	(rarely	needs	changed)

JDBC	translators

619

Only	required	to	be	set	to		false		for
sources	such	as	HSQL	that	do	not	use
the	catalog	concept,	but	return	a	non-
null/non-empty	catalog	name	in	their
metadata.

widenUnsignedTypes

	true		to	convert	unsigned	types	to
the	next	widest	type.	For	example,
SQL	Server	reports		tinyint		as	an
unsigned	type.	With	this	option
enabled,		tinyint		would	be
imported	as	a	short	instead	of	a	byte.

true

useIntegralTypes 	true		to	use	integral	types	rather
than	decimal	when	the	scale	is	0. false

quoteNameInSource
	false		will	override	the	default	and
direct	Teiid	to	create	source	queries
using	unquoted	identifiers.

true

useAnyIndexCardinality

	true		will	use	the	maximum
cardinality	returned	from
	DatabaseMetaData.getIndexInfo	.
	importKeys		or		importIndexes	
needs	to	be	enabled	for	this	setting	to
have	an	effect.	This	allows	for	better
stats	gathering	from	sources	that
don’t	return	a	statistical	index.

false

importStatistics

	true		will	use	database	dependent
logic	to	determine	the	cardinality	if
none	is	determined.	Not	available	for
all	database	types — currently
available	for	Oracle	and	MySQL
only.

false

importRowIdAsBinary 	true		will	import		RowId		columns
as	varbinary	values. false

importLargeAsLob

	true		will	import	character	and
binary	types	larger	than	the	Teiid	max
as	CLOB	or	BLOB	respectively.	If
you	experience	memory	issues	even
with	the	property	enabled,	you	should
use	the		copyLob		execution	property
as	well.

false

[1]	JavaDoc	for	DatabaseMetaData
[2]	The	fully	qualified	name	for	exclusion	is	based	upon	the	settings	of	the	translator	and	the	particulars	of	the	database.	All	of	the
applicable	name	parts	used	by	the	translator	settings	(see		useQualifiedName		and		useCatalogName)	including	catalog,	schema,
table	will	be	combined	as		catalogName.schemaName.tableName		with	no	quoting.	For	example,	Oracle	does	not	report	a	catalog,
so	the	name	used	with	default	settings	for	comparison	would	be	just		schemaName.tableName	.

Warning
The	default	import	settings	will	crawl	all	available	metadata.	This	import	process	is	time-consuming,	and	full
metadata	import	is	not	needed	in	most	situations.	Most	commonly	you’ll	want	to	limit	the	import	by	at	least
	schemaName		or		schemaPattern		and		tableTypes	.

Example:	Importer	settings	to	import	only	tables	and	views	from	my-schema.

SET	SCHEMA	ora;

JDBC	translators

620

https://docs.oracle.com/en/java/javase/11/docs/api/java/sql/DatabaseMetaData.html

IMPORT	FOREIGN	SCHEMA	"my-schema"	FROM	SERVER	ora	INTO	ora	OPTIONS	("importer.tableTypes"	'TABLE,VIEW');

Or	in	an	xml	vdb:

<model	...

		<property	name="importer.tableTypes"	value="TABLE,VIEW"/>

		<property	name="importer.schemaName"	value="my-schema"/>

		...

</model>

For	more	information	about	importer	settings,	see	Virtual	databases.

Native	queries
Physical	tables,	functions,	and	procedures	may	optionally	have	native	queries	associated	with	them.	No	validation	of	the	native
query	is	performed,	it	is	simply	used	in	a	straight-forward	manner	to	generate	the	source	SQL.	For	a	physical	table	setting	the
	teiid_rel:native-query		extension	metadata	will	execute	the	native	query	as	an	inline	view	in	the	source	query.	This	feature
should	only	be	used	against	sources	that	provide	inline	views.	The	native	query	is	used	as	is	and	is	not	treated	as	a	parameterized
string.	For	example,	on	a	physical	table		y		with		nameInSource="x"`		and		teiid_rel:native-query="select	c	from	g"	,	the
Teiid	source	query		"SELECT	c	FROM	y"		would	generate	the	SQL	query		"SELECT	c	FROM	(select	c	from	g)	as	x"	.	Note	that
the	column	names	in	the	native	query	must	match	the		nameInSource		of	the	physical	table	columns	for	the	resulting	SQL	to	be
valid.

For	physical	procedures	you	may	also	set	the		teiid_rel:native-query		extension	metadata	to	a	desired	query	string	with	the
added	ability	to	positionally	reference	IN	parameters	.	For	more	information,	see	Parameterizable	native	queries	in	Translators.
The		teiid_rel:non-prepared		extension	metadata	property	can	be	set	to		false		to	turn	off	parameter	binding.

Be	careful	in	setting	this	option,	because	inbound	allows	for	SQL	injection	attacks	if	not	properly	validated.	The	native	query	does
not	need	to	call	a	stored	procedure.	Any	SQL	that	returns	a	result	set	that	positionally	matches	the	result	set	that	is	expected	by	the
physical	stored	procedure	metadata	will	work.	For	example	on	a	stored	procedure		x		with		teiid_rel:native-query="select	c
from	g	where	c1	=	$1	and	c2	=	`$$1"'	,	the	Teiid	source	query	 	̀ "CALL	x(?)"`		would	generate	the	SQL	query	 	̀ "select	c

from	g	where	c1	=	?	and	c2	=	`$1"'`	.	Note	that		?		in	this	example	will	be	replaced	with	the	actual	value	bound	to	parameter
1.

Direct	query	procedure
This	feature	is	turned	off	by	default,	because	of	the	inherent	security	risk	in	allowing	any	command	to	be	run	against	the	source.
To	enable	this	feature,	override	the	execution	property	called	SupportsDirectQueryProcedure	and	set	it	to		true	.	For	more
information,	see	Override	execution	properties	in	Translators.

By	default,	the	name	of	the	procedure	that	executes	the	queries	directly	is	native.	To	change	the	name,	override	the	execution
property	DirectQueryProcedureName.

The	JDBC	translator	provides	a	procedure	to	execute	any	ad-hoc	SQL	query	directly	against	the	source	without	Teiid	parsing	or
resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array.
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.	For	more	information,	see	arraytable.

SELECT	example

SELECT	x.*	FROM	(call	jdbc_source.native('select	*	from	g1'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"e1"	integer	,	"e2"	string)	AS	x

INSERT	example

SELECT	x.*	FROM	(call	jdbc_source.native('insert	into	g1	(e1,e2)	values	(?,	?)',	112,	'foo'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

UPDATE	example

JDBC	translators

621

SELECT	x.*	FROM	(call	jdbc_source.native('update	g1	set	e2=?	where	e1	=	?','blah',	112))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

DELETE	example

SELECT	x.*	FROM	(call	jdbc_source.native('delete	from	g1	where	e1	=	?',	112))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

JCA	resource	adapter
The	resource	adapter	for	this	translator	provided	through	data	source	in	WildFly,	See	to	Admin	Guide	section	WildFly	Data
Sources	for	configuration.

JDBC	translators

622

Actian	Vector	translator	(actian-vector)
Also	see	common	JDBC	Translators	information.

The	Actian	Vector	translator,	known	by	the	type	name	actian-vector,	is	for	use	with	Actian	Vector	in	Hadoop.

Download	the	JDBC	driver	at	http://esd.actian.com/platform.	Note	the	port	number	in	the	connection	URL	is	"AH7",	which	maps
to	16967.

JDBC	translators

623

http://esd.actian.com/Express/readme_HSE_2.0.html
http://esd.actian.com/platform

Athena	translator	(athena)
The	Amazon	Athena	translator,	known	by	the	type	name	athena,	is	for	use	with	the	Amazon	Athena	service.

The	translator	is	effectively	an	extension	of	the	PrestoDB	translator,	but	accounts	for	some	of	the	known	limitations	of	Athena.	It
is	generally	been	used	with	a	source	created	with	the	Simba	Athena	driver.

JDBC	translators

624

Apache	Phoenix	Translator	(phoenix)
Also	see	common	JDBC	Translators	information.

The	Apache	Phoenix	translator,	known	by	the	type	name	phoenix,	exposes	querying	functionality	to	HBase	tables.	Apache
Phoenix	is	a	JDBC	SQL	interface	for	HBase	that	is	required	for	this	translator	as	it	pushes	down	commands	into	Phoenix	SQL.

The	translator	is	also	known	by	the	deprecated	name	hbase.	The	name	change	reflects	that	the	translator	is	specific	to	Phoenix	and
that	there	could	be	other	translators	introduced	in	the	future	to	connect	to	HBase.

Do	not	use	the		DatabaseTimezone		property	with	this	translator.

The	HBase	translator	cannot	process	Join	commands.	Phoenix	uses	the	HBase	Table	Row	ID	as	the	Primary	Key.	This	Translator
is	developed	with	Phoenix	4.3	or	greater	for	HBase	0.98.1	or	greater.

Note
The	translator	implements		INSERT	/	UPDATE		through	the	Phoenix		UPSERT		operation.	This	means	you	can	see
different	behavior	than	with	standard		INSERT	/	UPDATE	.	For	example,	repeated	inserts	will	not	throw	a	duplicate
key	exception,	but	will	instead	update	the	row	in	question.

Note Due	to	Phoenix	driver	limitations,	the	importer	does	not	look	for	unique	constraints,	and	defaults	to	not	importing
foreign	keys.

Note

The	translator	can	process	SQL		OFFSET		arguments	and	other	features	starting	with	Phoenix	4.8.	The	Phoenix
driver	hard	codes	the	server	version	in		PhoenixDatabaseMetaData	,	and	does	not	otherwise	provide	a	way	to
detect	the	server	version	at	runtime.	If	a	newer	driver	is	used	with	an	older	server,	set	the	database	version
translator	property	manually.

Warning
The	Phoenix	driver	does	not	have	robust	handling	of	time	values.	If	your	time	values	are	normalized	to	use	a
date	component	of	1970-01-01,	then	the	default	handling	will	work	correctly.	If	not,	then	the	time	column
should	be	modeled	as	timestamp	instead.

JDBC	translators

625

http://hbase.apache.org/
http://phoenix.apache.org/
http://phoenix.apache.org/language/index.html

Cloudera	Impala	translator	(impala)
Also	see	common	JDBC	Translators	information.

The	Cloudera	Impala	translator,	known	by	the	type	name	impala,	is	for	use	with	Cloudera	Impala	1.2.1	or	later.

Impala	has	limited	support	for	data	types.	It	is	does	not	have	native	support	for	time/date/xml	or	LOBs.	These	limitations	are
reflected	in	the	translator	capabilities.	A	Teiid	view	can	use	these	types,	however	the	transformation	would	need	to	specify	the
necessary	conversions.	Note	that	in	those	situations,	the	evaluations	will	be	done	in	the	Teiid	engine.

Do	not	use	the		DatabaseTimeZone		translator	property	with	the	Impala	translator.

Impala	only	supports	EQUI	join,	so	using	any	other	joins	types	on	its	source	tables	will	result	in	inefficient	queries.

To	write	criteria	based	on	partitioned	columns,	model	them	on	the	source	table,	but	do	not	include	them	in	selection	columns.

Note Impala	Hive	importer	does	not	have	concept	of	catalog	or	source	schema,	nor	does	it	import	keys,	procedures,
indexes,	etc.

Impala	specific	importer	properties

useDatabaseMetaData
Set	to	true	to	use	the	normal	import	logic	with	the	option	to	import	index	information	disabled.	Defaults	to	false.

If	the	value	of		useDatabaseMetaData		is	false,	the	typical	JDBC		DatabaseMetaData		calls	are	not	used,	so	not	all	of	the	common
JDBC	importer	properties	are	applicable	to	Impala.	You	may	still	use		excludeTables	,	regardless.

Important

Some	versions	of	Impala	require	the	use	of	a		LIMIT		when	performing	an		ORDER	BY	.	If	no	default	is
configured	in	Impala,	an	exception	can	occur	when	a	Teiid	query	with	an		ORDER	BY		but	no		LIMIT		is
issued.	You	should	set	an	Impala-wide	default,	or	configure	the	connection	pool	to	use	a	new	connection
SQL	string	to	issue	a		SET	DEFAULT_ORDER_BY_LIMIT		statement.	For	more	information	about	Impala	limit
options,	such	as	how	to	control	what	happens	when	the	limit	is	exceeded,	see	the	Cloudera	documentation.

Note If	the	Impala	JDBC	driver	has	problems	processing		PreparedStatements		or	parsing	statements	in	general,	try
disabling		useBindVariables	.	For	more	information,	see	https://issues.redhat.com/browse/TEIID-4610.

JDBC	translators

626

https://issues.redhat.com/browse/TEIID-4610

Db2	Translator	(db2)
Also	see	common	JDBC	Translators	information.

The	Db2	translator,	known	by	the	type	name	db2,	is	for	use	with	IBM	Db2	V8	or	later,	or	IBM	Db2	for	i	V5.4	or	later.

Db2	execution	properties

DB2ForI
Indicates	that	the	the	Db2	instance	is	Db2	for	i.	Defaults	to		false	.

supportsCommonTableExpressions
Indicates	that	the	Db2	instance	supports	common	table	expressions	(CTEs).	Defaults	to		true	.	Common	table	expression	are
not	fully	supported	on	some	older	versions	of	Db2,	and	on	instances	of	Db2	that	run	in	a	conversion	mode.	If	you	encounter
errors	working	with	CTEs	in	these	environments,	set	the	CTE	property	to		false	.

JDBC	translators

627

Derby	translator	(derby)
Also	see	common	JDBC	Translators	information.

The	Derby	translator,	known	by	the	type	name	derby,	is	for	use	with	Derby	10.1	or	later.

JDBC	translators

628

Exasol	translator	(exasol)
Also	see	common	JDBC	Translators	information.

The	Exasol	translator,	known	by	the	type	name	exasol,	is	for	use	with	Exasol	version	6	or	later.

Usage
The	Exasol	database	has	the	NULL	HIGH	default	ordering,	whereas	the	Teiid	engine	works	in	the	NULL	LOW	mode.	As	a	result,
depending	on	whether	the	ordering	is	pushed	down	to	Exasol	or	done	by	the	engine,	you	might	observe	NULLs	at	either	the
beginning	or	end	of	returned	results.	To	enforce	consistency,	you	can	run	Teiid	with		org.teiid.pushdownDefaultNullOrder=true	
to	specify	NULL	LOW	ordering.	Enforcing	NULL	LOW	ordering	can	result	in	decreased	performance.

JDBC	translators

629

Greenplum	Translator	(greenplum)
Also	see	common	JDBC	Translators	information.

The	Greenplum	translator,	known	by	the	type	name	greenplum,	is	for	use	with	the	Greenplum	database.	This	translator	is	an
extension	of	the	PostgreSQL	translator,	and	inherits	its	options.

JDBC	translators

630

H2	Translator	(h2)
Also	see	common	JDBC	Translators	information.

The	H2	Translator,	known	by	the	type	name	h2,	is	for	use	with	H2	version	1.1	or	later.

JDBC	translators

631

Hive	Translator	(hive)
Also	see	common	JDBC	Translators	information.

The	Hive	translator,	known	by	the	type	name	hive,	is	for	use	with	Hive	v.10	and	SparkSQL	v1.0	and	later.

Capabilities
Hive	is	compatible	with	a	limited	set	of	data	types.	It	does	not	have	native	support	for	time/XML	or	large	objects	(LOBs).	These
limitations	are	reflected	in	the	translator	capabilities.	Although	a	Teiid	view	can	use	these	types,	the	transformation	must	specify
the	necessary	conversions.	Note	that	in	those	situations,	evaluations	are	processed	in	Teiid	engine.

Do	not	use	the		DatabaseTimeZone		translator	property	with	the	Hive	translator.

Hive	only	supports	EQUI	join,	so	using	any	other	joins	types	on	its	source	tables	will	result	in	inefficient	queries.

To	write	criteria	based	on	partitioned	columns,	model	them	on	the	source	table,	but	do	not	include	them	in	selection	columns.

Note The	Hive	importer	does	not	have	the	concept	of	catalog	or	source	schema,	nor	does	it	import	keys,	procedures,
indexes,	and	so	forth.

Import	properties

trimColumnNames
For	Hive	0.11.0	and	later,	the		DESCRIBE		command	metadata	is	inappropriately	returned	with	padding.	Set	this	property	to
	true		to	remove	white	space	from	column	names.	Defaults	to		false	.

useDatabaseMetaData
For	Hive	0.13.0	and	later,	the	normal	JDBC		DatabaseMetaData		facilities	are	sufficient	to	perform	an	import.	Set	to		true		to
use	the	normal	import	logic	with	the	option	to	import	index	information	disabled.	Defaults	to		false	.	When	true,
	trimColumnNames		has	no	effect.	If	it	is	set	to	false,	the	typical	JDBC	DatabaseMetaData	calls	are	not	used,	so	not	all	of	the
common	JDBC	importer	properties	are	applicable	to	Hive.	You	can	still	use	excludeTables	anyway.

"Database	Name"
When	the	database	name	used	in	Hive	differs	from		default	,	the	metadata	retrieval	and	execution	of	queries	does	not	work	as
expected	in	Teiid.	The	Hive	JDBC	driver	seems	to	be	implicitly	connecting	(tested	with	<	0.12)	to	"default"	database,	thus
ignoring	the	database	name	mentioned	on	connection	URL.	You	can	work	around	this	issue	if	you	configure	your	connection
source	to	send	the	command		use	{database-name}	.

Teiid	in	WildFly	environment	set	the	following	in	data	source	configuration.

				<new-connection-sql>use	{database-name}</new-connection-sql>

This	is	fixed	in	version	0.13	and	later	of	the	Hive	JDBC	driver.	For	more	information,	see
https://issues.apache.org/jira/browse/HIVE-4256.

Limitations
Empty	tables	might	report	their	description	without	datatype	information.	To	work	around	this	problem	when	importing,	you	can
exclude	empty	tables,	or	use	the		useDatabaseMetaData		option.

JDBC	translators

632

https://issues.redhat.com/browse/TEIID-2524
https://issues.apache.org/jira/browse/HIVE-4256

HSQL	Translator	(hsql)
Also	see	common	JDBC	Translators	information.

The	HSQL	Translator,	known	by	the	type	name	hsql,	is	for	use	with	HSQLDB	1.7	or	later.

JDBC	translators

633

Informix	translator	(informix)
Also	see	common	JDBC	Translators	information.

The	Informix	translator,	known	by	the	type	name	informix,	is	for	use	with	any	Informix	version.

Known	issues

TEIID-3808
The	Informix	driver’s	handling	of	timezone	information	is	inconsistent,	even	if	the		databaseTimezone		translator	property	is
set.	Verify	that	the	Informix	server	and	the	application	server	are	in	the	same	time	zone.

JDBC	translators

634

https://issues.redhat.com/browse/TEIID-3808

Ingres	translators	(ingres	/	ingres93)
Also	see	common	JDBC	Translators	information.

You	can	use	one	of	the	following	Ingres	translators,	depending	on	your	Ingres	version:

ingres
The	Ingres	translator,	known	by	the	type	name	ingres,	is	for	use	with	Ingres	2006	or	later.

ingres93
The	Ingres93	translator,	known	by	the	type	name	ingres93,	is	for	use	with	Ingres	9.3	or	later.

JDBC	translators

635

Intersystems	Caché	translator	(intersystems-cache)
Also	see	common	JDBC	Translators	information.

The	Intersystem	Caché	translator,	known	by	the	type	name	intersystems-cache,	is	for	use	with	Intersystems	Caché	Object
database	(relational	aspects	only).

JDBC	translators

636

JDBC	ANSI	translator	(jdbc-ansi)
Also	see	common	JDBC	Translators	information.

The	JDBC	ANSI	translator,	known	by	the	type	name	jdbc-ansi,	works	with	most	of	the	SQL	constructs	used	in	Teiid,	except	for
row	LIMIT/OFFSET	and	EXCEPT/INTERSECT.	It	translates	source	SQL	into	ANSI	compliant	syntax.	This	translator	should	be
used	when	another	more	specific	type	is	not	available.	If	source	exceptions	arise	due	to	the	use	of	incompatible	SQL	constructs,
then	consider	using	the	JDBC	simple	translator	to	further	restrict	capabilities,	or	create	a	custom	translator.	For	more	information,
see	the	Custom	Translator	documentation	in	the	Teiid	community.

JDBC	translators

637

http://teiid.github.io/teiid-documents/master/sb/dev/Translator_Development.html

JDBC	simple	translator	(jdbc-simple)
Also	see	common	JDBC	Translators	information.

The	JDBC	Simple	translator,	known	by	the	type	name	jdbc-simple,	is	the	same	as	the	jdbc-ansi-translator,	except	that,	to	provide
maximum	compatibility,	it	does	not	handle	most	pushdown	constructs.

JDBC	translators

638

MetaMatrix	Translator	(metamatrix)
Also	see	common	JDBC	Translator	Information

The	MetaMatrix	Translator,	known	by	the	type	name	metamatrix,	is	for	use	with	MetaMatrix	5.5.0	or	later.

JDBC	translators

639

Microsoft	Access	translators
Also	see	common	JDBC	Translators	information.

access
The	Microsoft	Access	translator	known	by	the	type	name	access	is	for	use	with	Microsoft	Access	2003	or	later	via	the	JDBC-
ODBC	bridge.

If	you	are	using	the	default	native	metadata	import,	or	the	Teiid	connection	importer,	the	importer	defaults	to
	importKeys=false		and		excludeTables=.[.]MSys.		to	avoid	issues	with	the	metadata	provided	by	the	JDBC	ODBC	bridge.
You	might	need	to	adjust	these	values	if	you	use	a	different	JDBC	driver.

ucanaccess
The	Microsoft	Access	translator	known	by	the	type	name	ucanaccess	is	for	use	with	Microsoft	Access	2003	or	later	via	the
UCanAccess	driver.

JDBC	translators

640

http://ucanaccess.sourceforge.net/site.html

Microsoft	SQL	Server	translator	(sqlserver)
Also	see	common	JDBC	translators	information.

The	Microsoft	SQL	Server	translator,	known	by	the	type	name	sqlserver,	is	for	use	with	SQL	Server	2000	or	later.	A	SQL	Server
JDBC	driver	version	2.0	or	later	(or	a	compatible	driver	such	as,	JTDS	1.2	or	later)	should	be	used.	The	SQL	Server
	DatabaseVersion		property	can	be	set	to		2000	,		2005	,		2008	,	or		2012	,	but	otherwise	expects	a	standard	version	number,	for
example,		10.0	.

Sequences
With	Teiid	8.5+,	sequence	operations	may	be	modeled	as	source	functions.

With	Teiid	10.0+,	sequences	may	be	imported	automatically	import	properties.

Example:	Sequence	native	query

CREATE	FOREIGN	FUNCTION	seq_nextval	()	returns	integer	OPTIONS	("teiid_rel:native-query"	'NEXT	VALUE	FOR	seq');

Execution	properties
SQL	Server	specific	execution	properties:

JtdsDriver
Specifies	that	use	of	the	open	source	JTDS	driver.	Defaults	to	false.

JDBC	translators

641

ModeShape	Translator	(modeshape)
Also	see	common	JDBC	Translator	Information

The	ModeShape	Translator,	known	by	the	type	name	modeshape,	is	for	use	with	Modeshape	2.2.1	or	later.

Usage

The	PATH,	NAME,	LOCALNODENAME,	DEPTH,	and	SCORE	functions	should	be	accessed	as	pseudo-columns,	e.g.
"nt:base"."jcr:path".

Teiid	UFDs	(prefixed	by	JCR_)	are	available	for	CONTIANS,	ISCHILDNODE,	ISDESCENDENT,	ISSAMENODE,
REFERENCE	-	see	the	JCRFunctions.xmi.	If	a	selector	name	is	needed	in	a	JCR	function,	you	should	use	the	pseudo-column
"jcr:path",	e.g.	JCR_ISCHILDNODE(foo.jcr_path,	'x/y')	would	become	ISCHILDNODE(foo,	`x/y')	in	the	ModeShape	query.

An	additional	pseudo-column	"mode:properties"	should	be	imported	by	setting	the	ModeShape	JDBC	connection	property
teiidsupport=true.	The	column	"mode:properties"	should	be	used	by	the	JCR_REFERENCE	and	other	functions	that	expect	a	.*
selector	name,	e.g.	JCR_REFERENCE(nt_base.jcr_properties)	would	become	REFERENCE("nt:base".*)	in	the	ModeShape
query.

JDBC	translators

642

MySQL	translator	(mysql)
Also	see	common	JDBC	translators	information.

You	can	use	the	following	translators	with	MySQL	and	MariaDB:

mysql
The	MySQL	translator,	known	by	the	type	name	mysql,	is	for	use	with	MySQL	version	4.x	or	later.	The	translator	also	works
with	other	compatible	MySQL	derivatives,	such	as	MariaDB.

mysql5
The	legacy	MySQL5	translator,	known	by	the	type	name	mysql5,	was	for	use	with	MySQL	version	5	or	later.	It	has	been
incorporated	into	the	mysql	translator.

Usage
The	MySQL	translators	expect	the	database	or	session	to	be	using	ANSI	mode.	If	the	database	is	not	using	ANSI	mode,	you	can
set	ANSI	mode	on	the	pool	by	submitting	the	following	initialization	query:

set	SESSION	sql_mode	=	'ANSI'

When	data	includes	null	timestamp	values,	Teiid	generates	the	following	conversion	error:		0000-00-00	00:00:00	cannot	be
converted	to	a	timestamp	.	To	avoid	error,	if	you	expect	data	with	null	timestamp	values,	set	the	connection	property
	zeroDateTimeBehavior=convertToNull	.

Warning If	you	must	retrieve	large	result	sets,	consider	setting	the	connection	property		useCursorFetch=true	.
Otherwise	MySQL	will	fully	fetch	result	sets	into	memory	on	the	Teiid	instance.

Note

MySQL	reports	TINYINT(1)	columns	as	a	JDBC	BIT	type	-	however	the	value	range	is	not	actually	restricted
and	may	cause	issues	if	for	example	you	are	relying	on	-1	being	recognized	as	a	true	value.	If	not	using	the	native
importer,	change	the	BOOLEAN	columns	in	the	affected	source	to	have	a	native	type	of	"TINYINT(1)"	rather
than	BIT	so	that	the	translator	can	appropriately	handle	the	Boolean	conversion.

JDBC	translators

643

Netezza	translator	(netezza)
Also	see	common	JDBC	translators	information.

The	Netezza	translator,	known	by	the	type	name	netezza,	is	for	use	with	any	version	of	the	IBM	Netezza	appliance.

Usage
The	current	vendor-supplied	JDBC	driver	for	Netezza	performs	poorly	with	single	transactional	updates.	It	is	best	to	perform
batched	updates	whenever	possible.

Execution	properties
Netezza-specific	execution	properties:

SqlExtensionsInstalled
Indicates	that	SQL	extensions,	including	the	ability	to	process	Netezza		REGEXP_LIKE		functions,	are	installed.	All	other
REGEXP	functions	are	then	available	as	pushdown	functions.	Defaults	to		false	.

JDBC	translators

644

Oracle	translator	(oracle)
Also	see	common	JDBC	translators	information.

The	Oracle	translator,	known	by	the	type	name	oracle,	is	for	use	with	Oracle	Database	9i	or	later.

Note

The	Oracle-provided	JDBC	driver	uses	large	amounts	of	memory.	Because	the	driver	caches	a	high	volume	of
data	in	the	buffer,	problems	can	occur	on	computers	that	lack	sufficient	memory	allocation.

For	more	information,	see	the	following	resources:

Teiid	issue.

Oracle	whitepaper.

Importer	properties

useGeometryType
Use	the	Teiid	Geometry	type	when	importing	columns	with	a	source	type	of	SDO_GEOMETRY.	Defaults	to	false.

Note

Metadata	import	from	Oracle	may	be	slow.	It	is	recommended	that	at	least	a	schema	name	filter	is	specified.
There	is	also	the		useFetchSizeWithLongColumn=true		connection	property	that	can	increase	the	fetch	size	for
metadata	queries.	It	significantly	improves	the	metadata	load	process,	especially	when	there	are	a	large
number	of	tables	in	a	schema.

Execution	properties

OracleSuppliedDriver
Indicates	that	the	Oracle	supplied	driver	(typically	prefixed	by	ojdbc)	is	being	used.	Defaults	to	true.	Set	to		false		when
using	DataDirect	or	other	Oracle	JDBC	drivers.

Oracle-specific	metadata

Sequences
You	can	use	sequences	with	the	Oracle	translator.	You	can	model	a	sequence	as	a	table	with	a	name	in	source	of	DUAL,	and
setting	column	names	in	the	source	set	to		<sequence	name>.[nextval|currval]	

With	Teiid	10.0+,	you	can	import	sequences	automatically.

For	more	information,	see	Importer	properties	in	JDBC	translators.	Teiid	8.4	and	Prior	Oracle	Sequence	DDL

CREATE	FOREIGN	TABLE	seq	(nextval	integer	OPTIONS	(NAMEINSOURCE	'seq.nextval'),	currval	integer	options	(NAMEIN

SOURCE	'seq.currval'))	OPTIONS	(NAMEINSOURCE	'DUAL')

With	Teiid	8.5	it’s	no	longer	necessary	to	rely	on	a	table	representation	and	Oracle-specific	handling	for	sequences.

For	information	about	representing		currval		and		nextval		as	source	functions,	see	DDL	metadata	for	schema	objects

8.5	Example:	Sequence	native	query

CREATE	FOREIGN	FUNCTION	seq_nextval	()	returns	integer	OPTIONS	("teiid_rel:native-query"	'seq.nextval');

You	can	also	use	a	sequence	as	the	default	value	for	insert	columns	by	setting	the	column	to	autoincrement,	and	setting	the	name
in	source	to		<element	name>:SEQUENCE=<sequence	name>.<sequence	value>	.

Rownum

JDBC	translators

645

https://issues.redhat.com/browse/TEIID-4815
http://www.oracle.com/technetwork/topics/memory.pdf
https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html

A		rownum		column	can	also	be	added	to	any	Oracle	physical	table	to	enable	use	of	the	rownum	pseudo-column.	A	rownum
column	should	have	a	name	in	source	of		rownum	.	These	rownum	columns	do	not	have	the	same	semantics	as	the	Oracle	rownum
construct	so	care	must	be	taken	in	their	usage.

Out	parameter	result	set
Out	parameters	for	procedures	may	also	be	used	to	return	a	result	set,	if	this	is	not	represented	correctly	by	the	automatic	import
you	need	to	manually	create	a	result	set	and	represent	the	output	parameter	with	native	type		REF	CURSOR	.

DDL	for	out	parameter	result	set

create	foreign	procedure	proc	(in	x	integer,	out	y	object	options	(native_type	'REF	CURSOR'))

returns	table	(a	integer,	b	string)

Geospatial	functions
You	can	use	the	following	geospatial	functions	with	the	translator	for	Oracle:

Relate	=	sdo_relate

CREATE	FOREIGN	FUNCTION	sdo_relate	(arg1	string,		arg2	string,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_relate	(arg1	Object,		arg2	Object,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_relate	(arg1	string,		arg2	Object,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_relate	(arg1	Object,		arg2	string,		arg3	string)	RETURNS	string;

Nearest_Neighbor	=	sdo_nn

CREATE	FOREIGN	FUNCTION	sdo_nn	(arg1	string,		arg2	Object,		arg3	string,		arg4	integer)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_nn	(arg1	Object,		arg2	Object,		arg3	string,		arg4	integer)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_nn	(arg1	Object,		arg2	string,		arg3	string,		arg4	integer)	RETURNS	string;

Within_Distance	=	sdo_within_distance

CREATE	FOREIGN	FUNCTION	sdo_within_distance	(arg1	Object,		arg2	Object,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_within_distance	(arg1	string,		arg2	Object,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_within_distance	(arg1	Object,		arg2	string,		arg3	string)	RETURNS	string;

Nearest_Neigher_Distance	=	sdo_nn_distance

CREATE	FOREIGN	FUNCTION	sdo_nn_distance	(arg	integer)	RETURNS	integer;

Filter	=	sdo_filter

CREATE	FOREIGN	FUNCTION	sdo_filter	(arg1	Object,		arg2	string,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_filter	(arg1	Object,		arg2	Object,		arg3	string)	RETURNS	string;

CREATE	FOREIGN	FUNCTION	sdo_filter	(arg1	string,		arg2	object,		arg3	string)	RETURNS	string;

Pushdown	functions
Depending	on	the	Oracle	version,	the	Oracle	translator,	registers	the	following	non-geospatial	pushdown	functions	with	the
engine:

TRUNC
Both	numeric	and	timestamp	versions.

LISTAGG
Requires	the	Teiid	SQL	syntax	"LISTAGG(arg	[,	delim]	ORDER	BY	…)"

SQLXML

JDBC	translators

646

If	you	need	to	retrieve	SQLXML	values	from	Oracle	and	are	getting	oracle.xdb.XMLType	or	OPAQUE	instances	instead,	you
make	the	following	changes:

Use	client	driver	version	11,	or	later.

Place	the		xdb.jar		and		xmlparserv2.jar		files	in	the	classpath.

Set	the	system	property		oracle.jdbc.getObjectReturnsXMLType="false"	.

For	more	information,	see	the	Oracle	documentation.

JDBC	translators

647

https://docs.oracle.com/cd/E11882_01/java.112/e16548/jdbcvers.htm#JJDBC28110

OSISoft	PI	Translator	(osisoft-pi)
Also	see	common	JDBC	Translator	Information

The	OSISoft	Translator,	known	by	the	type	name	osisoft-pi,	is	for	use	with	OSIsoft	PI	OLEDB	Enterprise.	This	translator	uses	the
JDBC	driver	provided	by	the	OSISoft.

Usage

You	can	develop	a	VDB	like	follows	to	fetch	metadata	from	PI	and	give	you	access	to	executing	queries	against	PI.

pi-vdb.xml

<vdb	name="pi"	version="1">

				<model	name="AF">

								<property	name="importer.importProcedures"	value="true"/>

								<source	connection-jndi-name="java:/pi-ds"	name="pi-connector"	translator-

name="osisoft-pi"/>

				</model>

</vdb>

Deploy	this	file	into	Teiid	using	CLI	or	using	management	console

deploy	pi-vdb.xml

Once	the	metadata	is	loaded	and	VDB	is	active	you	can	use	Teiid	JDBC/ODBC	driver	or	OData	to	connect	to	the	VDB	and	issue
queries.

PI	Translator	Capabilities

PI	translator	is	extension	of	jdbc-ansi	translator,	so	all	the	SQL	ANSI	queries	are	supported.	PI	translator	also	supports	LATERAL
join	with	Table	Valued	Functions	(TVF).	An	example	Teiid	query	looks	like

SELECT	EH.Name,	BT."Time",	BT."Number	of	Computers",	BT."Temperature"

				FROM	Sample.Asset.ElementHierarchy	EH

				LEFT	JOIN		LATERAL	(exec	"TransposeArchive_Building	Template"(EH.ElementID,	

TIMESTAMPADD(SQL_TSI_HOUR,	-1,	now()),	now()))	BT	on	1=1

				WHERE	EH.ElementID	IN	(SELECT	ElementID	FROM	Sample.Asset.ElementHierarchy	

WHERE	Path='\Data	Center\')

Note
ANSI	SQL	semantics	require	a	ON	clause,	but	CROSS	APPLY	or	OUTER	APPLY	do	no	have	a	ON	clause,	so
for	this	reason	user	need	to	pass	in	a	dummy	ON	clause	like	ON	(1	=	1),	which	will	be	ignored	when	converted	to
APPLY	clause	which	will	be	pushed	down.

By	default	this	translator	turns	off	the	"importer.ImportKeys"	to	false.

Note
The	PI	data	type,	"GUID"	will	need	to	be	modeled	as	"String"	and	must	define	the	NATIVE_TYPE	on	column	as
"guid",	then	Teiid	translator	will	appropriately	convert	the	data	back	forth	with	the	PI	datasource’s	native	guid
type	with	appropriate	type	casting	from	string.

JDBC	translators

648

Pushdown	Functions

PI	accepts	time	interval	literals	that	are	not	recognized	by	Teiid.	If	you	wish	to	make	a	comparison	based	upon	an	interval,	use	the
PI.inteveral	function:

select	*	from	Archive	a	where	a.time	between	PI.interval('*-14d')	and	

PI.interval('*')

Known	Issues:	TEIID-5123	-	Casting	a	string	containing	a	negative	or	zero	value	(e.g.	'-24'	or	'0')	to	Float/Single	fails	with	PI
Jdbc	driver.

JCA	Resource	Adapter

The	resource	adapter	for	this	translator	is	provided	through	OSISoft	PI	Data	Sources.	Refer	to	Admin	Guide	for	configuration.

JDBC	translators

649

PostgreSQL	translator	(postgresql)
Also	see	common	JDBC	translators	information.

The	PostgreSQL	translator,	known	by	the	type	name	postgresql,	is	for	use	with	the	following	PostgreSQL	client	and	server
versions:	*	Client — 8.0	or	later	*	Server — 7.1	or	later.

Execution	properties
PostgreSQL-specific	execution	properties:

PostGisVersion
Indicates	the	PostGIS	version	in	use.	Defaults	to	0,	which	means	that	PostGIS	is	not	installed.	Will	be	set	automatically	if	the
database	version	is	not	set.

ProjSupported
Boolean	that	indicates	if	the	PostGis	version	supports	PROJ	coordinate	transformation	software.	Will	be	set	automatically	if
the	database	version	is	not	set.

Note

Some	driver	versions	of	PostgreSQL	will	not	associate	columns	to	"INDEX"	type	tables.	The	current	version	of
Teiid	omits	such	tables	automatically.

Older	versions	of	Teiid	may	need	the	importer.tableType	property	or	other	filtering	set.

JDBC	translators

650

PrestoDB	translator	(prestodb)
Also	see	common	JDBC	translators	information.

The	PrestoDB	translator,	known	by	the	type	name	prestodb,	exposes	querying	functionality	to	Presto	data	sources	-	which
includes	both	PrestoDB	and	PrestoSQL.

Capabilities
Because	PrestoDB	exposes	a	relational	model,	Teiid	can	use	it	as	it	does	other	RDBMS	sources,	such	as	Oracle,	Db2,	and	so	forth.
For	information	about	configuring	PrestoDB,	see	the	Presto	documentation.

Tip
In	SQL	JOIN	operations,	PrestoDB	does	not	support	multiple		ORDER	BY		columns	well.	If	errors	occur	during
JOIN	operations	that	involve	more	than	one		ORDER	BY		column,	set	the	translator	property		supportsOrderBy		to
disable	the	use	of	the		ORDER	BY		clause.

Note Some	versions	of	Presto	generate	errors	when	you	include	null	values	in	subqueries.

Tip Older	PrestoDB	versions	do	not	support	transactions.	To	overcome	issues	caused	by	this	limitation,	define	the	data
source	as	non-transactional.

Note

By	default,	every	catalog	in	PrestoDB	has	an		information_schema	.	If	you	have	to	configure	multiple	catalogs,
duplicate	table	errors	can	cause	deployment	of	a	virtual	database	to	fail.	To	prevent	duplicate	table	errors,	use
import	options	to	filter	the	schemas.

If	you	want	to	configure	multiple	Presto	catalogs,	set	one	of	the	following	import	options	to	filter	the	schemas	and
tables	in	the	source:

Set		catalog		to	a	specific	catalog	name	to	match	the	name	of	the	source	catalog	in	Presto.

Set		schemaPattern		to	a	regular	expression	to	include	matching	schemas.

Set		excludeTables		to	a	regular	expression	to	exclude	tables.

JDBC	translators

651

Redshift	translator	(redshift)
Also	see	common	JDBC	translators	information.

The	Redshift	translator,	known	by	the	type	name	redshift,	is	for	use	with	the	Amazon	Redshift	database.	This	translator	is	an
extension	of	the	PostgreSQL	translator	and	inherits	its	options.

JDBC	translators

652

SAP	HANA	translator	(hana)
Also	see	common	JDBC	translators	information.

The	SAP	HANA	translator,	known	by	the	name	of	hana,	is	for	use	with	SAP	HANA.

Known	issues

TEIID-3805
The	pushdown	of	the	SUBSTRING	function	is	inconsistent	with	the	Teiid	SUBSTRING	function	when	the	FROM	index
exceeds	the	length	of	the	string.	SAP	HANA	will	return	an	empty	string,	while	Teiid	produces	a	null	value.

JDBC	translators

653

https://issues.redhat.com/browse/TEIID-3805

SAP	IQ	translator	(sap-iq)
Also	see	common	JDBC	translators	information.

The	SAP	IQ	translator,	known	by	the	type	name	sap-iq,	is	for	use	with	SAP	IQ	version	15.1	or	later.	The	translator	name	sybaseiq
has	been	deprecated.

JDBC	translators

654

Sybase	translator	(sybase)
Also	see	common	JDBC	Translators	information.

The	Sybase	translator,	known	by	the	type	name	sybase,	is	for	use	with	SAP	ASE	(Adaptive	Server	Enterprise),	formerly	known	as
Sybase	SQL	Server,	version	12.5	or	later.

If	you	use	the	default	native	import,	you	can	avoid	exceptions	during	the	retrieval	of	system	table	information,	if	you	specify
import	properties.	If	errors	occur	when	retrieving	table	information,	specify	a		schemaName		or		schemaPattern	,	or	use
	excludeTables		to	exclude	system	tables.	For	more	information	about	using	import	properties,	see	Importer	properties	in	JDBC
translators.

If	the	name	in	the	source	metadata	contains	quoted	identifiers	(such	as	reserved	words,	or	words	that	contain	characters	that	would
not	otherwise	be	allowed),	and	you	are	using	a	jConnect	Sybase	driver,	you	must	first	configure	the	connection	pool	to	enable
quoted_identifier:

Example:	Driver	URL	with	SQLINITSTRING

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set	quoted_identifier	on

Important
If	you	are	using	a	jConnect	Sybase	driver	and	will	target	the	source	for	dependent	joins,	set	the
	JCONNECT_VERSION		to		6		or	later	to	increase	the	number	of	values	that	the	translator	can	send.	If	you	do	not
set	the		JCONNECT_VERSION	,	an	exception	occurs	with	statements	that	have	more	than	481	bind	values.

Example:	Driver	URL	with	JCONNECT_VERSION

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set	quoted_identifier	on&JCONNECT_VERSION=6

Execution	properties	specific	to	Sybase

JtdsDriver_
Indicates	that	the	open	source	JTDS	driver	is	being	used.	Defaults	to	false.

JDBC	translators

655

Teiid	translator	(teiid)
Also	see	common	JDBC	translators	information.

Use	the	Teiid	translator,	known	by	the	type	name	teiid,	when	creating	a	virtual	database	from	a	Teiid	data	source.

JDBC	translators

656

Teradata	translator	(teradata)
Also	see	common	JDBC	translators	information.

The	Teradata	translator,	known	by	the	type	name	teradata,	is	for	use	with	Teradata	Database	V2R5.1	or	later.

By	default,	Teradata	driver	version	15,	adjusts	date,	time,	and	timestamp	values	to	match	the	Teiid	server	timezone.	To	remove
this	adjustment,	set	the	translator		DatabaseTimezone		property	to	GMT	or	whatever	the	Teradata	server	defaults	to.

JDBC	translators

657

Vertica	translator	(vertica)
Also	see	common	JDBC	translators	information.

The	Vertica	translator,	known	by	the	type	name	vertica,	is	for	use	with	Vertica	6	or	later.

JDBC	translators

658

JPA	Translator
The	JPA	translator,	known	by	the	type	name	jpa2,	can	reverse	a	JPA	object	model	into	a	relational	model,	which	can	then	be
integrated	with	other	relational	or	non-relational	sources.

For	information	on	JPA	persistence	in	a	WildFly,	see	JPA	Reference	Guide.

Properties

The	JPA	Translator	currently	has	no	import	or	execution	properties.

Native	Queries

JPA	source	procedures	may	be	created	using	the	teiid_rel:native-query	extension	-	see	Parameterizable	Native	Queries.	The
procedure	will	invoke	the	native-query	similar	to	an	native	procedure	call	with	the	benefits	that	the	query	is	predetermined	and
that	result	column	types	are	known,	rather	than	requiring	the	use	of	ARRAYTABLE	or	similar	functionality.	See	the	query	syntax
below.

Direct	Query	Procedure

Note This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the
source.	To	enable	this	feature,	override	the	execution	property	called	_SupportsDirectQueryProcedure	to	true.

Tip By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	native.	Override	the	execution	property
_DirectQueryProcedureName	to	change	it	to	another	name.

The	JPA	translator	provides	a	procedure	to	execute	any	ad-hoc	JPA-QL	query	directly	against	the	source	without	Teiid	parsing	or
resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	object	array.	User	can	use
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.	Teiid	exposes	this	procedure	with	a
simple	query	structure	as	below

Select

Select	Example

SELECT	x.*	FROM	(call	jpa_source.native('search;FROM	Account'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"id"	string	,	"type"	string,	"name"	String)	AS	x

from	the	above	code,	the	"search"	keyword	followed	by	a	query	statement	-	see	Parameterizable	Native	Queries	to	substitute
parameter	values.

Delete

Delete	Example

SELECT	x.*	FROM	(call	jpa_source.native('delete;<jpa-ql>'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"updatecount"	integer)	AS	x

form	the	above	code,	the	"delete"	keyword	followed	by	JPA-QL	for	delete	operation.

Update

JPA	translator

659

https://docs.wildfly.org/19/Developer_Guide.html#JPA_Reference_Guide

Create	Example

SELECT	x.*	FROM

	(call	jpa_source.native('update;<jpa-ql>'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

form	the	above	code,	the	"update"	keyword	must	be	followed	by	JPA-QL	for	the	update	statement.

Create

Update	Example

SELECT	x.*	FROM

	(call	jpa_source.native('create;',	<entity>))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

Create	operation	needs	to	send	"create"	word	as	marker	and	send	the	entity	as	a	the	first	parameter.

JPA	translator

660

LDAP	Translator
The	LDAP	translator	is	implemented	by	the	org.teiid.translator.ldap.LDAPExecutionFactory	class	and	known	by	the	translator
type	name	ldap.	The	LDAP	translator	exposes	an	LDAP	directory	tree	relationally	with	pushdown	support	for	filtering	via	criteria.
This	is	typically	coupled	with	the	LDAP	resource	adapter.

Note The	resource	adapter	for	this	translator	is	provided	by	configuring	the	ldap	data	source	in	the	JBoss	EAP	instance.

Execution	Properties

Name Description Default

SearchDefaultBaseDN Default	Base	DN	for	LDAP	Searches null

SearchDefaultScope

Default	Scope	for	LDAP	Searches.
Can	be	one	of	SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE.

ONELEVEL_SCOPE

RestrictToObjectClass Restrict	Searches	to	objectClass
named	in	the	Name	field	for	a	table false

UsePagination
Use	a	PagedResultsControl	to	page
through	large	results.	This	is	not
compatible	with	all	directory	servers.

false

ExceptionOnSizeLimitExceeded

Set	to	true	to	throw	an	exception
when	a	SizeLimitExceededException
is	received	and	a	LIMIT	is	not
properly	enforced.

false

There	are	no	import	settings	for	the	ldap	translator;	it	also	does	not	provide	metadata.

Metadata	Options

SEARCHABLE	'equality_only'

For	openldap,	apacheds,	and	other	ldap	servers,	dn	attributes	have	search	restrictions,	such	that	they	can	process	only	equality
predicates.	Use	SEARCHABLE		equality_only		to	indicates	that	only	equality	predicates	should	be	pushed	down.	Any	other
predicate	would	need	evaluated	in	the	engine.	For	example

	col	string	OPTIONS	(SEARCHABLE	'equality_only',	...)

teiid_ldap:rdn_type

Used	on	a	column	with	a	dn	value	to	indicate	the	rdn	to	extract.	If	the	entry	suffix	does	not	match	this	rdn	type,	then	no	row	will
be	produced.	For	example

	col	string	OPTIONS	("teiid_ldap:rdn_type"	'cn',	...)

teiid_ldap:dn_prefix

LDAP	translator

661

Used	on	a	column	if	rdn_type	is	specified	to	indicates	that	the	values	should	match	this	prefix,	no	row	will	be	produced	for	a	non-
matching	entry.	For	example

	col	string	OPTIONS	("teiid_ldap:rdn_type"	'cn',	"teiid_ldap:dn_prefix"	'ou=groups,dc=example,dc=com',	...)

Multivalued	Attributes

If	one	of	the	methods	below	is	not	used	and	the	attribute	is	mapped	to	a	non-array	type,	then	any	value	may	be	returned	on	a	read
operation.	Also	insert/update/delete	capabilities	are	not	multi-value	aware.

Concatenation

String	columns	with	a	default	value	of	"multivalued-concat"	will	concatenate	all	attribute	values	together	in	alphabetical	order
using	a	?	delimiter.	Insert/update	will	function	as	expected	if	all	applicable	values	are	supplied	in	the	concatenated	format.

Arrays

Multiple	attribute	values	may	also	supported	as	an	array	type.	The	array	type	mapping	also	allows	for	insert/update	operations.

For	example	here	is	ddl	with	objectClass	and	uniqueMember	as	arrays:

create	foreign	table	ldap_groups	(objectClass	string[],	DN	string,	name	string	options	(nameinsource	'cn'),	uni

queMember	string[])	options	(nameinsource	'ou=groups,dc=teiid,dc=org',	updatable	true)

The	array	values	can	be	retrieved	with	a	SELECT.	An	example	insert	with	array	values	could	look	like:

insert	into	ldap_groups	(objectClass,	DN,	name,	uniqueMember)	values	(('top',	'groupOfUniqueNames'),	'cn=a,ou=g

roups,dc=teiid,dc=org',	'a',	('cn=Sam	Smith,ou=people,dc=teiid,dc=org',))

Unwrap

When	a	multivalued	attribute	represents	an	association	between	entities,	it’s	possible	to	use	extension	metadata	properties	to
represent	it	as	a	1-to-many	or	many-to-many	relationship.

Example	many-to-many	DDL:

CREATE	foreign	table	users	(username	string	primary	key	options	(nameinsource	'cn'),	surname	string	options	(na

meinsource	'sn'),	...)	options	(nameinsource	'ou=users,dc=example,dc=com');

CREATE	foreign	table	groups	(groupname	string	primary	key	options	(nameinsource	'cn'),	description	string,	...)

	options	(nameinsource	'ou=groups,dc=example,dc=com');

CREATE	foreign	table	membership	(username	string	options	(nameinsource	'cn'),	groupname	options	(nameinsource	'

memberOf',	SEARCHABLE	'equality_only',	"teiid_rel:partial_filter"	true,	"teiid_ldap:unwrap"	true,	"teiid_ldap:d

n_prefix"	'ou=groups,dc=example,dc=com',	"teiid_ldap:rdn_type"	'cn'),	foreign	key	(username)	references	users	(

username),	foreign	key	(groupname)	references	groups	(groupname))	options	(nameinsource	'ou=users,dc=example,dc

=com');

The	result	from	"select	*	from	membership"	will	then	produce	1	row	for	each	memberOf	and	the	key	value	will	be	based	upon	the
cn	rdn	value	rather	than	the	full	dn.	Also	queries	that	join	between	users	and	membership	will	be	pushed	as	a	single	query.

If	the	unwrap	attribute	is	missing	or	there	are	no	values,	then	a	single	row	with	a	null	value	will	be	produced.

Native	Queries

LDAP	translator

662

LDAP	procedures	may	optionally	have	native	queries	associated	with	them	-	see	Parameterizable	Native	Queries.	The	operation
prefix	(select;,	insert;,	update;,	delete;	-	see	below	for	more)	must	be	present	in	the	native-query,	butit	will	not	be	issued	as	part	of
the	query	to	the

Example	DDL	for	an	LDAP	native	procedure

CREATE	FOREIGN	PROCEDURE	proc	(arg1	integer,	arg2	string)	OPTIONS	("teiid_rel:native-query"	'search;context-nam

e=corporate;filter=(&(objectCategory=person)(objectClass=user)(!cn=$2));count-limit=5;timeout=$1;search-scope=O

NELEVEL_SCOPE;attributes=uid,cn')	returns	(col1	string,	col2	string);

Parameter	values	will	have	reserved	characters	escaped,	but	are	otherwise	directly	substituted	into	the	query.

Direct	Query	Procedure

Note This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the
source.	To	enable	this	feature,	override	the	execution	property	called	_SupportsDirectQueryProcedure	to	true.

Tip By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	native.	Override	the	execution	property
_DirectQueryProcedureName	to	change	it	to	another	name.

The	LDAP	translator	provides	a	procedure	to	execute	any	ad-hoc	LDAP	query	directly	against	the	source	without	Teiid	parsing	or
resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array.
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.

Search

Search	Example

SELECT	x.*	FROM	(call	pm1.native('search;context-name=corporate;filter=(objectClass=*);count-limit=5;timeout=6;

search-scope=ONELEVEL_SCOPE;attributes=uid,cn'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"uid"	string	,	"cn"	string)	AS	x

from	the	above	code,	the	"search"	keyword	followed	by	below	properties.	Each	property	must	be	delimited	by	semi-colon	(;)	If	a
property	contains	a	semi-colon	(;),	it	should	be	escaped	by	another	semi-colon	-	see	alsoParameterizable	Native	Queries	and	the
native-query	procedure	example	above.

Name Description Required

context-name LDAP	Context	name Yes

filter query	to	filter	the	records	in	the
context No

count-limit limit	the	number	of	results.	same	as
using	LIMIT No

timeout Time	out	the	query	if	not	finished	in
given	milliseconds No

search-scope

LDAP	search	scope,	one	of
SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE

No

attributes attributes	to	retrieve Yes

LDAP	translator

663

Delete

Delete	Example

SELECT	x.*	FROM	(call	pm1.native('delete;uid=doe,ou=people,o=teiid.org'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"updatecount"	integer)	AS	x

form	the	above	code,	the	"delete"	keyword	followed	the	"DN"	string.	All	the	string	contents	after	the	"delete;"	used	as	DN.

Create	or	Update

Create	Example

SELECT	x.*	FROM

	(call	pm1.native('create;uid=doe,ou=people,o=teiid.org;attributes=one,two,three',	'one',	2,	3.0))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

form	the	above	code,	the	"create"	keyword	followed	the	"DN"	string.	All	the	string	contents	after	the	"create;"	is	used	as	DN.	It
also	takes	one	property	called	"attributes"	which	is	comma	separated	list	of	attributes.	The	values	for	each	attribute	is	specified	as
separate	argument	to	the	"native"	procedure.

Update	is	similar	to	"create".

Update	Example

SELECT	x.*	FROM

	(call	pm1.native('update;uid=doe,ou=people,o=teiid.org;attributes=one,two,three',	'one',	2,	3.0))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

LDAP	Connector	Capabilities	Support

LDAP	does	not	provide	the	same	set	of	functionality	as	a	relational	database.	The	LDAP	Connector	supports	many	standard	SQL
constructs,	and	performs	the	job	of	translating	those	constructs	into	an	equivalent	LDAP	search	statement.	For	example,	the	SQL
statement:

SELECT	firstname,	lastname,	guid

FROM	public_views.people

WHERE

(lastname='Jones'	and	firstname	IN	('Michael',	'John'))

OR

guid	>	600000

uses	a	number	of	SQL	constructs,	including:

SELECT	clause	support

select	individual	element	support	(firstname,	lastname,	guid)

FROM	support

WHERE	clause	criteria	support

nested	criteria	support

AND,	OR	support

Compare	criteria	(Greater-than)	support

IN	support

LDAP	translator

664

The	LDAP	Connector	executes	LDAP	searches	by	pushing	down	the	equivalent	LDAP	search	filter	whenever	possible,	based	on
the	supported	capabilities.	Teiid	automatically	provides	additional	database	functionality	when	the	LDAP	Connector	does	not
explicitly	provide	support	for	a	given	SQL	construct.	In	these	cases,	the	SQL	construct	cannot	be	pushed	down	to	the	data	source,
so	it	will	be	evaluated	in	Teiid,	in	order	to	ensure	that	the	operation	is	performed.	In	cases	where	certain	SQL	capabilities	cannot
be	pushed	down	to	LDAP,	Teiid	pushes	down	the	capabilities	that	are	supported,	and	fetches	a	set	of	data	from	LDAP.	Teiid	then
evaluates	the	additional	capabilities,	creating	a	subset	of	the	original	data	set.	Finally,	Teiid	will	pass	the	result	to	the	client.	It	is
useful	to	be	aware	of	unsupported	capabilities,	in	order	to	avoid	fetching	large	data	sets	from	LDAP	when	possible.

LDAP	Connector	Capabilities	Support	List

The	following	capabilities	are	supported	in	the	LDAP	Connector,	and	will	be	evaluated	by	LDAP:

SELECT	queries

SELECT	element	pushdown	(for	example,	individual	attribute	selection)

AND	criteria

Compare	criteria	(e.g.	<,	⇐,	>,	>=,	=,	!=)

IN	criteria

LIKE	criteria.

OR	criteria

INSERT,	UPDATE,	DELETE	statements	(must	meet	Modeling	requirements)

Due	to	the	nature	of	the	LDAP	source,	the	following	capability	is	not	supported:

SELECT	queries

The	following	capabilities	are	not	supported	in	the	LDAP	Connector,	and	will	be	evaluated	by	Teiid	after	data	is	fetched	by	the
connector:

Functions

Aggregates

BETWEEN	Criteria

Case	Expressions

Aliased	Groups

Correlated	Subqueries

EXISTS	Criteria

Joins

Inline	views

IS	NULL	criteria

NOT	criteria

ORDER	BY

Quantified	compare	criteria

Row	Offset

Searched	Case	Expressions

LDAP	translator

665

Select	Distinct

Select	Literals

UNION

XA	Transactions

Usage

ldap-as-a-datasource	quickstart	demonstrates	using	the	ldap	Translator	to	access	data	in	OpenLDAP	Server.	The	name	of	the
translator	to	use	in	vdb.xml	is	"translator-ldap",	for	example:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="ldapVDB"	version="1">

<model	name="HRModel">

<source	name="local"	translator-name="translator-ldap"

connection-jndi-name="java:/ldapDS"/>

</model>

</vdb>

The	translator	does	not	provide	a	connection	to	the	OpenLDAP.	For	that	purpose,	Teiid	has	a	JCA	adapter	that	provides	a
connection	to	OpenLDAP	using	the	Java	Naming	API.	To	define	such	connector,	use	the	following	XML	fragment	in	standalone-
teiid.xml.	See	a	example	in	"<jboss-as>/docs/teiid/datasources/ldap"

<resource-adapter	id="ldapQS">

<module	slot="main"	id="org.jboss.teiid.resource-adapter.ldap"/>

<connection-definitions>

<connection-definition

class-name="org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory"

jndi-name="java:/ldapDS"	enabled="true"	use-java-context="true"

pool-name="ldapDS">

<config-property	name="LdapAdminUserPassword">

redhat

</config-property>

<config-property	name="LdapAdminUserDN">

cn=Manager,dc=example,dc=com

</config-property>

<config-property	name="LdapUrl">

ldap://localhost:389

</config-property>

</connection-definition>

</connection-definitions>

</resource-adapter>

For	more	ways	to	create	the	connector	see	LDAP	Data	Sources.

The	LDAP	translator	cannot	derive	the	metadata,	the	user	needs	to	define	the	metadata.	For	example,	you	can	define	a	schema
using	DDL:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="ldapVDB"	version="1">

<model	name="HRModel">

<metadata	type="DDL"><![CDATA[

CREATE	FOREIGN	TABLE	HR_Group	(

DN	string	options	(nameinsource	`dn'),

SN	string	options	(nameinsource	`sn'),

UID	string	options	(nameinsource	`uid'),

MAIL	string	options	(nameinsource	`mail'),

NAME	string	options	(nameinsource	`cn')

)	OPTIONS(nameinsource	`ou=HR,dc=example,dc=com',	updatable	true);

LDAP	translator

666

https://github.com/teiid/teiid-quickstarts/tree/master/ldap-as-a-datasource

]]>

</metadata>

</model>

</vdb>

when	SELECT	operation	below	executed	against	table	using	Teiid	will	retrieve	Users/Groups	in	LDAP	Server:

SELECT	*	FROM	HR_Group

LDAP	Attribute	Datatype	Support

LDAP	providers	currently	return	attribute	value	types	of	java.lang.String	and	byte[],	and	do	not	support	the	ability	to	return	any
other	attribute	value	type.	The	LDAP	Connector	currently	supports	attribute	value	types	of	java.lang.String,	Timestamp,	byte[],
and	arrays	of	those	values.	Conversion	functions	that	are	available	in	Teiid	allow	you	to	use	models	that	convert	a	String	value
from	LDAP	into	a	different	data	type.	Some	conversions	may	be	applied	implicitly,	and	do	not	require	the	use	of	any	conversion
functions.	Other	conversions	must	be	applied	explicitly,	via	the	use	of	CONVERT	functions.	Since	the	CONVERT	functions	are
not	supported	by	the	underlying	LDAP	system,	they	will	be	evaluated	in	Teiid.	Therefore,	if	any	criteria	is	evaluated	against	a
converted	datatype,	that	evaluation	cannot	be	pushed	to	the	data	source.

When	converting	from	String	to	other	types,	be	aware	that	criteria	against	that	new	data	type	will	not	be	pushed	down	to	the
LDAP	data	source.	This	may	decrease	performance	for	certain	queries.

As	an	alternative,	the	data	type	can	remain	a	string	and	the	client	application	can	make	the	conversion,	or	the	client	application
can	circumvent	any	LDAP	supports	⇐	and	>=,	but	has	no	equivalent	for	<	or	>.	In	order	to	support	<	or	>	pushdown	to	the	source,
the	LDAP	Connector	will	translate	<	to	⇐,	and	it	will	translate	>	to	>=.	When	using	the	LDAP	Connector,	be	aware	that	strictly-
less-than	and	strictly-greater-than	comparisons	will	behave	differently	than	expected.	It	is	advisable	to	use	⇐	and	>=	for	queries
against	an	LDAP	based	data	source,	since	this	has	a	direct	mapping	to	comparison	operators	in	LDAP.

LDAP:	Testing	Your	Connector

You	must	define	LDAP	Connector	properties	accurately	or	the	Teiid	server	will	return	unexpected	results,	or	none	at	all.

LDAP:	Console	Deployment	Issues

The	Console	shows	an	Exception	That	Says	Error	Synchronizing	the	Server,	If	you	receive	an	exception	when	you	synchronize
the	server	and	your	LDAP	Connector	is	the	only	service	that	does	not	start,	it	means	that	there	was	a	problem	starting	the
connector.	Verify	whether	you	have	correctly	typed	in	your	connector	properties	to	resolve	this	issue.

JCA	Resource	Adapter

The	resource	adapter	for	this	translator	provided	through	"LDAP	Data	Source",	Refer	to	Admin	Guide	for	configuration.

LDAP	translator

667

Loopback	translator
The	Loopback	translator,	known	by	the	type	name	loopback,	provides	a	quick	testing	solution.	It	works	with	all	SQL	constructs
and	returns	default	results,	with	some	configurable	behavior.

Table	1.	Execution	properties

Name Description Default

ThrowError 	true		to	always	throw	an	error. false

RowCount Rows	returned	for	non-update
queries. 1

WaitTime Wait	randomly	up	to	this	number	of
milliseconds	with	each	source	query. 0

PollIntervalInMilli

If	positive,	results	will	be
	asynchronously		returned — that	is
a		DataNotAvailableException		will
be	thrown	initially	and	the	engine
will	wait	the	poll	interval	before
polling	for	the	results.

-1

DelegateName Set	to	the	name	of	the	translator
which	is	to	be	mimicked. na

You	can	also	use	the	Loopback	translator	to	mimic	how	a	real	source	query	would	be	formed	for	a	given	translator	(although
loopback	will	still	return	dummy	data	that	might	not	be	useful	for	your	situation).	To	enable	this	behavior,	set	the		DelegateName	
property	to	the	name	of	the	translator	that	you	want	to	mimic.	For	example,	to	disable	all	capabilities,	set	the		DelegateName	
property	to		jdbc-simple	.

JCA	Resource	Adapter
A	source	connection	is	not	required	for	this	translator.

Loopback	translator

668

Microsoft	Excel	translator
The	Microsoft	Excel	Translator,	known	by	the	type	name	excel,	exposes	querying	functionality	to	a	Microsoft	Excel	document.
This	translator	provides	an	easy	way	read	a	Excel	spreadsheet	and	provide	the	contents	of	the	spreadsheet	in	a	tabular	form	that
can	be	integrated	with	other	sources	in	Teiid.

Note This	translator	works	on	all	platforms,	including	Windows	and	Linux.	The	translator	uses	Apache	POI	libraries	to
access	the	Excel	documents	which	are	platform	independent.

Translation	mapping
The	following	table	describes	how	Excel	translator	interprets	the	data	in	Excel	document	into	relational	terms.

Excel	Term Relational	term

Workbook schema

Sheet Table

Row Row	of	data

Cell Column	Definition	or	Data	of	a	column

The	Excel	translator	provides	a	"source	metadata"	feature,	where	for	a	given	Excel	workbook,	it	can	introspect	and	build	the
schema	based	on	the	worksheets	that	are	defined	within	it.	There	are	options	available	to	detect	header	columns	and	data	columns
in	a	worksheet	to	define	the	correct	metadata	of	a	table.

DDL	example
The	following	example	shows	how	to	expose	an	Excel	spreadsheet	in	a	virtual	database.

CREATE	DATABASE	excelvdb;

USE	DATABASE	excelvdb;

CREATE	SERVER	connector	FOREIGN	DATA	WRAPPER	excel	OPTIONS	("resource-name"	'java:/fileDS');

CREATE	SCHEMA	excel	SERVER	connector;

SET	SCHEMA	excel;

IMPORT	FROM	SERVER	connector	INTO	excel	OPTIONS	(

				"importer.headerRowNumber"	'1',

				"importer.ExcelFileName"	'names.xls');

As	an	XML	VDB:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="excelvdb"	version="1">

				<model	name="excel">

								<property	name="importer.headerRowNumber"	value="1"/>

								<property	name="importer.ExcelFileName"	value="names.xls"/>

								<source	name="connector"	translator-name="excel"		connection-jndi-name="java:/fileDS"/>

				</model>

</vdb>

	connection-jndi-name		in	the	preceding	example	represents	the	connection	to	the	Excel	document.

Headers	in	document
If	the	Excel	document	contains	headers,	you	can	guide	the	import	process	to	select	the	cell	headers	as	the	column	names	in	the
table	creation	process.	For	information	about	defining	import	properties,	see	the	following	table,	and	also	see	Importer	Properties
in	JDBC	translators.

Microsoft	Excel	translator

669

Import	properties
Import	properties	guide	the	schema	generation	part	during	the	deployment	of	the	VDB.	This	can	be	used	in	a	native	import.

Property	Name Description Default

importer.excelFileName

Defines	the	name	of	the	Excel
Document	to	import	metadata.	This
can	be	defined	as	a	file	pattern
(*.xls),	however	when	defined	as
pattern	all	files	must	be	of	same
format,	and	the	translator	will	choose
an	arbitrary	file	to	import	metadata
from.	Use	file	patterns	to	read	data
from	multiple	Excel	documents	in	the
same	directory.	In	the	case	of	a	single
file,	specify	the	absolute	name.

Required

importer.headerRowNumber Defines	the	cell	header	information
to	be	used	as	column	names.

Optional.	Default	is	first	data	row	of
sheet

importer.dataRowNumber Defines	the	row	number	where	the
data	rows	start.

Optional.	Default	is	first	data	row	of
sheet.

To	enable	information	in	the	Excel	spreadsheet	to	be	interpreted	correctly,	it	is	best	to	define	all	the	preceding	importer	properties.

Note

Purely	numerical	cells	in	a	column	contain	containing	mixed	types	will	have	a	string	form	matching	their	decimal
representation,	thus	integral	values	will	have		.0		appended.	If	you	need	the	exact	text	representation,	then	the
cell	must	be	a	string	value.	You	can	force	a	string	value	by	preceding	the	numeric	text	of	a	cell	with	a	single	quote
('),	or	a	single	space.

Translator	extension	properties
Excel	specific	execution	properties

FormatStrings
Format	non-string	cell	values	in	a	string	column	according	to	the	worksheet	format.	Defaults	to	false.

Metadata	extension	properties

Properties	that	are	defined	on	schema	artifacts,	such	as	Table,	Column,	Procedure	and	so	forth.	These	properties	describe
how	the	translator	interacts	with	or	interprets	source	systems.	All	the	properties	are	defined	with	the	following	namespace:
	"http://www.teiid.org/translator/excel/2014[http://www.teiid.org/translator/excel/2014\]"	,	which	also	has	a
recognized	alias		teiid_excel	.

Property	Name Schema	item	property
belongs	to Description Mandatory

FILE Table

Defines	Excel
Document	name	or
name	pattern	(*.xls).
File	pattern	can	be	used
to	read	data	from
multiple	files.

Yes

FIRST_DATA_ROW_NUMBER Table

Defines	the	row	number
where	records	start	in
the	sheet	(applies	to
every	sheet).

Optional

CELL_NUMBER Column	of	Table
Defines	cell	number	to
use	for	reading	data	of
particular	column.

Yes

Microsoft	Excel	translator

670

The	following	example	shows	a	table	that	is	defined	by	using	the	extension	metadata	properties.

CREATE	DATABASE	excelvdb;

USE	DATABASE	excelvdb;

CREATE	SERVER	connector	FOREIGN	DATA	WRAPPER	excel	OPTIONS	("resource-name"	'java:/fileDS');

CREATE	SCHEMA	excel	SERVER	connector;

SET	SCHEMA	excel;

CREATE	FOREIGN	TABLE	Person	(

																ROW_ID	integer	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_excel:CELL_NUMBER"	'ROW_ID'),

																FirstName	string	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'1'),

																LastName	string	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'2'),

																Age	integer	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'3'),

																CONSTRAINT	PK0	PRIMARY	KEY(ROW_ID)

)	OPTIONS	("NAMEINSOURCE"	'Sheet1',"teiid_excel:FILE"	'names.xlsx',	"teiid_excel:FIRST_DATA_ROW_NU

MBER"	'2')

As	an	XML	VDB:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="excelvdb"	version="1">

				<model	name="excel">

								<source	name="connector"	translator-name="excel"		connection-jndi-name="java:/fileDS"/>

									<metadata	type="DDL"><![CDATA[

													CREATE	FOREIGN	TABLE	Person	(

																ROW_ID	integer	OPTIONS	(SEARCHABLE	'All_Except_Like',	"teiid_excel:CELL_NUMBER"	'ROW_ID'),

																FirstName	string	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'1'),

																LastName	string	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'2'),

																Age	integer	OPTIONS	(SEARCHABLE	'Unsearchable',	"teiid_excel:CELL_NUMBER"	'3'),

																CONSTRAINT	PK0	PRIMARY	KEY(ROW_ID)

)	OPTIONS	("NAMEINSOURCE"	'Sheet1',"teiid_excel:FILE"	'names.xlsx',	"teiid_excel:FIRST_DATA_ROW_NU

MBER"	'2')

]]>	</metadata>

				</model>

</vdb>

Extended	capabilities	using	ROW_ID	column
If	you	define	a	column	that	has	extension	metadata	property		CELL_NUMBER		with	value		ROW_ID	,	then	that	column	value	contains
the	row	information	from	Excel	document.	You	can	mark	this	column	as	Primary	Key.	You	can	use	this	column	in		SELECT	
statements	with	a	restrictive	set	of	capabilities	including:	comparison	predicates,		IN		predicates	and		LIMIT	.	All	other	columns
cannot	be	used	as	predicates	in	a	query.

Tip
Importing	source	metadata	is	not	the	only	way	to	create	the	schema	of	an	Excel	document.	You	can	also	create	a
source	table	manually,	and	then	add	the	extension	properties	that	you	need	to	create	a	fully	functional	model.
Metadata	imports	result	in	schema	models	similar	to	the	one	in	the	preceding	example.

The	Excel	translator	processes	updates	with	the	following	limitations:

The		ROW_ID		cannot	be	directly	modified	or	used	as	an	insert	value.

UPDATE	and	INSERT	values	must	be	literals.

UPDATEs	are	not	transactional.	That	is,	the	write	lock	is	held	while	the	file	is	written,	but	not	throughout	the	entire	update.
As	a	result,	it	is	possible	for	one	update	to	overwrite	another.

The		ROW_ID		of	an	inserted	row	can	be	returned	as	a	generated	key.

JCA	resource	adapter
See	File	Data	Source,	the	FTP	Data	Source	and	the	Admin	Guide	in	general	for	configuration	information.

Note Native	queries
This	feature	is	not	applicable	for	the	Excel	translator.

Microsoft	Excel	translator

671

Note Direct	query	procedure
This	feature	is	not	applicable	for	the	Excel	translator.

Microsoft	Excel	translator

672

MongoDB	Translator
The	MongoDB	translator,	known	by	the	type	name	mongodb,	provides	a	relational	view	of	data	that	resides	in	a	MongoDB
database.	This	translator	is	capable	of	converting	Teiid	SQL	queries	into	MongoDB	based	queries.	It	provides	for	a	full	range	of
SELECT,	INSERT,	UPDATE	and	DELETE	calls.

MongoDB	is	a	document	based	"schema-less"	database	with	it	own	query	language.	It	does	not	map	perfectly	with	relational
concepts	or	the	SQL	query	language.	More	and	more	systems	are	using	NOSQL	stores	such	as	MongoDB	to	improve	scalability
and	performance.	For	example,	applications	like	storing	audit	logs,	or	managing	web	site	data,	are	well-suited	to	MongoDB,	and
do	not	require	the	structure	of	relational	databases.	MongoDB	uses	JSON	documents	as	its	primary	storage	unit,	and	those
documents	can	have	additional	embedded	documents	inside	the	parent	document.	By	using	embedded	documents,	MongoDB	co-
locates	related	information	to	achieve	de-normalization	that	typically	requires	either	duplicate	data	or	joins	to	achieve	querying	in
a	relational	database.

For	MongoDB	to	work	with	Teiid	the	challenge	for	the	MongoDB	translator	is	to	design	a	MongoDB	store	that	can	achieve	the
balance	between	relational	and	document	based	storage.	The	advantages	of	"schema-less"	design	are	great	at	development	time.
But	"schema-less"	design	can	pose	problems	during	migration	between	application	versions,	and	when	querying	data,	and	making
effective	use	of	the	returned	information.

Since	it	is	hard	and	may	be	impossible	in	certain	situations	to	derive	a	schema	based	on	existing	the	MongoDB	collection(s),	Teiid
approaches	the	problem	in	reverse	compared	to	other	translators.	When	working	with	MongoDB,	Teiid	requires	you	to	define	the
MongoDB	schema	upfront,	by	using	Teiid	metadata.	Because	Teiid	only	allows	relational	schema	as	its	metadata,	you	must	define
your	MongoDB	schema	in	relational	terms,	using	tables,	procedures,	and	functions.	For	the	purposes	of	MongoDB,	the	Teiid
metadata	has	been	extended	to	provide	extension	properties	that	can	be	defined	on	a	table	to	convert	it	into	a	MongoDB	based
document.	These	extension	properties	let	you	define	how	a	MongoDB	document	is	structured	and	stored.	Based	on	the
relationships	(primary-key,	foreign-key)	that	are	defined	on	a	table,	and	their	cardinality	(ONE-to-ONE,	ONE-to-MANY,	MANY-
to-ONE),	relations	between	tables	are	mapped	such	that	related	information	can	be	embedded	along	with	the	parent	document	for
co-location	(as	mentioned	earlier	in	this	topic).	Thus,	a	relational	schema-based	design,	but	document-based	storage	in	MongoDB.

Who	is	the	primary	audience	for	the	MongoDB	translator?
The	above	may	not	satisfy	every	user’s	needs.	The	document	structure	in	MongoDB	can	be	more	complex	than	what	Teiid	can
currently	define.	We	hope	this	will	eventually	catch	up	in	future	versions	of	Teiid.	This	is	currently	designed	for:

Users	who	are	using	relational	databases	and	would	like	to	move/migrate	their	data	to	MongoDB	to	take	advantage	of	scaling
and	performance	without	modifying	end	user	applications	that	they	currently	run.

Users	who	are	seasoned	SQL	developers,	but	do	not	have	experience	with	MongoDB.	This	provides	a	low	barrier	of	entry
compared	to	using	MongoDB	directly	as	an	application	developer.

Users	who	want	to	integrate	MongoDB-based	data	with	data	from	other	enterprise	data	sources.

Usage
The	name	of	the	translator	to	use	in	a	virtual	database	DDL	is	"mongodb".	For	example:

CREATE	DATABASE	nothwind;

USE	DATABASE	nothwind;

CREATE	SERVER	local	FOREIGN	DATA	WRAPPER	mongodb	OPTIONS	("resource-name"	'java:/mongoDS');

CREATE	SCHEMA	northwind	SERVER	local;

SET	SCHEMA	northwind;

IMPORT	FROM	SERVER	local	INTO	northwind;

Or	as	an	xml	vdb:

MongoDB	translator

673

<vdb	name="northwind"	version="1">

				<model	name="northwind">

								<source	name="local"	translator-name="mongodb"	connection-jndi-name="java:/mongoDS"/>

				</model>

<vdb>

The	translator	does	not	provide	a	connection	to	the	MongoDB	database.	For	that	purpose,	Teiid	has	a	JCA	adapter	that	provides	a
connection	to	MongoDB	using	the	MongoDB	Java	Driver.	To	define	such	a	connector,	use	the	following	XML	fragment	in
standalone-teiid.xml.	See	a	example	in	"<jboss-as>/docs/teiid/datasources/mongodb"

				<resource-adapters>

								<resource-adapter	id="mongodb">

												<module	slot="main"	id="org.jboss.teiid.resource-adapter.mongodb"/>

												<transaction-support>NoTransaction</transaction-support>

												<connection-definitions>

																<connection-definition	class-name="org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionF

actory"

																								jndi-name="java:/mongoDS"

																								enabled="true"

																								use-java-context="true"

																								pool-name="teiid-mongodb-ds">

																						<!--	MongoDB	server	list	(host:port[;host:port...])	-->

																						<config-property	name="RemoteServerList">localhost:27017</config-property>

																						<!--	Database	Name	in	the	MongoDB	-->

																						<config-property	name="Database">test</config-property>

																								<!--

																												Uncomment	these	properties	to	supply	user	name	and	password

																								<config-property	name="Username">user</config-property>

																								<config-property	name="Password">user</config-property>

																								-->

																</connection-definition>

												</connection-definitions>

								</resource-adapter>

				</resource-adapters>

For	information	about	more	ways	to	create	the	connector	see	MongoDB	data	sources	in	the	Administrator’s	Guide.

The	MongoDB	translator	can	derive	the	metadata	based	on	existing	document	collections	in	some	scenarios.	However,	when
working	with	complex	documents	the	interpretation	of	metadata	can	be	inaccurate.	In	such	cases,	you	must	define	the	metadata.
For	example,	you	can	define	a	schema	using	DDL,	as	shown	in	the	following	example:

<vdb	name="nothwind"	version="1">

				<model	name="northwind">

								<source	name="local"	translator-name="mongodb"	connection-jndi-name="java:/mongoDS"/>

												<metadata	type="DDL"><![CDATA[

																CREATE	FOREIGN	TABLE		Customer	(

																				customer_id	integer,

																				FirstName	varchar(25),

																				LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

]]>	</metadata>

				</model>

<vdb>

When	the	following	INSERT	operation	is	executed	against	a	table	using	Teiid,	the	MongoDB	translator	creates	a	document	in	the
MongoDB:

				INSERT	INTO	Customer(customer_id,	FirstName,	LastName)	VALUES	(1,	'John',	'Doe');

MongoDB	translator

674

{

		_id:	ObjectID("509a8fb2f3f4948bd2f983a0"),

		customer_id:	1,

		FirstName:	"John",

		LastName:	"Doe"

}

If	a	PRIMARY	KEY	is	defined	on	the	table,	then	that	column	name	is	automatically	used	as		"_id"		field	in	the	MongoDB
collection,	and	then	the	document	structure	is	stored	in	the	MongoDB,	as	shown	in	the	following	examples:

				CREATE	FOREIGN	TABLE		Customer	(

								customer_id	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe"

}

If	you	defined	the	composite	PRIMARY	KEY	on	Customer	table,	the	document	structure	that	results	is	shown	in	the	following
example:

				CREATE	FOREIGN	TABLE		Customer	(

								customer_id	integer,

								FirstName	varchar(25),

								LastName	varchar(25),

								PRIMARY	KEY	(FirstName,	LastName)

)	OPTIONS(UPDATABLE	'TRUE');

{

		_id:	{

									FirstName:	"John",

									LastName:		"Doe"

							},

		customer_id:	1,

}

Data	types
The	MongoDB	translator	provides	automatic	mapping	of	Teiid	data	types	into	MongoDB	data	types,	including	BLOBS,	CLOBS
and	XML.	The	LOB	mapping	is	based	on	GridFS	in	MongoDB.	Arrays	are	in	the	following	form:

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe"

		Score:	[89,	"ninety",	91.0]

}

Users	can	get	individual	items	in	the	array	using	the	function		array_get	,	or	can	transform	the	array	into	tabular	structure	using
ARRAYTABLE.

Note Note	that	even	though	embedded	documents	can	also	be	in	arrays,	the	handling	of	embedded	documents	is
different	from	array	with	scalar	values.

MongoDB	translator

675

Note The	translator	does	not	work	with	regular	Expressions,	MongoDB::Code,	MongoDB::MinKey,
MongoDB::MaxKey,	and	MongoDB::OID.

Note

In	documents	that	contain	values	of	mixed	types	for	the	same	key,	you	must	mark	the	column	as	unsearchable,	or
MongoDB	will	not	correctly	match	predicates	against	the	column.	A	key	is	used	as	a	mixed	type	of	it	is
represented	as	a	string	value	in	one	document,	and	an	integer	in	another.	For	more	information,	see	the
	importer.sampleSize	property		in	the	following	table.

Importer	Properties
Importer	properties	define	the	behavior	of	the	translator	during	the	metadata	import	from	the	physical	source.

Importer	Properties

Name Description Default

excludeTables Regular	expression	to	exclude	the
tables	from	import. null

includeTables Regular	expression	to	include	the
tables	from	import. null

sampleSize

Number	of	documents	to	sample	to
determine	the	structure.	If	documents
have	different	fields,	or	fields	with
different	types,	this	should	be	greater
than	1.

1

fullEmbeddedNames

Whether	to	prefix	embedded	table
names	with	their	parents,	e.g.
parent_embedded.	If	false	the	name
of	the	table	will	just	be	the	name	of
the	field	-	which	may	lead	to
conflicts	with	existing	tables	or	other
embedded	tables.

false

MongoDB	metadata	extension	properties	for	building	complex	documents
Using	the	preceding	DDL,	or	any	other	metadata	facility,	you	can	map	a	table	in	a	relational	store	into	a	document	in	MongoDB.
However,	to	make	effective	use	of	MongoDB,	you	must	be	able	to	build	complex	documents	that	can	co-locate	related
information,	so	that	data	can	queried	in	a	single	MongoDB	query.	Unlike	a	relational	database,	you	cannot	run	join	operations	in
MongoDB.	As	as	a	result,	unless	you	can	build	complex	documents,	you	would	have	to	issue	multiple	queries	to	retrieve	data	and
then	join	it	manually.	The	power	of	MongoDB	comes	from	its	"embedded"	documents,	its	support	for	complex	data	types,	such	as
arrays,	and	its	use	of	an	aggregation	framework	to	query	them.	This	translator	provides	a	way	to	achieve	the	goals.

When	you	do	not	define	the	complex	embedded	documents	in	MongoDB,	Teiid	can	step	in	for	join	processing	and	provide	that
functionality.	However,	if	you	want	to	make	use	of	the	power	of	MongoDB	itself	in	querying	the	data	and	avoid	bringing	the
unnecessary	data	and	improve	performance,	you	need	to	look	into	building	these	complex	documents.

MongoDB	translator	defines	two	additional	metadata	properties	along	with	other	Teiid	metadata	properties	to	aid	in	building	the
complex	"embedded"	documents.	For	more	information	about	Teiid	schema	metadata,	see	r_ddl-metadata-for-schema-
objects.adoc.	You	can	use	the	following	metadata	properties	in	your	DDL:

teiid_mongo:EMBEDDABLE
Means	that	data	defined	in	this	table	is	allowed	to	be	included	as	an	"embeddable"	document	in	any	parent	document.	The
parent	document	is	referenced	by	the	foreign	key	relationships.	In	this	scenario,	Teiid	maintains	more	than	one	copy	of	the
data	in	MongoDB	store,	one	in	its	own	collection,	and	also	a	copy	in	each	of	the	parent	tables	that	have	relationship	to	this
table.	You	can	even	nest	embeddable	table	inside	another	embeddable	table	with	some	limitations.	Use	this	property	on	table,
where	table	can	exist,	encompass	all	its	relations	on	its	own.	For	example,	a	"Category"	table	that	defines	a	"Product"’s
category	is	independent	of	Product,	which	can	be	embeddable	in	"Products"	table.

MongoDB	translator

676

teiid_mongo:MERGE
Means	that	data	of	this	table	is	merged	with	the	defined	parent	table.	There	is	only	a	single	copy	of	the	data	that	is	embedded
in	the	parent	document.	Parent	document	is	defined	using	the	foreign	key	relationships.

Using	the	above	properties	and	FOREIGN	KEY	relationships,	we	will	illustrate	how	to	build	complex	documents	in	MongoDB.

Note
Usage
A	given	table	can	contain	either	the		teiid_mongo:EMBEDDABLE		property	or	the		teiid_mongo:MERGE		property
defining	the	type	of	nesting	in	MongoDB.	You	cannot	use	both	properties	within	one	table.

ONE-2-ONE	Mapping
If	your	current	DDL	structure	representing	ONE-2-ONE	relationship	is	like

				CREATE	FOREIGN	TABLE		Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE	Address	(

								CustomerId	integer,

								Street	varchar(50),

								City	varchar(25),

								State	varchar(25),

								Zipcode	varchar(6),

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

)	OPTIONS(UPDATABLE	'TRUE');

By	default,	this	will	produce	two	different	collections	in	MongoDB,	like	with	sample	data	it	will	look	like

Customer

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe"

}

Address

{

		_id:	ObjectID("..."),

			CustomerId:	1,

			Street:	"123	Lane"

			City:	"New	York",

			State:	"NY"

			Zipcode:	"12345"

}

You	can	enhance	the	storage	in	MongoDB	to	a	single	collection	by	using		teiid_mongo:MERGE		extension	property	on	the	table’s
OPTIONS	clause.

				CREATE	FOREIGN	TABLE		Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE	Address	(

								CustomerId	integer	PRIMARY	KEY,

								Street	varchar(50),

								City	varchar(25),

								State	varchar(25),

								Zipcode	varchar(6),

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

MongoDB	translator

677

)	OPTIONS(UPDATABLE	'TRUE',	"teiid_mongo:MERGE"	'Customer');

this	will	produce	single	collection	in	MongoDB,	like

Customer

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe",

		Address:

					{

								Street:	"123	Lane",

								City:	"New	York",

								State:	"NY",

								Zipcode:	"12345"

					}

}

With	the	above	both	tables	are	merged	into	a	single	collection	that	can	be	queried	together	using	the	JOIN	clause	in	the	SQL
command.	Since	the	existence	of	child/additional	record	has	no	meaning	with	out	parent	table	using	the	"teiid_mongo:MERGE"
extension	property	is	right	choice	in	this	situation.

Note The	Foreign	Key	defined	on	a	child	table	must	refer	to	Primary	Keys	on	both	the	parent	and	child	tables	to	form	a
One-2-One	relationship.

ONE-2-MANY	Mapping.
Typically	there	can	be	more	than	two	(2)	tables	involved	in	this	relationship.	If	MANY	side	is	only	associated	single	table,	then
use		teiid_mongo:MERGE		property	on	MANY	side	of	table	and	define	ONE	as	the	parent.	If	associated	with	more	than	single	table
then	use		teiid_mongo:EMBEDDABLE	.

For	example,	if	you	define	a	virtual	database	as	in	the	following	DDL:

				CREATE	FOREIGN	TABLE		Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE		Order	(

								OrderID	integer	PRIMARY	KEY,

								CustomerId	integer,

								OrderDate	date,

								Status	integer,

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

)	OPTIONS(UPDATABLE	'TRUE');

then	a	Single	Customer	can	have	MANY	Orders.	There	are	two	options	to	define	the	how	we	store	the	MongoDB	document.	If	in
your	schema,	the	Customer	table’s	CustomerId	is	only	referenced	in	Order	table	(i.e.	Customer	information	used	for	only	Order
purposes),	you	can	use

				CREATE	FOREIGN	TABLE		Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE		Order	(

								OrderID	integer	PRIMARY	KEY,

								CustomerId	integer,

								OrderDate	date,

								Status	integer,

MongoDB	translator

678

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

)	OPTIONS(UPDATABLE	'TRUE',	"teiid_mongo:MERGE"	'Customer');

that	will	produce	a	single	document	for	Customer	table	like

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe",

		Order:

		[

					{

							_id:	100,

								OrderDate:	ISODate("2000-01-01T06:00:00Z")

								Status:	2

					},

					{

							_id:	101,

								OrderDate:	ISODate("2001-03-06T06:00:00Z")

								Status:	5

					}

					...

]

}

If	Customer	table	is	referenced	in	more	tables	other	than	Order	table,	then	use	"teiid_mongo:EMBEDDABLE"	property

				CREATE	FOREIGN	TABLE	Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE',	"teiid_mongo:EMBEDDABLE"	'TRUE');

				CREATE	FOREIGN	TABLE	Order	(

								OrderID	integer	PRIMARY	KEY,

								CustomerId	integer,

								OrderDate	date,

								Status	integer,

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE	Comments	(

								CommentID	integer	PRIMARY	KEY,

								CustomerId	integer,

								Comment	varchar(140),

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)

)	OPTIONS(UPDATABLE	'TRUE');

This	creates	three	different	collections	in	MongoDB.

Customer

{

		_id:	1,

		FirstName:	"John",

		LastName:	"Doe"

}

Order

{

		_id:	100,

		CustomerId:	1,

		OrderDate:	ISODate("2000-01-01T06:00:00Z")

		Status:	2

		Customer:

MongoDB	translator

679

			{

					FirstName:	"John",

					LastName:	"Doe"

			}

}

Comment

{

		_id:	12,

		CustomerId:	1,

		Comment:	"This	works!!!"

		Customer:

			{

					FirstName:	"John",

					LastName:	"Doe"

			}

}

Here	as	you	can	see	the	Customer	table	contents	are	embedded	along	with	other	table’s	data	where	they	were	referenced.	This
creates	duplicated	data	where	multiple	of	these	embedded	documents	are	managed	automatically	in	the	MongoDB	translator.

Note

All	the	SELECT,	INSERT,	DELETE	operations	that	are	generated	against	the	tables	with
"teiid_mongo:EMBEDDABLE"	property	are	atomic,	except	for	UPDATES,	as	there	can	be	multiple	operations
involved	to	update	all	the	copies.	Since	there	are	no	transactions	in	MongoDB,	Teiid	plans	to	provide	automatic
compensating	transaction	framework	around	this	in	future	releases	TEIID-2957.

MANY-2-ONE	Mapping.
This	is	same	as	ONE-2-MANY,	see	above	to	define	relationships.

Note A	parent	table	can	have	multiple	"embedded"	and	as	well	as	"merge"	documents	inside	it,	it	not	limited	so	either
one	or	other.	However,	please	note	that	MongoDB	imposes	document	size	is	limited	can	not	exceed	16MB.

MANY-2-MANY	Mapping.
This	can	also	mapped	with	combination	of	"teiid_mongo:MERGE"	and	"teiid_mongo:EMBEDDABLE"	properties	(partially).	For
example	if	DDL	looks	like

				CREATE	FOREIGN	TABLE	Order	(

								OrderID	integer	PRIMARY	KEY,

								OrderDate	date,

								Status	integer

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE	OrderDetail	(

								OrderID	integer,

								ProductID	integer,

								PRIMARY	KEY	(OrderID,ProductID),

								FOREIGN	KEY	(OrderID)	REFERENCES	Order	(OrderID),

								FOREIGN	KEY	(ProductID)	REFERENCES	Product	(ProductID)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE	Products	(

							ProductID	integer	PRIMARY	KEY,

							ProductName	varchar(40)

)	OPTIONS(UPDATABLE	'TRUE');

you	modify	the	DDL	like	below,	to	have

				CREATE	FOREIGN	TABLE	Order	(

								OrderID	integer	PRIMARY	KEY,

								OrderDate	date,

								Status	integer

)	OPTIONS(UPDATABLE	'TRUE');

MongoDB	translator

680

https://issues.redhat.com/browse/TEIID-2957

				CREATE	FOREIGN	TABLE	OrderDetail	(

								OrderID	integer,

								ProductID	integer,

								PRIMARY	KEY	(OrderID,ProductID),

								FOREIGN	KEY	(OrderID)	REFERENCES	Order	(OrderID),

								FOREIGN	KEY	(ProductID)	REFERENCES	Product	(ProductID)

)	OPTIONS(UPDATABLE	'TRUE',	"teiid_mongo:MERGE"	'Order');

				CREATE	FOREIGN	TABLE	Products	(

							ProductID	integer	PRIMARY	KEY,

							ProductName	varchar(40)

)	OPTIONS(UPDATABLE	'TRUE',		"teiid_mongo:EMBEDDABLE"	'TRUE');

That	will	produce	a	document	like

{

			_id	:	10248,

			OrderDate	:	ISODate("1996-07-04T05:00:00Z"),

			Status	:	5

			OrderDetails	:	[

					{

							_id	:	{

															OrderID	:	10248,

															ProductID	:	11

															Products	:	{

																		ProductID:	11

																		ProductName:	"Hammer"

															}

							}

					},

					{

							_id	:	{

									OrderID	:	10248,

									ProductID	:	14

									Products	:	{

													ProductID:	14

													ProductName:	"Screw	Driver"

									}

							}

					}

]

}

Products

{

				{

						ProductID:	11

						ProductName:	"Hammer"

				}

				{

						ProductID:	14

						ProductName:	"Screw	Driver"

				}

}

Limitations
Nested	embedding	of	documents	is	limited	due	to	capabilities	of	handling	nested	arrays	is	limited	in	the	MongoDB.	Nesting
of	"EMBEDDABLE"	property	with	multiple	levels	is	OK,	however	more	than	two	levels	with	MERGE	is	not	recommended.
Also,	you	need	to	be	caution	about	not	exceeding	the	document	size	of	16	MB	for	single	row,	so	deep	nesting	is	not
recommended.

JOINS	between	related	tables,	MUST	use	either	the	"EMBEDDABLE"	or	"MERGE"	properties,	otherwise	the	query	will
result	in	error.	In	order	for	Teiid	to	correctly	plan	and	work	with	JOINS,	in	the	case	that	any	two	tables	are	NOT	embedded
in	each	other,	use	allow-joins=false	property	on	the	Foreign	Key	that	represents	the	relation.	For	example:

MongoDB	translator

681

				CREATE	FOREIGN	TABLE		Customer	(

								CustomerId	integer	PRIMARY	KEY,

								FirstName	varchar(25),

								LastName	varchar(25)

)	OPTIONS(UPDATABLE	'TRUE');

				CREATE	FOREIGN	TABLE		Order	(

								OrderID	integer	PRIMARY	KEY,

								CustomerId	integer,

								OrderDate	date,

								Status	integer,

								FOREIGN	KEY	(CustomerId)	REFERENCES	Customer	(CustomerId)	OPTIONS	(allow-join	'FALSE')

)	OPTIONS(UPDATABLE	'TRUE');

with	the	example	above,	Teiid	will	create	two	collections,	however	when	user	issues	query	such	as

		SELECT	OrderID,	LastName	FROM	Order	JOIN	Customer	ON	Order.CustomerId	=	Customer.CustomerId;

instead	of	resulting	in	error,	the	JOIN	processing	will	happen	in	the	Teiid	engine,	without	the	above	property	it	will	result	in	an
error.

When	you	use	above	properties	and	carefully	design	the	MongoDB	document	structure,	Teiid	translator	can	intelligently	collate
data	based	on	their	co-location	and	take	advantage	of	it	while	querying.

Geo	Spatial	functions
MongoDB	translator	enables	you	to	use	geo	spatial	query	operators	in	the	"WHERE"	clause,	when	the	data	is	stored	in	the
GeoJSon	format	in	the	MongoDB	Document.	The	following	functions	are	available:

CREATE	FOREIGN	FUNCTION	geoIntersects	(columnRef	string,		type	string,	coordinates	double[][])	RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	geoWithin	(ccolumnRef	string,		type	string,	coordinates	double[][])	RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	near	(ccolumnRef	string,		coordinates	double[],	maxdistance	integer)	RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	nearSphere	(ccolumnRef	string,	coordinates	double[],	maxdistance	integer)	RETURNS	boole

an;

CREATE	FOREIGN	FUNCTION	geoPolygonIntersects	(ref	string,	north	double,	east	double,	west	double,	south	double)	

RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	geoPolygonWithin	(ref	string,	north	double,	east	double,	west	double,	south	double)	RET

URNS	boolean;

a	sample	query	looks	like

SELECT	loc	FROM	maps	where	mongo.geoWithin(loc,	'LineString',	((cast(1.0	as	double),	cast(2.0	as	double)),	(cast

(1.0	as	double),	cast(2.0	as	double))))

Same	functions	using	built-in	Geometry	type	(the	versions	of	the	functions	in	the	preceding	list	will	be	deprecated	and	removed	in
future	versions)

CREATE	FOREIGN	FUNCTION	geoIntersects	(columnRef	string,		geo	geometry)	RETURNS	

boolean;

CREATE	FOREIGN	FUNCTION	geoWithin	(ccolumnRef	string,		geo	geometry)	RETURNS	

boolean;

CREATE	FOREIGN	FUNCTION	near	(ccolumnRef	string,	geo	geometry,	maxdistance	integer)	

RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	nearSphere	(ccolumnRef	string,	geo	geometry,	maxdistance	

integer)	RETURNS	boolean;

CREATE	FOREIGN	FUNCTION	geoPolygonIntersects	(ref	string,	geo	geometry)	RETURNS	

MongoDB	translator

682

boolean;

CREATE	FOREIGN	FUNCTION	geoPolygonWithin	(ref	string,	geo	geometry)	RETURNS	

boolean;

a	sample	query	looks	like

SELECT	loc	FROM	maps	where	mongo.geoWithin(loc,	ST_GeomFromGeoJSON('{"coordinates":[[1,2],[3,4]],"type":"Polygo

n"}'))

There	are	various	"st_geom.."	methods	are	available	in	the	Geo	Spatial	function	library	in	Teiid.

Capabilities
MongoDB	translator	is	designed	on	top	of	the	MongoDB	aggregation	framework.	You	must	use	a	MongoDB	version	that	the
aggregation	framework.	Apart	from	SELECT	queries,	the	MongoDB	translator	also	works	with	INSERT,	UPDATE	and	DELETE
queries.

You	can	use	the	MongoDB	translator	with	the	following	functions:

Grouping.

Matching.

Sorting.

Filtering.

Limits.

Working	with	LOBs	stored	in	GridFS.

Composite	primary	and	foreign	keys.

Native	queries
MongoDB	source	procedures	may	be	created	using	the		teiid_rel:native-query		extension.	For	more	information,	see
Parameterizable	native	queries	in	Translators.	The	procedure	will	invoke	the	native-query	similar	to	a	direct	procedure	call	with
the	benefits	that	the	query	is	predetermined	and	that	result	column	types	are	known,	rather	than	requiring	the	use	of
ARRAYTABLE	or	similar	functionality.

Direct	query	procedure
This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the	source.	To
enable	direct	query	procedures,	set	the	execution	property	called		SupportsDirectQueryProcedure		to		true	.	For	more
information,	see	Override	the	execution	properties	in	as_translators.adoc.

By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native.	For	information	about	how	to	change	the
default	name,	see	Override	the	execution	properties	in	as_translators.adoc.

The	MongoDB	translator	provides	a	procedure	to	execute	any	ad-hoc	aggregate	query	directly	against	the	source	without	Teiid
parsing	or	resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array
containing	single	blob	at	array	location	one(1).	This	blob	contains	the	JSON	document.	XMLTABLE	can	be	used	construct
tabular	output	for	consumption	by	client	applications.

Example	MongoDB	Direct	Query

				select	x.*	from	TABLE(call	native('city;{$match:{"city":"FREEDOM"}}'))	t,

										xmltable('/city'	PASSING	JSONTOXML('city',	cast(array_get(t.tuple,	1)	as	BLOB))	COLUMNS	city	string,	

state	string)	x

MongoDB	translator

683

In	the	above	example,	a	collection	called	"city"	is	looked	up	with	filter	that	matches	the	"city"	name	with	"FREEDOM",	using
"native"	procedure	and	then	using	the	nested	tables	feature	the	output	is	passed	to	a	XMLTABLE	construct,	where	the	output	from
the	procedure	is	sent	to	a	JSONTOXML	function	to	construct	a	XML	then	the	results	of	that	are	exposed	in	tabular	form.

The	direct	query	MUST	be	in	the	format

					"collectionName;{$pipeline	instr}+"

From	Teiid	8.10,	MongoDB	translator	also	allows	to	execute	Shell	type	java	script	commands	like	remove,	drop,	createIndex.	For
this	the	command	needs	to	be	in	format

					"$ShellCmd;collectionName;operationName;{$instr}+"

and	example	looks	like

			"$ShellCmd;MyTable;remove;{	qty:	{	$gt:	20	}}"

MongoDB	translator

684

OData	translator
The	OData	translator,	known	by	the	type	name	"odata"	exposes	the	OData	V2	and	V3	data	sources	and	uses	the	Teiid	web
services	resource	adapter	for	making	web	service	calls.	This	translator	is	an	extension	of	the	Web	services	translator.

What	is	OData?
The	Open	Data	Protocol	(OData)	web	protocol	is	for	querying	and	updating	data	that	provides	a	way	to	unlock	your	data	and	free
it	from	silos	that	exist	in	applications	today.	OData	does	this	by	applying	and	building	upon	Web	technologies	such	as	HTTP,
Atom	Publishing	Protocol	(AtomPub)	and	JSON	to	provide	access	to	information	from	a	variety	of	applications,	services,	and
stores.	OData	is	being	used	to	expose	and	access	information	from	a	variety	of	sources	including,	but	not	limited	to,	relational
databases,	file	systems,	content	management	systems	and	traditional	Web	sites.

Using	this	specification	from	the	OASIS	group,	with	help	from	the	OData4J	framework,	Teiid	maps	OData	entities	into	relational
schema.	Teiid	can	read	CSDL	(Conceptual	Schema	Definition	Language)	from	a	provided	OData	endpoint,	and	convert	the	OData
schema	into	a	relational	schema.	The	following	table	shows	the	mapping	selections	in	the	OData	translator	from	a	CSDL
document.

OData Mapped	to	relational	entity

EntitySet Table

FunctionImport Procedure

AssociationSet Foreign	keys	on	the	table*

ComplexType ignored**

A	many-to-many	association	will	result	in	a	link	table	that	can	not	be	selected	from,	but	can	be	used	for	join	purposes.

When	used	in	functions,	an	implicit	table	is	exposed.	When	used	to	define	a	embedded	table,	all	the	columns	will	be	in-
lined.

All	CRUD	operations	will	be	appropriately	mapped	to	the	resulting	entity	based	on	the	SQL	submitted	to	the	OData	translator.

1.	 Usage

Usage	of	a	OData	source	is	similar	to	that	of	a	JDBC	translator.	The	metadata	import	is	provided	through	the	translator,	once	the
metadata	is	imported	from	the	source	system	and	exposed	in	relational	terms,	then	this	source	can	be	queried	as	if	the	EntitySets
and	Function	Imports	were	local	to	the	Teiid	system.

Table	1.	Execution	properties

Name Description Default

DatabaseTimeZone
The	time	zone	of	the	database.	Used
when	fetchings	date,	time,	or
timestamp	values.

The	system	default	time	zone

SupportsOdataCount Enables	the	use	of	the		$count	
option	in	system	queries. true

SupportsOdataFilter Enables	the	use	of	the		$filter	
option	in	system	queries. true

SupportsOdataOrderBy Enables	the	use	of	the		$orderby	
option	in	system	queries. true

OData	translator

685

http://www.odata.org
http://code.google.com/p/odata4j/

SupportsOdataSkip Enables	the	use	of	the		$skip		option
in	system	queries. true

SupportsOdataTop Enables	the	use	of	the		$top		option
in	system	queries. true

Table	2.	Importer	Properties

Name Description Default

schemaNamespace Namespace	of	the	schema	to	import. null

entityContainer Entity	Container	Name	to	import. default	container

Example:	Importer	settings	to	import	only	tables	and	views	from	NetflixCatalog

<property	name="importer.schemaNamespace"	value="System.Data.Objects"/>

<property	name="importer.entityContainer"	value="NetflixCatalog"/>

Note

OData	Server	is	not	fully	compatible
The	OData	server	that	you	connect	to	might	not	fully	implement	the	entire	OData	specification.	If	the	server’s
OData	implementation	does	not	support	a	feature,	set	"execution	properties"	to	turn	off	the	corresponding
capability,	so	that	Teiid	will	not	push	down	invalid	queries	to	the	translator.

For	example,	to	turn	off		$filter	,	add	following	to	your	vdb.xml

				<translator	name="odata-override"	type="odata">

				<property	name="SupportsOdataFilter"	value="false"/>

				</translator>

Tip
Native	queries
The	OData	translator	cannot	perform	native	or	direct	query	execution.	However,	you	can	use	the	invokehttp	method
of	the	Web	services	translator	to	issue	REST-based	calls,	and	then	use	SQLXML	to	parse	results.

Tip
Using	OData	as	server.
Teiid	can	not	only	consume	OData-based	data	sources,	but	it	can	also	expose	any	data	source	as	an	OData-based
web	service.

For	more	information	about	configuring	an	OData	server,	see	OData	Support.

JCA	resource	adapter
The	resource	adapter	for	this	translator	is	a	Web	Service	Data	Source.

OData	translator

686

OData	V4	translator
The	OData	V4	translator,	known	by	the	type	name	"odata4"	exposes	the	OData	Version	4	data	sources	and	uses	the	Teiid	web
services	resource	adapter	for	making	web	service	calls.	This	translator	is	extension	of	Web	Services	Translator.	The	OData	V4
translator	is	not	for	use	with	older	OData	V1-3	sources.	Use	the	OData	translator	("odata")	for	older	OData	sources.

What	is	OData
The	Open	Data	Protocol	(OData)	Web	protocol	is	for	querying	and	updating	data	that	provides	a	way	to	unlock	your	data	and	free
it	from	silos	that	exist	in	applications	today.	OData	does	this	by	applying	and	building	upon	Web	technologies	such	as	HTTP,
Atom	Publishing	Protocol	(AtomPub),	and	JSON	to	provide	access	to	information	from	a	variety	of	applications,	services,	and
stores.	OData	is	being	used	to	expose	and	access	information	from	a	variety	of	sources	including,	but	not	limited	to,	relational
databases,	file	systems,	content	management	systems	and	traditional	Web	sites.

Using	this	specification	from	the	OASIS	group,	with	the	help	from	the	Olingo	framework,	Teiid	maps	OData	V4	CSDL
(Conceptual	Schema	Definition	Language)	document	from	the	OData	endpoint	provided	and	converts	the	OData	metadata	into
Teiid’s	relational	schema.	The	following	table	shows	the	mapping	selections	in	the	OData	V4	translator	from	a	CSDL	document

Note
Using	OData	as	a	server
Teiid	can	not	only	consume	OData-based	data	sources,	but	it	can	expose	any	data	source	as	an	OData	based	web
service.	For	more	information	see	OData	Support	in	the	Client	Developer’s	Guide.

OData Mapped	to	relational	entity

EntitySet Table

EntityType Table	see	[1]

ComplexType Table	see	[2]

FunctionImport Procedure	[3]

ActionImport Procedure	[3]

NavigationProperties Table	[4]

[1]	Only	if	the	EntityType	is	exposed	as	the	EntitySet	in	the	Entity	container.	[2]	Only	if	the	complex	type	is	used	as	property	in
the	exposed	EntitySet.	This	table	will	be	designed	as	child	table	with	foreign	key	[1-to-1]	or	[1-to-many]	relationship	to	the
parent.
[3]	If	the	return	type	is	EntityType	or	ComplexType,	the	procedure	is	designed	to	return	a	table.	[4]	Navigation	properties	are
exposed	as	tables.	The	table	will	be	created	with	foreign	key	relationship	to	the	parent.

All	CRUD	operations	will	be	appropriately	mapped	to	the	resulting	entity	based	on	the	SQL	submitted	to	the	OData	translator.

Usage
Usage	of	a	OData	source	is	similar	a	JDBC	translator.	The	metadata	import	is	supported	through	the	translator,	once	the	metadata
is	imported	from	source	system	and	exposed	in	relational	terms,	then	this	source	can	be	queried	as	if	the	EntitySets,	Function
Imports	and	Action	Imports	were	local	to	the	Teiid	system.

It	is	not	recommended	to	define	your	own	metadata	using	Teiid	DDL	for	complex	services.	There	are	several	extension	metadata
properties	required	to	enable	proper	functioning.	On	non-string	properties,	a		NATIVE_TYPE		property	is	expected	and	should
specify	the	full	EDM	type	name	-		Edm.xxx	.

The	below	is	sample	VDB	that	can	read	metadata	service	from	TripPin	service	on	http://odata.org	site.

OData	V4	translator

687

http://www.odata.org
http://olingo.apache.org/
http://teiid.github.io/teiid-documents/master/sb/client-dev/Client_Developers_Guide.html
http://odata.org

<vdb	name="trippin"	version="1">

				<model	name="trippin">

									<source	name="odata4"	translator-name="odata4"	connection-jndi-name="java:/tripDS"/>

				</model>

</vdb>

The	required	resource-adapter	configuration	will	look	like

<resource-adapter	id="trippin">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.webservice"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory"	jndi-name=

"java:/tripDS"	enabled="true"	use-java-context="true"	pool-name="teiid-trip-ds">

												<config-property	name="EndPoint">

																http://services.odata.org/V4/(S(va3tkzikqbtgu1ist44bbft5))/TripPinServiceRW

												</config-property>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

You	can	connect	to	the	VDB	deployed	using	Teiid	JDBC	driver	and	issue	SQL	statements	like

SELECT	*	FROM	trippin.People;

SELECT	*	FROM	trippin.People	WHERE	UserName	=	'russelwhyte';

SELECT	*	FROM	trippin.People	p	INNER	JOIN	trippin.People_Friends	pf	ON	p.UserName	=	pf.People_UserName;	(note	t

hat	People_UserName	is	implicitly	added	by	Teiid	metadata)

EXEC	GetNearestAirport(lat,	lon)	;

Execution	properties
Sometimes	default	properties	need	to	adjusted	for	proper	execution	of	the	translator.	The	following	execution	properties	extend	or
limit	the	functionality	of	the	translator	based	on	the	physical	source	capabilities.

Name Description Default

SupportsOdataCount Supports	$count true

SupportsOdataFilter Supports	$filter true

SupportsOdataOrderBy Supports	$orderby true

SupportsOdataSkip Supports	$skip true

SupportsOdataTop Supports	$top true

SupportsUpdates Supports
INSERT/UPDATE/DELETE true

The	OData	server	that	you	connect	to	might	not	fully	implement	the	entire	OData	specification.	If	the	server’s	OData
implementation	does	not	support	a	feature,	set	"execution	properties"	to	turn	off	the	corresponding	capability,	so	that	Teiid	does
not	push	down	invalid	queries	to	the	translator.

<translator	name="odata-override"	type="odata">

					<property	name="SupportsOdataFilter"	value="false"/>

</translator>

OData	V4	translator

688

then	use	"odata-override"	as	the	translator	name	on	your	source	model.

Importer	properties
The	following	table	lists	the	importer	properties	that	define	the	behavior	of	the	translator	during	metadata	import	from	the
physical	source.

Name Description Default

schemaNamespace Namespace	of	the	schema	to	import null

Example	importer	settings	to	only	import	tables	and	views	from	Trippin	service	exposed	on	odata.org

<property	name="importer.schemaNamespace"	value="Microsoft.OData.SampleService.Models.TripPin"/>

You	can	leave	this	property	undefined.	If	the	translator	does	not	detect	a	configured	instance	of	the	property,	it	specifies	the
default	name	of	the	EntityContainer.

JCA	resource	adapter
The	resource	adapter	for	this	translator	is	a	Web	Service	Data	Source.

Tip
Native	queries	-	Native	or	direct	query	execution	is	not	supported	through	the	OData	translator.	However,	you	can
use	the	invokehttp	method	of	the	Web	services	translator	to	issue	REST-based	calls,	and	then	use	SQLXML	to
parse	results.

OData	V4	translator

689

http://services.odata.org/V4/(S(nivess3y23eyhit4jbppgtdj))/TripPinServiceRW/$metadata

Swagger	Translator
The	Swagger	translator,	known	by	the	type	name	"swagger"	exposes	Swagger	data	sources	via	realational	concepts	and	uses	the
Teiid	WS	resource	adapter	for	making	web	service	calls.

Note

What	is	Swagger	-	Swagger	is	a	simple	yet	powerful	representation	of	your	RESTful	API.	With	the	largest
ecosystem	of	API	tooling	on	the	planet,	thousands	of	developers	are	supporting	Swagger	in	almost	every	modern
programming	language	and	deployment	environment.	With	a	Swagger-enabled	API,	you	get	interactive
documentation,	client	SDK	generation	and	discoverability.

Starting	January	1st	2016	the	Swagger	Specification	has	been	donated	to	the	Open	API	Initiative	(OAI)	and	has	been	renamed	to
the	OpenAPI	Specification.	The	swagger	translator	provides	support	for	Swagger	version	1/2	and	OpenAPI	version	2.	See	also	the
OpenAPI	Translator.

Usage
Usage	of	a	Swagger	source	is	similar	any	other	translator	in	Teiid.	The	metadata	import	is	supported	through	the	translator.	The
metadata	is	imported	from	a	source	system’s	swagger.json	metadata	file	and	exposed	as	stored	procedures	in	Teiid.	The	source
system	can	be	queried	by	executing	these	stored	procedures	in	Teiid	system.

Note Parameter	order	is	guaranteed	by	the	swagger	libraries.	However	it	is	recommended	that	you	call	procedures
using	named,	rather	than	positional	parameters,	if	you	rely	upon	the	native	import.

The	below	is	sample	VDB	that	can	read	metadata	from	Petstore	reference	service	on	http://petstore.swagger.io/	site.

<vdb	name="petstore"	version="1">

				<model	visible="true"	name="m">

								<source	name="s"	translator-name="swagger"	connection-jndi-name="java:/swagger"/>

				</model>

</vdb>

The	required	resource-adapter	configuration	will	look	like

<resource-adapter	id="swagger">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.webservice"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory"	jndi-name=

"java:/swagger"	enabled="true"	use-java-context="true"	pool-name="teiid-swagger-ds">

												<config-property	name="EndPoint">

																http://petstore.swagger.io/v2

												</config-property>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

Once	you	configure	above	resource-adapter	and	deploy	the	VDB	successfully,	then	you	can	connect	to	the	VDB	deployed	using
Teiid	JDBC	driver	and	issue	SQL	statements	like

EXEC	findPetsByStatus(('sold',))

EXEC	getPetById(1461159803)

EXEC	deletePet('',	1461159803)

Swagger	translator

690

https://swagger.io/
http://petstore.swagger.io/

Configuration	of	Translator

Execution	Properties

Execution	properties	extend/limit	the	functionality	of	the	translator	based	on	the	physical	source	capabilities.	Sometimes	default
properties	need	to	adjusted	for	proper	execution	of	the	translator.

Execution	Properties

none

Importer	Properties

Importer	properties	define	the	behavior	of	the	translator	during	the	metadata	import	from	the	physical	source.

Importer	Properties

Name Description Default

useDefaultHost

Use	default	host	specified	in	the
Swagger	file;	Defaults	to	true,	when
false	uses	the	endpoint	in	the
resource-adapter

true

preferredScheme
Preferred	Scheme	to	use	when
Swagger	file	supports	multiple
invocation	schemes	like	http,	https

null

preferredProduces
Preferred	Accept	MIME	type	header,
this	should	be	one	of	the	Swagger
'produces'	types;

application/json

preferredConsumes
Preferred	Content-Type	MIME	type
header,	this	should	be	one	of	the
Swagger	'consumer'	types;

application/json

Example	importer	settings	to	avoid	calling	host	defined	on	the	swagger.json	file

<property	name="importer.useDefaultHost"	value="false"/>

JCA	Resource	Adapter

The	resource	adapter	for	this	translator	is	a	Web	Service	Data	Source.

Note
Native	Queries	-	Native	or	direct	query	execution	is	not	supported	through	Swagger	translator.	However,	user
can	use	Web	Services	Translator’s	invokehttp	method	directly	to	issue	a	Rest	based	call	and	parse	results	using
SQLXML.

Limitations

"application/xml"	mime	type	in	both	"Accept"	and	"Content-Type"	is	currently	not	supported

File,	Map	properties	are	currently	not	supported,	thus	any	multi-part	payloads	are	not	supported

Security	metadata	is	currently	not	supported

Custom	properties	that	start	with	"x-"	are	not	supported.

Swagger	translator

691

Schema	with	"allof",	"multipleof",	"items"	from	JSON	schema	are	not	supported

Swagger	translator

692

OpenAPI	translator
The	OpenAPI	translator,	known	by	the	type	name	"openapi"	exposes	OpenAPI	data	sources	via	relational	concepts	and	uses	the
Teiid	WS	resource	adapter	for	making	web	service	calls.

What	is	OpenAPI?
[OpenAPI	is	a	simple	yet	powerful	representation	of	your	RESTful	API.	With	the	largest	ecosystem	of	API	tooling	on	the	planet,
thousands	of	developers	are	supporting	OpenAPI	in	almost	every	modern	programming	language	and	deployment	environment.
With	an	OpenAPI-enabled	API,	you	get	interactive	documentation,	client	SDK	generation,	and	discoverability.

This	translator	is	compatible	with	OpenAPI/Swagger	v2	and	OpenAPI	v3.

Usage
Usage	of	a	OpenAPI	source	is	similar	any	other	translator	in	Teiid.	The	translator	enables	metadata	import.	The	metadata	is
imported	from	source	system’s	metadata	file	and	then	exposed	as	stored	procedures	in	Teiid.	The	source	system	can	be	queried	by
executing	these	stored	procedures	in	Teiid	system.

Note Although	parameter	order	is	guaranteed	by	the	Swagger	libraries,	if	you	rely	upon	the	native	import,	it	is	best	if
you	call	procedures	using	named,	rather	than	positional	parameters.

The	below	is	sample	VDB	that	can	read	metadata	from	Petstore	reference	service	on	http://petstore.swagger.io/	site.

<vdb	name="petstore"	version="1">

				<model	visible="true"	name="m">

								<property	name="importer.metadataUrl"	value="/swagger.json"/>

								<source	name="s"	translator-name="openapi"	connection-jndi-name="java:/openapi"/>

				</model>

</vdb>

The	required	resource-adapter	configuration	will	look	like

<resource-adapter	id="openapi">

				<module	slot="main"	id="org.jboss.teiid.resource-adapter.webservice"/>

				<transaction-support>NoTransaction</transaction-support>

				<connection-definitions>

								<connection-definition	class-name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory"	jndi-name=

"java:/openapi"	enabled="true"	use-java-context="true"	pool-name="teiid-openapi-ds">

												<config-property	name="EndPoint">

																http://petstore.swagger.io/v2

												</config-property>

								</connection-definition>

				</connection-definitions>

</resource-adapter>

After	you	configure	the	preceding	resource-adapter	and	deploy	the	VDB	successfully,	then	you	can	connect	to	the	VDB	deployed
using	Teiid	JDBC	driver	and	issue	SQL	statements	such	as	the	following:

EXEC	findPetsByStatus(('sold',))

EXEC	getPetById(1461159803)

EXEC	deletePet('',	1461159803)

Execution	properties
Execution	properties	extend/limit	the	functionality	of	the	translator	based	on	the	physical	source	capabilities.	Sometimes	default
properties	must	be	adjusted	for	proper	execution	of	the	translator.

Execution	properties

OpenAPI	translator

693

https://www.openapis.org/
http://petstore.swagger.io/

None.

Importer	properties
The	following	table	lists	the	importer	properties	that	define	the	behavior	of	the	translator	during	the	import	of	from	the	physical
source.

Name Description Default

metadataUrl
URL	from	which	to	obtain	the
OpenAPI	metadata.	May	be	a	local
file	using	a	file:	URL.

true

server The	server	to	use.	Otherwise	the	first
server	listed	will	be	used. null

preferredProduces
Preferred	Accept	MIME	type	header,
this	should	be	one	of	the	OpenAPI
'produces'	types;

application/json

preferredConsumes
Preferred	Content-Type	MIME	type
header,	this	should	be	one	of	the
OpenAPI	'consumer'	types;

application/json

JCA	resource	adapter
The	resource	adapter	for	this	translator	is	a	Web	Service	Data	Source.

Tip
Native	queries	-	The	OpenAPI	translator	cannot	perform	native	or	direct	query	execution.	However,	you	can	use
the	invokehttp	method	of	the	Web	services	translator	to	issue	REST-based	calls,	and	then	use	SQLXML	to	parse
results.

Limitations
The	OpenAPI	translator	does	not	fully	implement	all	of	the	features	of	OpenAPI.	The	following	limitations	apply:

You	cannot	set	the	MIME	type	to		application/xml		in	either	the		Accept		or		Content-Type		headers.

File	and	Map	properties	cannot	be	used.	As	a	result,	any	multi-part	payloads	are	not	supported.

The	translator	does	not	process	security	metadata.

The	translator	does	not	process	custom	properties	that	start	with		x-	.

The	translator	does	not	work	with	following	JSON	schema	keywords:

	allOf	

	multipleOf	

	items	

OpenAPI	translator

694

OLAP	Translator
The	OLAP	Services	translator,	known	by	the	type	name	olap,	exposes	stored	procedures	for	calling	analysis	sevices	backed	by	a
OLAP	server	using	MDX	query	language.	This	translator	exposes	a	stored	procedure,	invokeMDX,	that	returns	a	result	set
containing	tuple	array	values	for	a	given	MDX	query.	invokeMDX	will	commonly	be	used	with	the	ARRAYTABLE	table
function	to	extract	the	results.

Since	the	Cube	metadata	exposed	by	the	OLAP	servers	and	relational	database	metadata	are	so	different,	there	is	no	single	way	to
map	the	metadata	from	one	to	other.	It	is	best	to	query	OLAP	system	using	its	own	native	MDX	language	through.	MDX	queries
my	be	defined	statically	or	built	dynamically	in	Teiid’s	abstraction	layers.

Usage

The	olap	translator	exposes	one	low	level	procedure	for	accessing	olap	services.

InvokeMDX	Procedure

	invokeMdx		returns	a	resultset	of	the	tuples	as	array	values.

Procedure	invokeMdx(mdx	in	STRING,	params	VARIADIC	OBJECT)	returns	table	(tuple	object)

The	mdx	parameter	is	a	MDX	query	to	be	executed	on	the	OLAP	server.

The	results	of	the	query	will	be	returned	such	that	each	row	on	the	row	axis	will	be	packed	into	an	array	value	that	will	first
contain	each	hierarchy	member	name	on	the	row	axis	then	each	measure	value	from	the	column	axis.

The	use	of	Data	Roles	should	be	considered	to	prevent	arbitrary	MDX	from	being	submitted	to	the	invokeMDX	procedure.

Native	Queries

OLAP	source	procedures	may	be	created	using	the	teiid_rel:native-query	extension	-	see	Parameterizable	Native	Queries.

The	parameter	value	substitution	directly	inserts	boolean,	and	number	values,	and	treats	all	other	values	as	string	literals.

The	procedure	will	invoke	the	native-query	similar	to	an	invokeMdx	call	with	the	benefits	that	the	query	is	predetermined	and	that
result	column	types	are	known,	rather	than	requiring	the	use	of	ARRAYTABLE	or	similar	functionality.

Direct	Query	Procedure

The	invokeMdx	procedure	is	the	direct	query	procedure	for	the	OLAP	translator.	It	may	be	disabled	or	have	it’s	name	changed	via
the	common	direct	query	translator	properties	just	like	any	other	source.	A	call	to	the	direct	query	procedure	without	any
parameters	will	not	attempt	to	parse	the	mdx	query	for	parameterization.	If	parameters	are	used,	the	value	substitution	directly
inserts	boolean,	and	number	values,	and	treats	all	other	values	as	string	literals.

JCA	Resource	Adapter

OLAP	translator

695

The	resource	adapter	for	this	translator	provided	through	data	source	in	WildFly,	Refer	to	Admin	Guide	for	"JDBC	Data	Sources"
configuration	section.	Two	sample	xml	files	are	provided	for	accessing	OLAP	servers	in	the	teiid-examples	section.	One	is
Mondrian	specific,	when	Mondrian	server	is	deployed	in	the	same	WildFly	as	Teiid	(mondrian-ds.xml).	To	access	any	other
OLAP	servers	using	XMLA	interface,	the	data	source	for	them	can	be	created	using	them	example	template	olap-xmla-ds.xml

Note
Due	to	a	classloading	change	with	Mondrian	3.6	and	later,	a	workaround	is	needed	to	use	a	later	driver	-	TEIID-
4617	The	olap	translator	module.xml	under	modules/system/layers/dv/org/jboss/teiid/translator/olap/main/	needs
to	have	a	dependency	to	the	Mondrian	driver	module.

OLAP	translator

696

https://issues.redhat.com/browse/TEIID-4617

Salesforce	translators
You	can	use	the	Salesforce	translator	to	run		SELECT	,		DELETE	,		INSERT	,		UPSERT,		and		UPDATE		operations	against	a
Salesforce.com	account.

salesforce
The	translator,	known	by	the	type	name	salesforce,	provides	Salesforce	API	34.0	support.	The	translator	must	be	used	with	the
corresponding	Salesforce	resource	adapter	of	the	same	API	version.	Salesforce	API	version	22.0	support	has	been	removed.

salesforce-34
The	translator,	known	by	the	type	name	of	salesforce-34,	provides	Salesforce	API	34.0	support.	The	translator	must	be	used	with
the	corresponding	Salesforce	resource	adapter	of	the	same	API	version.

salesforce-41
The	translator,	known	by	the	type	name	of	salesforce-41,	provides	Salesforce	API	41.0	support.	The	translator	must	be	used	with
the	corresponding	Salesforce	resource	adapter	of	the	same	API	version.

Other	API	versions
If	you	need	connectivity	to	an	API	version	other	than	what	is	built	in,	please	utilize	the	project	https://github.com/teiid/salesforce
to	generate	new	resource	adapter	/	translator	pair.

Note
The	default	URL	for	a	Salesforce	source	may	change	from	release	to	release.	Especially	if	you	are	relying	on
metadata	import	it	is	recommended	that	the	Salesforce	URL	is	configured	on	the	source.	The	URL	will	contain	an
explicit	API	version	which	means	the	imported	metadata	will	remain	consistent.

Table	1.	Execution	properties

Name Description Default

MaxBulkInsertBatchSize Batch	Size	to	use	to	insert	bulk
inserts. 2048

SupportsGroupBy

Enables		GROUP	BY		Pushdown.	Set	to
false	to	have	Teiid	process	group	by
aggregations,	such	as	those	returning
more	than	2000	rows	which	error	in
SOQL.

true

The	Salesforce	translator	can	import	metadata.

Table	2.	Import	properties

Property	Name Description Required Default

NormalizeNames

If	the	importer	should
attempt	to	modify	the
object/field	names	so	that
they	can	be	used
unquoted.

false true

excludeTables

A	case-insensitive	regular
expression	that	when
matched	against	a	table
name	will	exclude	it	from
import.	Applied	after	table
names	are	retrieved.	Use	a
negative	look-ahead	(?!
<inclusion	pattern>).*	to
act	as	an	inclusion	filter.

false n/a

Salesforce	translators

697

https://github.com/teiid/salesforce

includeTables

A	case-insensitive	regular
expression	that	when
matched	against	a	table
name	will	be	included
during	import.	Applied
after	table	names	are
retrieved	from	source.

false n/a

importStatstics

Retrieves	cardinalities
during	import	using	the
REST	API	explain	plan
feature.

false false

ModelAuditFields

Add	Audit	Fields	To
Model.	This	includes
CreatedXXX,
LastModifiedXXX,	and
SystemModstamp	fields.

false false

NOTE	When	both	 includeTables	and	excludeTables	patterns	are	present	during	the	import,	the	includeTables	pattern	matched
first,	then	the	excludePatterns	will	be	applied.

Note
If	you	need	connectivity	to	an	API	version	other	than	what	is	built	in,	you	may	try	to	use	an	existing	connectivity
pair,	but	in	some	circumstances	-	especially	accessing	a	later	remote	api	from	an	older	Java	API	-	this	is	not
possible	and	results	in	what	appears	to	be	hung	connections.

Extension	metadata	properties
Salesforce	is	not	relational	database,	however	Teiid	provides	ways	to	map	Saleforce	data	into	relational	constructs	like	Tables	and
Procedures.	You	can	define	a	foreign	table	using	DDL	in	Teiid	VDB,	which	maps	to	Salesforce’s	SObject.	At	runtime,	to	interpret
this	table	back	to	a	SObject,	Teiid	decorates	or	tags	this	table	definition	with	additional	metadata.	For	example,	a	table	is	defined
as	in	the	following	example:

CREATE	FOREIGN	TABLE	Pricebook2	(

	 Id	string,

	 Name	string,

	 IsActive	boolean,

	 IsStandard	boolean,

	 Description	string,

	 IsDeleted	boolean)

	 OPTIONS	(

	 		UPDATABLE	'TRUE',

	 		"teiid_sf:Supports	Query"	'TRUE');

In	the	preceding	example,	the	property	in	the		OPTIONS		clause	with	the	property		"teiid_sf:Supports	Query"		set	to		TRUE	
indicates	that	you	can	run		SELECT		commands	against	this	table.	The	following	table	lists	the	metadata	extension	properties	that
can	be	used	in	a	Salesforce	schema.

Property	Name Description Required Default Applies	To

Supports	Query
You	can	run
	SELECT	

commands	against
the	table.

false true Table

Supports	Retrieve

You	can	retrieve	the
results	of		SELECT	
commands	run
against	the	table.

false true Table

SQL	processing

Salesforce	translators

698

Salesforce	does	not	provide	the	same	set	of	functionality	as	a	relational	database.	For	example,	Salesforce	does	not	support
arbitrary	joins	between	tables.	However,	working	in	combination	with	the	Teiid	Query	Planner,	the	Salesforce	connector	can	use
nearly	all	of	the	SQL	syntax	capabilities	in	Teiid.	The	Salesforce	Connector	executes	SQL	commands	by	"pushing	down"	the
command	to	Salesforce	whenever	possible,	depending	on	the	available	capabilities.	Teiid	will	automatically	provide	additional
database	functionality	when	the	Salesforce	Connector	does	not	explicitly	enable	use	of	a	given	SQL	construct.	In	cases	where
certain	SQL	capabilities	cannot	be	pushed	down	to	Salesforce,	Teiid	will	push	down	the	capabilities	that	it	can,	and	fetch	a	set	of
data	from	Salesforce.	Then,	Teiid	will	evaluate	the	additional	capabilities,	creating	a	subset	of	the	original	data	set.	Finally,	Teiid
will	pass	the	result	to	the	client.

If	you	issue	queries	with	a		GROUP	BY		clause,	and	you	receive	a	Salesforce	error	that	indicates	that		queryMore		is	not	supported,
you	can	either	add	limits,	or	set	the	execution	property		SupportsGroupBy		to		false	.

SELECT	array_agg(Reports)	FROM	Supervisor	where	Division	=	'customer	support';

Neither	Salesforce,	nor	the	Salesforce	Connector	support	the		array_agg()		scalar.	however,	both	are	compatible	with	the
	CompareCriteriaEquals		query,	so	the	connector	transforms	the	query	that	it	receives	into	this	query	to	Salesforce.

SELECT	Reports	FROM	Supervisor	where	Division	=	'customer	support';

The	array_agg()	function	will	be	applied	by	the	Teiid	Query	Engine	to	the	result	set	returned	by	the	connector.

In	some	cases,	multiple	calls	to	the	Salesforce	application	will	be	made	to	process	the	SQL	that	is	passed	to	the	connector.

DELETE	From	Case	WHERE	Status	=	'Closed';

The	API	in	Salesforce	to	delete	objects	can	delete	by	object	ID	only.	In	order	to	accomplish	this,	the	Salesforce	connector	will	first
execute	a	query	to	get	the	IDs	of	the	correct	objects,	and	then	delete	those	objects.	So	the	above	DELETE	command	will	result	in
the	following	two	commands.

SELECT	ID	From	Case	WHERE	Status	=	'Closed';

DELETE	From	Case	where	ID	IN	(<result	of	query>);

NOTE	The	Salesforce	API	DELETE	call	is	not	expressed	in	SQL,	but	the	above	is	an	equivalent	SQL	expression.

It’s	useful	to	be	aware	of	incompatible	capabilities,	in	order	to	avoid	fetching	large	data	sets	from	Salesforce	and	making	you
queries	as	performant	as	possible.	For	information	about	the	SQL	constructs	that	you	can	push	down	to	Salesforce,	see
Compatible	SQL	capabilities.

Selecting	from	multi-select	picklists
A	multi-select	picklist	is	a	field	type	in	Salesforce	that	can	contain	multiple	values	in	a	single	field.	Query	criteria	operators	for
fields	of	this	type	in	SOQL	are	limited	to	EQ,	NE,	includes	and	excludes.	For	the	Salesforce	documentation	about	how	to	select
from	multi-select	picklists,	see	Querying	Multi-select	Picklists

Teiid	SQL	does	not	support	the	includes	or	excludes	operators,	but	the	Salesforce	connector	provides	user-defined	function
definitions	for	these	operators	that	provide	equivalent	functionality	for	fields	of	type	multi-select.	The	definition	for	the	functions
is:

boolean	includes(Column	column,	String	param)

boolean	excludes(Column	column,	String	param)

For	example,	take	a	single	multi-select	picklist	column	called	Status	that	contains	all	of	these	values.

current

Salesforce	translators

699

http://www.salesforce.com/us/developer/docs/soql_sosl/Content/sforce_api_calls_soql_querying_multiselect_picklists.htm

working

critical

For	that	column,	all	of	the	below	are	valid	queries:

SELECT	*	FROM	Issue	WHERE	true	=	includes	(Status,	'current,	working');

SELECT	*	FROM	Issue	WHERE	true	=	excludes	(Status,	'current,	working');

SELECT	*	FROM	Issue	WHERE	true	=	includes	(Status,	'current;working,	critical');

EQ	and	NE	criteria	will	pass	to	Salesforce	as	supplied.	For	example,	these	queries	will	not	be	modified	by	the	connector.

SELECT	*	FROM	Issue	WHERE	Status	=	'current';

SELECT	*	FROM	Issue	WHERE	Status	=	'current;critical';

SELECT	*	FROM	Issue	WHERE	Status	!=	'current;working';

Selecting	all	objects
You	can	use	the	Salesforce	connector	to	call	the		queryAll		operation	from	the	Salesforce	API.	The		queryAll		operation	is
equivalent	to	the	query	operation	with	the	exception	that	it	returns	data	about	all	current	and	deletedobjects	in	the	system.

The	connector	determines	if	it	will	call	the	query	or		queryAll		operation	via	reference	to	the		isDeleted		property	present	on
each	Salesforce	object,	and	modeled	as	a	column	on	each	table	generated	by	the	importer.	By	default	this	value	is	set	to		false	
when	the	model	is	generated	and	thus	the	connector	calls	query.	Users	are	free	to	change	the	value	in	the	model	to		true	,
changing	the	default	behavior	of	the	connector	to	be		queryAll	.

The	behavior	is	different	if		isDeleted		is	used	as	a	parameter	in	the	query.	If	the		isDeleted		column	is	used	as	a	parameter	in
the	query,	and	the	value	is		true	,	then	the	connector	calls		queryAll	.

select	*	from	Contact	where	isDeleted	=	true;

If	the		isDeleted		column	is	used	as	a	parameter	in	the	query,	and	the	value	is		false	,	then	the	connector	that	performs	the
default	behavior	will	call	the	query.

select	*	from	Contact	where	isDeleted	=	false;

Selecting	updated	objects
If	the	option	is	selected	when	importing	metadata	from	Salesforce,	a	GetUpdated	procedure	is	generated	in	the	model	with	the
following	structure:

GetUpdated	(ObjectName	IN	string,

				StartDate	IN	datetime,

				EndDate	IN	datetime,

				LatestDateCovered	OUT	datetime)

returns

				ID	string

See	the	description	of	the	GetUpdated	operation	in	the	Salesforce	documentation	for	usage	details.

Selecting	deleted	objects
If	the	option	is	selected	when	importing	metadata	from	Salesforce,	a	GetDeleted	procedure	is	generated	in	the	model	with	the
following	structure:

GetDeleted	(ObjectName	IN	string,

				StartDate	IN	datetime,

				EndDate	IN	datetime,

				EarliestDateAvailable	OUT	datetime,

Salesforce	translators

700

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm

				LatestDateCovered	OUT	datetime)

returns

				ID	string,

				DeletedDate	datetime

See	the	description	of	the	GetDeleted	operation	in	the	Salesforce	documentation	for	usage	details.

Relationship	queries
Unlike	a	relational	database,	Salesforce	does	not	support	join	operations,	but	it	does	have	support	for	queries	that	include	parent-
to-child	or	child-to-parent	relationships	between	objects.	These	are	termed	Relationship	Queries.	You	can	run	Relationship
Queries	in	the	SalesForce	connector	through	Outer	Join	syntax.

SELECT	Account.name,	Contact.Name	from	Contact	LEFT	OUTER	JOIN	Account

on	Contact.Accountid	=	Account.id

This	query	shows	the	correct	syntax	to	query	a	SalesForce	model	with	to	produce	a	relationship	query	from	child	to	parent.	It
resolves	to	the	following	query	to	SalesForce.

SELECT	Contact.Account.Name,	Contact.Name	FROM	Contact

select	Contact.Name,	Account.Name	from	Account	Left	outer	Join	Contact

on	Contact.Accountid	=	Account.id

This	query	shows	the	correct	syntax	to	query	a	SalesForce	model	with	to	produce	a	relationship	query	from	parent	to	child.	It
resolves	to	the	following	query	to	SalesForce.

SELECT	Account.Name,	(SELECT	Contact.Name	FROM

Account.Contacts)	FROM	Account

See	the	description	of	the	Relationship	Queries	operation	in	the	SalesForce	documentation	for	limitations.

Bulk	insert	queries
You	can	also	use	bulk	insert	statements	in	the	SalesForce	translator	by	using	JDBC	batch	semantics	or	SELECT	INTO	semantics.
The	batch	size	is	determined	by	the	execution	property	MaxBulkInsertBatchSize,	which	can	be	overridden	in	the	vdb	file.	The
default	value	of	the	batch	is	2048.	The	bulk	insert	feature	uses	the	async	REST	based	API	exposed	by	Salesforce	for	execution	for
better	performance.

Bulk	selects
When	querying	tables	with	more	than	10,000,000	records,	or	if	experiencing	timeouts	with	just	result	batching,	Teiid	can	issue
queries	to	Salesforce	using	the	bulk	API.	When	using	a	bulk	select,	primary	key	(PK)	chunking	is	enabled	if	it	is	compatible	with
the	query.

The	use	of	the	bulk	api	requires	a	source	hint	in	the	query:

SELECT	/*+	sh	salesforce:'bulk'	*/	Name	...	FROM	Account

Where	salesforce	is	the	source	name	of	the	target	source.

The	default	chunk	size	of	100,000	records	will	be	used.

Note This	feature	is	only	supported	in	the	Salesforce	API	version	28	or	higher.

Compatible	SQL	capabilities

Salesforce	translators

701

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

You	ca	use	the	following	SQL	capabilities	with	the	Salesforce	Connector.	These	SQL	constructs	will	be	pushed	down	to
Salesforce.

SELECT	command

INSERT	Command

UPDATE	Command

DELETE	Command

NotCriteria

OrCriteria

CompareCriteriaEquals

CompareCriteriaOrdered

IsNullCritiera

InCriteria

LikeCriteria	-	Can	be	used	for	String	fields	only.

RowLimit

Basic	Aggregates

OuterJoins	with	join	criteria	KEY

Native	Queries
Salesforce	procedures	may	optionally	have	native	queries	associated	with	them.	For	more	information,	see	Parameterizable	native
queries	in	Translators.	The	operation	prefix	(select;,	insert;,	update;,	delete;	-	see	below	for	more)	must	be	present	in	the	native-
query,	but	it	will	not	be	issued	as	part	of	the	query	to	the	source.

Example	DDL	for	a	Salesforce	native	procedure

CREATE	FOREIGN	PROCEDURE	proc	(arg1	integer,	arg2	string)	OPTIONS	("teiid_rel:native-query"	'search;SELECT	...	

complex	SOQL	...	WHERE	col1	=	$1	and	col2	=	$2')

returns	(col1	string,	col2	string,	col3	timestamp);

Direct	query	procedure
This	feature	is	turned	off	by	default	because	of	the	security	risk	this	exposes	to	execute	any	command	against	the	source.	To
enable	direct	query	procedures,	set	the	execution	property	called		SupportsDirectQueryProcedure		to		true	.	For	more
information,	see	Override	the	execution	properties	in	as_translators.adoc.

Tip By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native.	For	information	about	how
to	change	the	default	name,	see	Override	the	execution	properties	in	as_translators.adoc.

The	Salesforce	translator	provides	a	procedure	to	execute	any	ad-hoc	SOQL	query	directly	against	the	source	without	Teiid
parsing	or	resolving.	Since	the	metadata	of	this	procedure’s	results	are	not	known	to	Teiid,	they	are	returned	as	an	object	array.
ARRAYTABLE	can	be	used	construct	tabular	output	for	consumption	by	client	applications.	Teiid	exposes	this	procedure	with	a
simple	query	structure	as	follows:

Select	example

SELECT	x.*	FROM	(call	sf_source.native('search;SELECT	Account.Id,	Account.Type,	Account.Name	FROM	Account'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"id"	string	,	"type"	string,	"name"	String)	AS	x

from	the	above	code,	the	"search"	keyword	followed	by	a	query	statement.

Salesforce	translators

702

Note

The	SOQL	is	treated	as	a	parameterized	native	query	so	that	parameter	values	may	be	inserted	in	the	query	string
properly.	For	more	information,	see	Parameterizable	native	queries	in	Translators.	The	results	returned	by	search
may	contain	the	object	Id	as	the	first	column	value	regardless	of	whether	it	was	selected.	Also	queries	that	select
columns	from	multiple	object	types	will	not	be	correct.

Delete	Example

SELECT	x.*	FROM	(call	sf_source.native('delete;',	'id1',	'id2'))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"updatecount"	integer)	AS	x

form	the	above	code,	the	"delete;"	keyword	followed	by	the	ids	to	delete	as	varargs.

Create	example

SELECT	x.*	FROM

	(call	sf_source.native('create;type=table;attributes=one,two,three',	'one',	2,	3.0))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

form	the	above	code,	the	"create"	or	"update"	keyword	must	be	followed	by	the	following	properties.	Attributes	must	be	matched
positionally	by	the	procedure	variables	-	thus	in	the	example	attribute	two	will	be	set	to	2.

Property	Name Description Required

type Table	Name Yes

attributes comma	separated	list	of	names	of	the
columns no

The	values	for	each	attribute	is	specified	as	separate	argument	to	the	"native"	procedure.

Update	is	similar	to	create,	with	one	more	extra	property	called	"id",	which	defines	identifier	for	the	record.

Update	example

SELECT	x.*	FROM

	(call	sf_source.native('update;id=pk;type=table;attributes=one,two,three',	'one',	2,	3.0))	w,

	ARRAYTABLE(w.tuple	COLUMNS	"update_count"	integer)	AS	x

Tip By	default	the	name	of	the	procedure	that	executes	the	queries	directly	is	called	native,	however	you	can	add	set	an
override	execution	property	in	the	DDL	file	to	change	it.

JCA	resource	adapter
The	resource	adapter	for	this	translator	is	provided	through	Salesforce	data	sources.	For	configuration	information,	see	Salesforce
Data	Sources	in	the	Administrator’s	Guide.

Salesforce	translators

703

http://teiid.github.io/teiid-documents/master/content/admin/Administrators_Guide.html

SAP	Gateway	Translator
The	SAP	Gateway	Translator,	known	by	the	type	name	sap-gateway,	provides	a	translator	for	accessing	the	SAP	Gateway	using
the	OData	protocol.	This	translator	is	extension	of	OData	Translator	and	uses	Teiid	WS	resource	adapter	for	making	web	service
calls.	This	translator	understands	the	most	of	the	SAP	specific	OData	extensions	to	the	metadata	defined	in	the	document	SAP
Annotations	for	OData	Version	2.0

When	the	metadata	is	imported	from	SAP	Gateway,	the	Teiid	models	are	created	to	accordingly	for	SAP	specific	EntitySet	and
Property	annotations	defined	in	document	above.

The	following	"execution	properties"	are	supported	in	this	translator

Execution	Properties

Name Description Default

DatabaseTimeZone
The	time	zone	of	the	database.	Used
when	fetchings	date,	time,	or
timestamp	values

The	system	default	time	zone

SupportsOdataCount Supports	$count true

SupportsOdataFilter Supports	$filter true

SupportsOdataOrderBy Supports	$orderby true

SupportsOdataSkip Supports	$skip true

SupportsOdataTop Supports	$top true

Based	on	how	you	implemented	your	SAP	Gateway	service,	if	can	choose	to	turn	off	some	of	the	features	above.

Note

Using	pagable,	topable	metadata	extensions?	-	If	metadata	on	your	service	defined	"pagable"	and/or	"topable"
as	"false"	on	any	table,	you	must	turn	off	"SupportsOdataTop"	and	"SupportsOdataSkip"	execution-properties	in
your	translator,	so	that	you	will	not	end	up	with	wrong	results.	SAP	metadata	has	capability	to	control	these	in	a
fine	grained	fashion	any	on	EnitySet,	however	Teiid	can	only	control	these	at	translator	level.

Note

SAP	Examples	-	Sample	examples	defined	at	http://scn.sap.com/docs/DOC-31221,	we	found	to	be	lacking	in	full
metadata	in	certain	examples.	For	example,	"filterable"	clause	never	defined	on	some	properties,	but	if	you	send	a
request	$filter	it	will	silently	ignore	it.	You	can	verify	this	behavior	by	directly	executing	the	REST	service	using
a	web	browser	with	respective	query.	So,	Make	sure	you	have	implemented	your	service	correctly,	or	you	can	turn
off	certain	features	in	this	translator	by	using	"execution	properties"	override.	See	an	example	in	OData	Translator

SAP	Gateway	translator

704

http://scn.sap.com/docs/DOC-44986
http://scn.sap.com/docs/DOC-31221

Web	services	translator
The	Web	Services	translator,	known	by	the	type	name	ws,	exposes	stored	procedures	for	calling	web/SOAP	services.	Results	from
this	translator	will	commonly	be	used	with	the	TEXTTABLE	or	XMLTABLE	table	functions	to	use	CSV	or	XML	formated	data.

Execution	properties

Name Description When	Used Default

DefaultBinding

The	binding	that	should	be
used	if	one	is	not
specified.	Can	be	one	of
HTTP,	SOAP11,	or
SOAP12.

invoke* SOAP12

DefaultServiceMode

The	default	service	mode.
For	SOAP,	MESSAGE
mode	indicates	that	the
request	will	contain	the
entire	SOAP	envelope.
and	not	just	the	contents	of
the	SOAP	body.	Can	be
one	of	MESSAGE	or
PAYLOAD

invoke*	or	WSDL	call PAYLOAD

XMLParamName

Used	with	the	HTTP
binding	(typically	with	the
GET	method)	to	indicate
that	the	request	document
should	be	part	of	the	query
string.

invoke* null	-	unused

Note
Setting	the	proper	binding	value	on	the	translator	is	recommended	as	it	removes	the	need	for	callers	to	pass	an
explicit	value.	If	your	service	is	actually	uses	SOAP11,	but	the	binding	used	SOAP12	you	will	receive	execution
failures.

There	are	no	importer	settings,	but	it	can	provide	metadata	for	VDBs.	If	the	connection	is	configured	to	point	at	a	specific	WSDL,
the	translator	will	import	all	SOAP	operations	under	the	specified	service	and	port	as	procedures.

Importer	properties
When	specifying	the	importer	property,	it	must	be	prefixed	with	"importer.".	Example:	importer.tableTypes

Name Description Default

importWSDL Import	the	metadata	from	the	WSDL
URL	configured	in	resource-adapter. true

Usage
The	translator	exposes	low	level	procedures	for	accessing	web	services.	See	also	the	Twitter	example	in	the	kit.

Invoke	procedure
Invoke	allows	for	multiple	binding,	or	protocol	modes,	including	HTTP,	SOAP11,	and	SOAP12.

Procedure	invoke(binding	in	STRING,	action	in	STRING,	request	in	XML,	endpoint	in	STRING,	stream	in	BOOLEAN)	re

turns	XML

Web	Services	translator

705

The	binding	may	be	one	of	null	(to	use	the	default)	HTTP,	SOAP11,	or	SOAP12.	Action	with	a	SOAP	binding	indicates	the
SOAPAction	value.	Action	with	a	HTTP	binding	indicates	the	HTTP	method	(GET,	POST,	etc.),	which	defaults	to	POST.

A	null	value	for	the	binding	or	endpoint	will	use	the	default	value.	The	default	endpoint	is	specified	in	the	source	configuration.
The	endpoint	URL	may	be	absolute	or	relative.	If	it’s	relative	then	it	will	be	combined	with	the	default	endpoint.

Since	multiple	parameters	are	not	required	to	have	values,	it	is	often	more	clear	to	call	the	invoke	procedure	with	named
parameter	syntax.

call	invoke(binding=>'HTTP',	action=>'GET')

The	request	XML	should	be	a	valid	XML	document	or	root	element.

InvokeHTTP	procedure
	invokeHttp		can	return	the	byte	contents	of	an	HTTP(S)	call.

Procedure	invokeHttp(action	in	STRING,	request	in	OBJECT,	endpoint	in	STRING,	stream	in	BOOLEAN,	contentType	ou

t	STRING,	headers	in	CLOB)	returns	BLOB

Action	indicates	the	HTTP	method	(GET,	POST,	etc.),	which	defaults	to	POST.

A	null	value	for	endpoint	will	use	the	default	value.	The	default	endpoint	is	specified	in	the	source	configuration.	The	endpoint
URL	may	be	absolute	or	relative.	If	it’s	relative	then	it	will	be	combined	with	the	default	endpoint.

Since	multiple	parameters	are	not	required	to	have	values,	it	is	often	more	clear	to	call	the	invokeHttp	procedure	with	named
parameter	syntax.

call	invokeHttp(action=>'GET')

The	request	can	be	one	of	SQLXML,	STRING,	BLOB,	or	CLOB.	The	request	will	be	sent	as	the	POST	payload	in	byte	form.	For
STRING/CLOB	values	this	will	default	to	the	UTF-8	encoding.	To	control	the	byte	encoding,	see	the	to_bytes	function.

The	optional	headers	parameter	can	be	used	to	specify	the	request	header	values	as	a	JSON	value.	The	JSON	value	should	be	a
JSON	object	with	primitive	or	list	of	primitive	values.

call	invokeHttp(...	headers=>jsonObject('application/json'	as	"Content-Type",	jsonArray('gzip',	'deflate')	as	"

Accept-Encoding"))

Recommendations	for	setting	headers	parameter:

	Content-Type		might	be	necessary	if	the	HTTP	POST/PUT	method	is	invoked.

Accept	is	necessary	if	you	want	to	control	return	Media	Type.

WSDL	based	procedures
The	procedures	above	give	you	anonymous	way	to	execute	any	web	service	methods	by	supplying	an	endpoint,	with	this
mechanism	you	can	alter	the	endpoint	defined	in	WSDL	with	a	different	endpoint.	However,	if	you	have	access	to	the	WSDL,
then	you	can	configure	the	WSDL	URL	in	the	web-service	resource-adapter’s	connection	configuration,	Web	Service	translator
can	parse	the	WSDL	and	provide	the	methods	under	configured	port	as	pre-built	procedures	as	its	metadata.	If	you	are	using	the
default	native	metadata	import,	you	will	see	the	procedures	in	your	web	service’s	source	model.

Note Native	queries
You	cannot	use	native	queries	or	direct	query	execution	procedures	with	the	web	services	translator.

Streaming	considerations

Web	Services	translator

706

If	the	stream	parameter	is	set	to		true	,	then	the	resulting	LOB	value	may	only	be	used	a	single	time.	If	stream	is		null		or
	false	,	then	the	engine	may	need	to	save	a	copy	of	the	result	for	repeated	use.	Care	must	be	used	as	some	operations,	such	as
casting	or		XMLPARSE		might	perform	validation	which	results	in	the	stream	being	consumed.

JCA	resource	adapter
The	resource	adapter	for	this	translator	is	a	Web	Service	Data	Source.

The	WS	resource	adapter	may	optionally	be	configured	to	point	at	a	specific	WSDL.

Note WS-Security	-	Currently	you	can	only	use	WSDL-based	Procedures	participate	in	WS-Security,	when	resource-
adapter	is	configured	with	correct	CXF	configuration.

Web	Services	translator

707

Federated	Planning
At	its	core,	Teiid	is	a	federated,	relational	query	engine.	This	query	engine	allows	you	to	treat	all	of	your	data	sources	as	one
virtual	database,	and	access	them	through	a	single	SQL	query.	As	a	result,	instead	of	focusing	on	hand-coding	joins,	you	can	focus
on	building	your	application,	and	on	running	other	relational	operations	between	data	sources.

Federated	planning

708

Planning	Overview
When	the	query	engine	receives	an	incoming	SQL	query	it	performs	the	following	operations:

1.	 Parsing — Validates	syntax	and	convert	to	internal	form.

2.	 Resolving — Links	all	identifiers	to	metadata	and	functions	to	the	function	library.

3.	 Validating — Validates	SQL	semantics	based	on	metadata	references	and	type	signatures.

4.	 Rewriting — Rewrites	SQL	to	simplify	expressions	and	criteria.

5.	 Logical	plan	optimization — Converts	the	rewritten	canonical	SQL	to	a	logical	plan	for	in-depth	optimization.	The	Teiid
optimizer	is	predominantly	rule-based.	Based	upon	the	query	structure	and	hints,	a	certain	rule	set	will	be	applied.	These
rules	may	trigger	in	turn	trigger	the	execution	of	more	rules.	Within	several	rules,	Teiid	also	takes	advantage	of	costing
information.	The	logical	plan	optimization	steps	can	be	seen	by	using	the	`SET	SHOWPLAN	DEBUG`clause,	as	described
in	the	Client	Development	Guide.	For	sample	steps,	see	Reading	a	debug	plan	in	Query	Planner.	For	more	information	about
logical	plan	nodes	and	rule-based	optimization,	see	Query	Planner.

6.	 Processing	plan	conversion — Converts	the	logic	plan	to	an	executable	form	where	the	nodes	represent	basic	processing
operations.	The	final	processing	plan	is	displayed	as	a	query	plan.	For	more	information,	see	Query	plans.

The	logical	query	plan	is	a	tree	of	operations	that	is	used	to	transform	data	in	source	tables	to	the	expected	result	set.	In	the	tree,
data	flows	from	the	bottom	(tables)	to	the	top	(output).	The	primary	logical	operations	are	select	(select	or	filter	rows	based	on	a
criteria),	project	(project	or	compute	column	values),	join,	source	(retrieve	data	from	a	table),	sort	(ORDER	BY),	duplicate
removal	(SELECT	DISTINCT),	group	(GROUP	BY),	and	union	(UNION).

For	example,	consider	the	following	query	that	retrieves	all	engineering	employees	born	since	1970.

Example	query

SELECT	e.title,	e.lastname	FROM	Employees	AS	e	JOIN	Departments	AS	d	ON	e.dept_id	=	d.dept_id	WHERE	year(e.birt

hday)	>=	1970	AND	d.dept_name	=	'Engineering'

Logically,	the	data	from	the	Employees	and	Departments	tables	are	retrieved,	then	joined,	then	filtered	as	specified,	and	finally	the
output	columns	are	projected.	The	canonical	query	plan	thus	looks	like	this:

Planning	overview

709

Data	flows	from	the	tables	at	the	bottom	upwards	through	the	join,	through	the	select,	and	finally	through	the	project	to	produce
the	final	results.	The	data	passed	between	each	node	is	logically	a	result	set	with	columns	and	rows.

Of	course,	this	is	what	happens	logically — it	is	not	how	the	plan	is	actually	executed.	Starting	from	this	initial	plan,	the	query
planner	performs	transformations	on	the	query	plan	tree	to	produce	an	equivalent	plan	that	retrieves	the	same	results	faster.	Both	a
federated	query	planner	and	a	relational	database	planner	deal	with	the	same	concepts	and	many	of	the	same	plan	transformations.
In	this	example,	the	criteria	on	the	Departments	and	Employees	tables	will	be	pushed	down	the	tree	to	filter	the	results	as	early	as
possible.

In	both	cases,	the	goal	is	to	retrieve	the	query	results	in	the	fastest	possible	time.	However,	the	relational	database	planner	achieve
this	primarily	by	optimizing	the	access	paths	in	pulling	data	from	storage.

In	contrast,	a	federated	query	planner	is	less	concerned	about	storage	access,	because	it	is	typically	pushing	that	burden	to	the	data
source.	The	most	important	consideration	for	a	federated	query	planner	is	minimizing	data	transfer.

Planning	overview

710

Query	planner
For	each	sub-command	in	the	user	command	an	appropriate	kind	of	sub-planner	is	used	(relational,	XML,	procedure,	etc).

Each	planner	has	three	primary	phases:

1.	 Generate	canonical	plan

2.	 Optimization

3.	 Plan	to	process	converter — Converts	plan	data	structure	into	a	processing	form.

Relational	planner
A	relational	processing	plan	is	created	by	the	optimizer	after	the	logical	plan	is	manipulated	by	a	series	of	rules.	The	application	of
rules	is	determined	both	by	the	query	structure	and	by	the	rules	themselves.	The	node	structure	of	the	debug	plan	resembles	that	of
the	processing	plan,	but	the	node	types	more	logically	represent	SQL	operations.

Canonical	plan	and	all	nodes
As	described	in	the	Planning	overview,	a	SQL	statement	submitted	to	the	query	engine	is	parsed,	resolved,	validated,	and
rewritten	before	it	is	converted	into	a	canonical	plan	form.	The	canonical	plan	form	most	closely	resembles	the	initial	SQL
structure.	A	SQL	select	query	has	the	following	possible	clauses	(all	but	SELECT	are	optional):	WITH,	SELECT,	FROM,
WHERE,	GROUP	BY,	HAVING,	ORDER	BY,	LIMIT.	These	clauses	are	logically	executed	in	the	following	order:

1.	 WITH	(create	common	table	expressions) — Processed	by	a	specialized	PROJECT	NODE.

2.	 FROM	(read	and	join	all	data	from	tables) — Processed	by	a	SOURCE	node	for	each	from	clause	item,	or	a	Join	node	(if	>1
table).

3.	 WHERE	(filter	rows) — Processed	by	a	SELECT	node.

4.	 GROUP	BY	(group	rows	into	collapsed	rows) — Processed	by	a	GROUP	node.

5.	 HAVING	(filter	grouped	rows) — Processed	by	a	SELECT	node.

6.	 SELECT	(evaluate	expressions	and	return	only	requested	rows) — Processed	by	a	PROJECT	node	and	DUP_REMOVE	node
(for	SELECT	DISTINCT).

7.	 INTO — Processed	by	a	specialized	PROJECT	with	a	SOURCE	child.

8.	 ORDER	BY	(sort	rows) — Processed	by	a	SORT	node.

9.	 LIMIT	(limit	result	set	to	a	certain	range	of	results) — Processed	by	a	LIMIT	node.

For	example,	a	SQL	statement	such	as		SELECT	max(pm1.g1.e1)	FROM	pm1.g1	WHERE	e2	=	1		creates	a	logical	plan:

Query	planner

711

Project(groups=[anon_grp0],	props={PROJECT_COLS=[anon_grp0.agg0	AS	expr1]})

		Group(groups=[anon_grp0],	props={SYMBOL_MAP={anon_grp0.agg0=MAX(pm1.G1.E1)}})

				Select(groups=[pm1.G1],	props={SELECT_CRITERIA=pm1.G1.E2	=	1})

						Source(groups=[pm1.G1])

Here	the	Source	corresponds	to	the	FROM	clause,	the	Select	corresponds	to	the	WHERE	clause,	the	Group	corresponds	to	the
implied	grouping	to	create	the	max	aggregate,	and	the	Project	corresponds	to	the	SELECT	clause.

Note The	effect	of	grouping	generates	what	is	effectively	an	inline	view,		anon_grp0	,	to	handle	the	projection	of
values	created	by	the	grouping.

Table	1.	Node	Types

Type	Name Description

ACCESS A	source	access	or	plan	execution.

DUP_REMOVE Removes	duplicate	rows

JOIN A	join	(LEFT	OUTER,	FULL	OUTER,	INNER,	CROSS,
SEMI,	and	so	forth).

PROJECT A	projection	of	tuple	values

SELECT A	filtering	of	tuples

SORT An	ordering	operation,	which	may	be	inserted	to	process
other	operations	such	as	joins.

SOURCE Any	logical	source	of	tuples	including	an	inline	view,	a
source	access,	XMLTABLE,	and	so	forth.

GROUP A	grouping	operation.

SET_OP A	set	operation	(UNION/INTERSECT/EXCEPT).

NULL A	source	of	no	tuples.

Query	planner

712

TUPLE_LIMIT Row	offset	/	limit

Node	properties
Each	node	has	a	set	of	applicable	properties	that	are	typically	shown	on	the	node.

Table	2.	Access	properties

Property	Name Description

ATOMIC_REQUEST The	final	form	of	a	source	request.

MODEL_ID The	metadata	object	for	the	target
model/schema.

PROCEDURE_CRITERIA/PROCEDURE_INPUTS/PROCEDURE_DEFAULTS Used	in	planning	procedureal
relational	queries.

IS_MULTI_SOURCE set	to	true	when	the	node	represents
a	multi-source	access.

SOURCE_NAME used	to	track	the	multi-source
source	name.

CONFORMED_SOURCES
tracks	the	set	of	conformed	sources
when	the	conformed	extension
metadata	is	used.

SUB_PLAN/SUB_PLANS used	in	multi-source	planning.

Table	3.	Set	operation	properties

Property	Name Description

SET_OPERATION/USE_ALL defines	the	set	operation(UNION/INTERSECT/EXCEPT)
and	if	all	rows	or	distinct	rows	are	used.

Table	4.	Join	properties

Property	Name Description

JOIN_CRITERIA All	join	predicates.

JOIN_TYPE Type	of	join	(INNER,	LEFT	OUTER,	and	so	forth).

JOIN_STRATEGY The	algorithm	to	use	(nested	loop,	merge,	and	so	forth).

LEFT_EXPRESSIONS The	expressions	in	equi-join	predicates	that	originate	from
the	left	side	of	the	join.

RIGHT_EXPRESSIONS The	expressions	in	equi-join	predicates	that	originate	from
the	right	side	of	the	join.

DEPENDENT_VALUE_SOURCE set	if	a	dependent	join	is	used.

NON_EQUI_JOIN_CRITERIA Non-equi	join	predicates.

SORT_LEFT If	the	left	side	needs	sorted	for	join	processing.

Query	planner

713

SORT_RIGHT If	the	right	side	needs	sorted	for	join	processing.

IS_OPTIONAL If	the	join	is	optional.

IS_LEFT_DISTINCT If	the	left	side	is	distinct	with	respect	to	the	equi	join
predicates.

IS_RIGHT_DISTINCT If	the	right	side	is	distinct	with	respect	to	the	equi	join
predicates.

IS_SEMI_DEP If	the	dependent	join	represents	a	semi-join.

PRESERVE If	the	preserve	hint	is	preserving	the	join	order.

Table	5.	Project	properties

Property	Name Description

PROJECT_COLS The	expressions	projected.

INTO_GROUP The	group	targeted	if	this	is	a	select	into	or	insert	with	a
query	expression.

HAS_WINDOW_FUNCTIONS True	if	window	functions	are	used.

CONSTRAINT The	constraint	that	must	be	met	if	the	values	are	being
projected	into	a	group.

UPSERT If	the	insert	is	an	upsert.

Table	6.	Select	properties

Property	Name Description

SELECT_CRITERIA The	filter.

IS_HAVING If	the	filter	is	applied	after	grouping.

IS_PHANTOM True	if	the	node	is	marked	for	removal,	but	temporarily	left
in	the	plan.

IS_TEMPORARY Inferred	criteria	that	may	not	be	used	in	the	final	plan.

IS_COPIED If	the	criteria	has	already	been	processed	by	rule	copy
criteria.

IS_PUSHED If	the	criteria	is	pushed	as	far	as	possible.

IS_DEPENDENT_SET If	the	criteria	is	the	filter	of	a	dependent	join.

Table	7.	Sort	properties

Property	Name Description

SORT_ORDER The	order	by	that	defines	the	sort.

UNRELATED_SORT If	the	ordering	includes	a	value	that	is	not	being	projected.

Query	planner

714

IS_DUP_REMOVAL If	the	sort	should	also	perform	duplicate	removal	over	the
entire	projection.

Table	8.	Source	properties

Property	Name Description

SYMBOL_MAP The	mapping	from	the	columns	above	the	source	to	the
projected	expressions.	Also	present	on	Group	nodes.

PARTITION_INFO The	partitioning	of	the	union	branches.

VIRTUAL_COMMAND If	the	source	represents	an	view	or	inline	view,	the	query
that	defined	the	view.

MAKE_DEP Hint	information.

PROCESSOR_PLAN The	processor	plan	of	a	non-relational	source(typically
from	the	NESTED_COMMAND).

NESTED_COMMAND The	non-relational	command.

TABLE_FUNCTION The	table	function	(XMLTABLE,	OBJECTTABLE,	and	so
forth.)	defining	the	source.

CORRELATED_REFERENCES The	correlated	references	for	the	nodes	below	the	source.

MAKE_NOT_DEP If	make	not	dep	is	set.

INLINE_VIEW If	the	source	node	represents	an	inline	view.

NO_UNNEST If	the	no_unnest	hint	is	set.

MAKE_IND If	the	make	ind	hint	is	set.

SOURCE_HINT The	source	hint.	See	Federated	optimizations.

ACCESS_PATTERNS Access	patterns	yet	to	be	satisfied.

ACCESS_PATTERN_USED Satisfied	access	patterns.

REQUIRED_ACCESS_PATTERN_GROUPS Groups	needed	to	satisfy	the	access	patterns.	Used	in	join
planning.

Note Many	source	properties	also	become	present	on	associated	access	nodes.

Table	9.	Group	properties

Property	Name Description

GROUP_COLS The	grouping	columns.

ROLLUP If	the	grouping	includes	a	rollup.

Table	10.	Tuple	limit	properties

Query	planner

715

Property	Name Description

MAX_TUPLE_LIMIT Expression	that	evaluates	to	the	max	number	of	tuples
generated.

OFFSET_TUPLE_COUNT Expression	that	evaluates	to	the	tuple	offset	of	the	starting
tuple.

IS_IMPLICIT_LIMIT If	the	limit	is	created	by	the	rewriter	as	part	of	a	subquery
optimization.

IS_NON_STRICT If	the	unordered	limit	should	not	be	enforced	strictly.

Table	11.	General	and	costing	properties

Property	Name Description

OUTPUT_COLS The	output	columns	for	the	node.	Is	typically	set	after	rule
assign	output	elements.

EST_SET_SIZE
Represents	the	estimated	set	size	this	node	would	produce
for	a	sibling	node	as	the	independent	node	in	a	dependent
join	scenario.

EST_DEP_CARDINALITY
Value	that	represents	the	estimated	cardinality	(amount	of
rows)	produced	by	this	node	as	the	dependent	node	in	a
dependent	join	scenario.

EST_DEP_JOIN_COST Value	that	represents	the	estimated	cost	of	a	dependent	join
(the	join	strategy	for	this	could	be	Nested	Loop	or	Merge).

EST_JOIN_COST Value	that	represents	the	estimated	cost	of	a	merge	join	(the
join	strategy	for	this	could	be	Nested	Loop	or	Merge).

EST_CARDINALITY Represents	the	estimated	cardinality	(amount	of	rows)
produced	by	this	node.

EST_COL_STATS Column	statistics	including	number	of	null	values,	distinct
value	count,	and	so	forth.

EST_SELECTIVITY Represents	the	selectivity	of	a	criteria	node.

Rules
Relational	optimization	is	based	upon	rule	execution	that	evolves	the	initial	plan	into	the	execution	plan.	There	are	a	set	of	pre-
defined	rules	that	are	dynamically	assembled	into	a	rule	stack	for	every	query.	The	rule	stack	is	assembled	based	on	the	contents
of	the	user’s	query	and	the	views/procedures	accessed.	For	example,	if	there	are	no	view	layers,	then	rule	Merge	Virtual,	which
merges	view	layers	together,	is	not	needed	and	will	not	be	added	to	the	stack.		This	allows	the	rule	stack	to	reflect	the	complexity
of	the	query.

Logically	the	plan	node	data	structure	represents	a	tree	of	nodes	where	the	source	data	comes	up	from	the	leaf	nodes	(typically
Access	nodes	in	the	final	plan),	flows	up	through	the	tree	and	produces	the	user’s	results	out	the	top.	The	nodes	in	the	plan
structure	can	have	bidirectional	links,	dynamic	properties,	and	allow	any	number	of	child	nodes.	Processing	plans	in	contrast
typically	have	fixed	properties.

Plan	rule	manipulate	the	plan	tree,	fire	other	rules,	and	drive	the	optimization	process.	Each	rule	is	designed	to	perform	a	narrow
set	of	tasks.	Some	rules	can	be	run	multiple	times.	Some	rules	require	a	specific	set	of	precursors	to	run	properly.

Access	Pattern	Validation — Ensures	that	all	access	patterns	have	been	satisfied.

Query	planner

716

Apply	Security — Applies	row	and	column	level	security.

Assign	Output	Symbol — This	rule	walks	top	down	through	every	node	and	calculates	the	output	columns	for	each	node.
Columns	that	are	not	needed	are	dropped	at	every	node,	which	is	known	as	projection	minimization.	This	is	done	by	keeping
track	of	both	the	columns	needed	to	feed	the	parent	node	and	also	keeping	track	of	columns	that	are	"created"	at	a	certain
node.

Calculate	Cost — Adds	costing	information	to	the	plan

Choose	Dependent — This	rule	looks	at	each	join	node	and	determines	whether	the	join	should	be	made	dependent	and	in
which	direction.	Cardinality,	the	number	of	distinct	values,	and	primary	key	information	are	used	in	several	formulas	to
determine	whether	a	dependent	join	is	likely	to	be	worthwhile.	The	dependent	join	differs	in	performance	ideally	because	a
fewer	number	of	values	will	be	returned	from	the	dependent	side.

Also,	we	must	consider	the	number	of	values	passed	from	independent	to	dependent	side.	If	that	set	is	larger	than	the
maximum	number	of	values	in	an	IN	criteria	on	the	dependent	side,	then	we	must	break	the	query	into	a	set	of	queries	and
combine	their	results.	Executing	each	query	in	the	connector	has	some	overhead	and	that	is	taken	into	account.	Without
costing	information	a	lot	of	common	cases	where	the	only	criteria	specified	is	on	a	non-unique	(but	strongly	limiting)	field
are	missed.

A	join	is	eligible	to	be	dependent	if:

There	is	at	least	one	equi-join	criterion,	for	example,		tablea.col	=	tableb.col	

The	join	is	not	a	full	outer	join	and	the	dependent	side	of	the	join	is	on	the	inner	side	of	the	join.

The	join	will	be	made	dependent	if	one	of	the	following	conditions,	listed	in	precedence	order,	holds:

There	is	an	unsatisfied	access	pattern	that	can	be	satisfied	with	the	dependent	join	criteria.

The	potential	dependent	side	of	the	join	is	marked	with	an	option	makedep.

(4.3.2)	if	costing	was	enabled,	the	estimated	cost	for	the	dependent	join	(5.0+	possibly	in	each	direction	in	the	case	of	inner
joins)	is	computed	and	compared	to	not	performing	the	dependent	join.	If	the	costs	were	all	determined	(which	requires	all
relevant	table	cardinality,	column	ndv,	and	possibly	nnv	values	to	be	populated)	the	lowest	is	chosen.

If	key	metadata	information	indicates	that	the	potential	dependent	side	is	not	"small"	and	the	other	side	is	"not	small"	or
(5.0.1)	the	potential	dependent	side	is	the	inner	side	of	a	left	outer	join.

Dependent	join	is	the	key	optimization	we	use	to	efficiently	process	multi-source	joins.	Instead	of	reading	all	of	source	A	and	all
of	source	B	and	joining	them	on	A.x	=	B.x,	we	read	all	of	A,	and	then	build	a	set	of	A.x	that	are	passed	as	a	criteria	when
querying	B.	In	cases	where	A	is	small	and	B	is	large,	this	can	drastically	reduce	the	data	retrieved	from	B,	thus	greatly	speeding
the	overall	query.

Choose	Join	Strategy — Choose	the	join	strategy	based	upon	the	cost	and	attributes	of	the	join.

Clean	Criteria — Removes	phantom	criteria.

Collapse	Source — Takes	all	of	the	nodes	below	an	access	node	and	creates	a	SQL	query	representation.

Copy	Criteria — This	rule	copies	criteria	over	an	equality	criteria	that	is	present	in	the	criteria	of	a	join.	Since	the	equality
defines	an	equivalence,	this	is	a	valid	way	to	create	a	new	criteria	that	may	limit	results	on	the	other	side	of	the	join
(especially	in	the	case	of	a	multi-source	join).

Decompose	Join — This	rule	performs	a	partition-wise	join	optimization	on	joins	of	a	partitioned	union.	For	more
information,	see	Partitioned	unions	in	Federated	optimizations.	The	decision	to	decompose	is	based	upon	detecting	that	each
side	of	the	join	is	a	partitioned	union	(note	that	non-ANSI	joins	of	more	than	2	tables	may	cause	the	optimization	to	not
detect	the	appropriate	join).	The	rule	currently	only	looks	for	situations	where	at	most	1	partition	matches	from	each	side.

Implement	Join	Strategy — Adds	necessary	sort	and	other	nodes	to	process	the	chosen	join	strategy

Query	planner

717

Merge	Criteria — Combines	select	nodes

Merge	Virtual — Removes	view	and	inline	view	layers

Place	Access — Places	access	nodes	under	source	nodes.	An	access	node	represents	the	point	at	which	everything	below	the
access	node	gets	pushed	to	the	source	or	is	a	plan	invocation.	Later	rules	focus	on	either	pushing	under	the	access	or	pulling
the	access	node	up	the	tree	to	move	more	work	down	to	the	sources.	This	rule	is	also	responsible	for	placing	access	patterns.
For	more	information,	see	Access	patterns	in	Federated	optimizations

Plan	Joins — This	rule	attempts	to	find	an	optimal	ordering	of	the	joins	performed	in	the	plan,	while	ensuring	that	access
pattern	dependencies	are	met.	This	rule	has	three	main	steps.

1.	 It	must	determine	an	ordering	of	joins	that	satisfy	the	access	patterns	present.

2.	 It	will	heuristically	create	joins	that	can	be	pushed	to	the	source	(if	a	set	of	joins	are	pushed	to	the	source,	we	will	not
attempt	to	create	an	optimal	ordering	within	that	set.	More	than	likely	it	will	be	sent	to	the	source	in	the	non-ANSI
multi-join	syntax	and	will	be	optimized	by	the	database).

3.	 It	will	use	costing	information	to	determine	the	best	left-linear	ordering	of	joins	performed	in	the	processing	engine.
This	third	step	will	do	an	exhaustive	search	for	7	or	less	join	sources	and	is	heuristically	driven	by	join	selectivity	for	8
or	more	sources.

Plan	Outer	Joins — Reorders	outer	joins	as	permitted	to	improve	push	down.

Plan	Procedures — Plans	procedures	that	appear	in	procedural	relational	queries.

Plan	Sorts — Optimizations	around	sorting,	such	as	combining	sort	operations	or	moving	projection.

Plan	Subqueries — New	for	Teiid	12.	Generalizes	the	subquery	optimization	that	was	performed	in	Merge	Criteria	to	allow
for	the	creation	of	join	plans	from	subqueries	in	both	projection	and	filtering.

Plan	Unions — Reorders	union	children	for	more	pushdown.

Plan	Aggregates — Performs	aggregate	decomposition	over	a	join	or	union.

Push	Limit — Pushes	the	affect	of	a	limit	node	further	into	the	plan.

Push	Non-Join	Criteria — This	rule	will	push	predicates	out	of	an	on	clause	if	it	is	not	necessary	for	the	correctness	of	the
join.

Push	Select	Criteria — Push	select	nodes	as	far	as	possible	through	unions,	joins,	and	views	layers	toward	the	access	nodes.
In	most	cases	movement	down	the	tree	is	good	as	this	will	filter	rows	earlier	in	the	plan.	We	currently	do	not	undo	the
decisions	made	by	Push	Select	Criteria.		However	in	situations	where	criteria	cannot	be	evaluated	by	the	source,	this	can	lead
to	sub-optimal	plans.

Push	Large	IN — Push		IN		predicates	that	are	larger	than	the	translator	can	process	directly	to	be	processed	as	a	dependent
set.

One	of	the	most	important	optimization	related	to	pushing	criteria,	is	how	the	criteria	will	be	pushed	through	join.	Consider	the
following	plan	tree	that	represents	a	subtree	of	the	plan	for	the	query		select	*	from	A	inner	join	b	on	(A.x	=	B.x)	where	B.y
=	3	

				SELECT	(B.y	=	3)

											|

										JOIN	-	Inner	Join	on	(A.x	=	B.x)

									/					\

						SRC	(A)			SRC	(B)

Note SELECT	nodes	represent	criteria,	and	SRC	stands	for	SOURCE.

Query	planner

718

It	is	always	valid	for	inner	join	and	cross	joins	to	push	(single	source)	criteria	that	are	above	the	join,	below	the	join.	This	allows
for	criteria	originating	in	the	user	query	to	eventually	be	present	in	source	queries	below	the	joins.	This	result	can	be	represented
visually	as:

				JOIN	-	Inner	Join	on	(A.x	=	B.x)

										/				\

									/			SELECT	(B.y	=	3)

								|								|

						SRC	(A)			SRC	(B)

The	same	optimization	is	valid	for	criteria	specified	against	the	outer	side	of	an	outer	join.	For	example:

					SELECT	(B.y	=	3)

											|

										JOIN	-	Right	Outer	Join	on	(A.x	=	B.x)

									/					\

						SRC	(A)			SRC	(B)

Becomes

										JOIN	-	Right	Outer	Join	on	(A.x	=	B.x)

										/				\

									/			SELECT	(B.y	=	3)

								|								|

						SRC	(A)			SRC	(B)

However	criteria	specified	against	the	inner	side	of	an	outer	join	needs	special	consideration.	The	above	scenario	with	a	left	or	full
outer	join	is	not	the	same.	For	example:

						SELECT	(B.y	=	3)

											|

										JOIN	-	Left	Outer	Join	on	(A.x	=	B.x)

									/					\

						SRC	(A)			SRC	(B)

Can	become	(available	only	after	5.0.2):

				JOIN	-	Inner	Join	on	(A.x	=	B.x)

										/				\

									/			SELECT	(B.y	=	3)

								|								|

						SRC	(A)			SRC	(B)

Since	the	criterion	is	not	dependent	upon	the	null	values	that	may	be	populated	from	the	inner	side	of	the	join,	the	criterion	is
eligible	to	be	pushed	below	the	join — but	only	if	the	join	type	is	also	changed	to	an	inner	join.	On	the	other	hand,	criteria	that	are
dependent	upon	the	presence	of	null	values	CANNOT	be	moved.	For	example:

				SELECT	(B.y	is	null)

											|

										JOIN	-	Left	Outer	Join	on	(A.x	=	B.x)

									/					\

						SRC	(A)			SRC	(B)

The	preceding	plan	tree	must	have	the	criteria	remain	above	the	join,	becuase	the	outer	join	may	be	introducing	null	values	itself.

Raise	Access — This	rule	attempts	to	raise	the	Access	nodes	as	far	up	the	plan	as	posssible.	This	is	mostly	done	by	looking	at
the	source’s	capabilities	and	determining	whether	the	operations	can	be	achieved	in	the	source	or	not.

Query	planner

719

Raise	Null — Raises	null	nodes.	Raising	a	null	node	removes	the	need	to	consider	any	part	of	the	old	plan	that	was	below	the
null	node.

Remove	Optional	Joins — Removes	joins	that	are	marked	as	or	determined	to	be	optional.

Substitute	Expressions — Used	only	when	a	function	based	index	is	present.

Validate	Where	All — Ensures	criteria	is	used	when	required	by	the	source.

Cost	calculations
The	cost	of	node	operations	is	primarily	determined	by	an	estimate	of	the	number	of	rows	(also	referred	to	as	cardinality)	that	will
be	processed	by	it.	The	optimizer	will	typically	compute	cardinalities	from	the	bottom	up	of	the	plan	(or	subplan)	at	several	points
in	time	with	planning — once	generally	with	rule	calculate	cost,	and	then	specifically	for	join	planning	and	other	decisions.	The
cost	calculation	is	mainly	directed	by	the	statistics	set	on	physical	tables	(cardinality,	NNV,	NDV,	and	so	forth)	and	is	also
influenced	by	the	presence	of	constraints	(unique,	primary	key,	index,	and	so	forth).	If	there	is	a	situation	that	seems	like	a	sub-
optimal	plan	is	being	chosen,	you	should	first	ensure	that	at	least	representative	table	cardinalities	are	set	on	the	physical	tables
involved.

Reading	a	debug	plan
As	each	relational	sub	plan	is	optimized,	the	plan	will	show	what	is	being	optimized	and	it’s	canonical	form:

OPTIMIZE:

SELECT	e1	FROM	(SELECT	e1	FROM	pm1.g1)	AS	x

--

GENERATE	CANONICAL:

SELECT	e1	FROM	(SELECT	e1	FROM	pm1.g1)	AS	x

CANONICAL	PLAN:

Project(groups=[x],	props={PROJECT_COLS=[e1]})

		Source(groups=[x],	props={NESTED_COMMAND=SELECT	e1	FROM	pm1.g1,	SYMBOL_MAP={x.e1=e1}})

				Project(groups=[pm1.g1],	props={PROJECT_COLS=[e1]})

						Source(groups=[pm1.g1])

With	more	complicated	user	queries,	such	as	a	procedure	invocation	or	one	containing	subqueries,	the	sub-plans	may	be	nested
within	the	overall	plan.	Each	plan	ends	by	showing	the	final	processing	plan:

--

OPTIMIZATION	COMPLETE:

PROCESSOR	PLAN:

AccessNode(0)	output=[e1]	SELECT	g_0.e1	FROM	pm1.g1	AS	g_0

The	affect	of	rules	can	be	seen	by	the	state	of	the	plan	tree	before	and	after	the	rule	fires.	For	example,	the	debug	log	below	shows
the	application	of	rule	merge	virtual,	which	will	remove	the	"x"	inline	view	layer:

EXECUTING	AssignOutputElements

AFTER:

Project(groups=[x],	props={PROJECT_COLS=[e1],	OUTPUT_COLS=[e1]})

		Source(groups=[x],	props={NESTED_COMMAND=SELECT	e1	FROM	pm1.g1,	SYMBOL_MAP={x.e1=e1},	OUTPUT_COLS=[e1]})

				Project(groups=[pm1.g1],	props={PROJECT_COLS=[e1],	OUTPUT_COLS=[e1]})

						Access(groups=[pm1.g1],	props={SOURCE_HINT=null,	MODEL_ID=Schema	name=pm1,	nameInSource=null,	uuid=3335,	

OUTPUT_COLS=[e1]})

								Source(groups=[pm1.g1],	props={OUTPUT_COLS=[e1]})

==

EXECUTING	MergeVirtual

AFTER:

Project(groups=[pm1.g1],	props={PROJECT_COLS=[e1],	OUTPUT_COLS=[e1]})

Query	planner

720

		Access(groups=[pm1.g1],	props={SOURCE_HINT=null,	MODEL_ID=Schema	name=pm1,	nameInSource=null,	uuid=3335,	OUTP

UT_COLS=[e1]})

				Source(groups=[pm1.g1])

Some	important	planning	decisions	are	shown	in	the	plan	as	they	occur	as	an	annotation.	For	example,	the	following	code	snippet
shows	that	the	access	node	could	not	be	raised,	because	the	parent		SELECT		node	contained	an	unsupported	subquery.

Project(groups=[pm1.g1],	props={PROJECT_COLS=[e1],	OUTPUT_COLS=null})

		Select(groups=[pm1.g1],	props={SELECT_CRITERIA=e1	IN	/*+	NO_UNNEST	*/	(SELECT	e1	FROM	pm2.g1),	OUTPUT_COLS=nu

ll})

				Access(groups=[pm1.g1],	props={SOURCE_HINT=null,	MODEL_ID=Schema	name=pm1,	nameInSource=null,	uuid=3341,	OU

TPUT_COLS=null})

						Source(groups=[pm1.g1],	props={OUTPUT_COLS=null})

==

EXECUTING	RaiseAccess

LOW	Relational	Planner	SubqueryIn	is	not	supported	by	source	pm1	-	e1	IN	/*+	NO_UNNEST	*/	(SELECT	e1	FROM	pm2.g

1)	was	not	pushed

AFTER:

Project(groups=[pm1.g1])

		Select(groups=[pm1.g1],	props={SELECT_CRITERIA=e1	IN	/*+	NO_UNNEST	*/	(SELECT	e1	FROM	pm2.g1),	OUTPUT_COLS=nu

ll})

				Access(groups=[pm1.g1],	props={SOURCE_HINT=null,	MODEL_ID=Schema	name=pm1,	nameInSource=null,	uuid=3341,	OU

TPUT_COLS=null})

						Source(groups=[pm1.g1])

Procedure	planner
The	procedure	planner	is	fairly	simple.	It	converts	the	statements	in	the	procedure	into	instructions	in	a	program	that	will	be	run
during	processing.	This	is	mostly	a	1-to-1	mapping	and	very	little	optimization	is	performed.

XQuery
XQuery	is	eligible	for	specific	optimizations.	For	more	information,	see	XQuery	optimization.	Document	projection	is	the	most
common	optimization.	It	will	be	shown	in	the	debug	plan	as	an	annotation.	For	example,	with	the	user	query	that	contains
"xmltable('/a/b'	passing	doc	columns	x	string	path	'@x',	val	string	path	'.')",	the	debug	plan	would	show	a	tree	of	the	document	that
will	effectively	be	used	by	the	context	and	path	XQuerys:

MEDIUM	XQuery	Planning	Projection	conditions	met	for	/a/b	-	Document	projection	will	be	used

child	element(Q{}a)

		child	element(Q{}b)

				attribute	attribute(Q{}x)

						child	text()

				child	text()

Query	planner

721

Query	plans
When	integrating	information	using	a	federated	query	planner	it	is	useful	to	view	the	query	plans	to	better	understand	how
information	is	being	accessed	and	processed,	and	to	troubleshoot	problems.

A	query	plan	(also	known	as	an	execution	or	processing	plan)	is	a	set	of	instructions	created	by	a	query	engine	for	executing	a
command	submitted	by	a	user	or	application.	The	purpose	of	the	query	plan	is	to	execute	the	user’s	query	in	as	efficient	a	way	as
possible.

Getting	a	query	plan
You	can	get	a	query	plan	any	time	you	execute	a	command.	The	following	SQL	options	are	available:

SET	SHOWPLAN	[ON|DEBUG]-	Returns	the	processing	plan	or	the	plan	and	the	full	planner	debug	log.	For	more	information,
see	Reading	a	debug	plan	in	Query	planner	and	SET	statement	in	the	Client	Developer’s	Guide.	With	the	above	options,	the	query
plan	is	available	from	the	Statement	object	by	casting	to	the		org.teiid.jdbc.TeiidStatement		interface	or	by	using	the	SHOW
PLAN	statement.	For	more	information,	see	SHOW	Statement	in	the	Client	Developer’s	Guide.	Alternatively	you	may	use	the
EXPLAIN	statement.	For	more	information,	see,	Explain	statement.

Retrieving	a	query	plan	using	Teiid	extensions

statement.execute("set	showplan	on");

ResultSet	rs	=	statement.executeQuery("select	...");

TeiidStatement	tstatement	=	statement.unwrap(TeiidStatement.class);

PlanNode	queryPlan	=	tstatement.getPlanDescription();

System.out.println(queryPlan);

Retrieving	a	query	plan	using	statements

statement.execute("set	showplan	on");

ResultSet	rs	=	statement.executeQuery("select	...");

...

ResultSet	planRs	=	statement.executeQuery("show	plan");

planRs.next();

System.out.println(planRs.getString("PLAN_XML"));

Retrieving	a	query	plan	using	explain

ResultSet	rs	=	statement.executeQuery("explain	select	...");

System.out.println(rs.getString("QUERY	PLAN"));

The	query	plan	is	made	available	automatically	in	several	of	Teiid’s	tools.

Analyzing	a	query	plan
After	you	obtain	a	query	plan,	you	can	examine	it	for	the	following	items:

Source	pushdown — What	parts	of	the	query	that	got	pushed	to	each	source

Ensure	that	any	predicates	especially	against	indexes	are	pushed

Joins — As	federated	joins	can	be	quite	expensive

Join	ordering — Typically	influenced	by	costing

Join	criteria	type	mismatches.

Join	algorithm	used — Merge,	enhanced	merge,	nested	loop,	and	so	forth.

Presence	of	federated	optimizations,	such	as	dependent	joins.

Query	plans

722

Ensure	hints	have	the	desired	affects.	For	more	information	about	using	hints,	see	the	following	additional	resources:

Hints	and	Options	in	the	Caching	Guide.

FROM	clause	hints	in	FROM	clause.

Subquery	optimization.

Federated	optimizations.

You	can	determine	all	of	information	in	the	preceding	list	from	the	processing	plan.	You	will	typically	be	interested	in	analyzing
the	textual	form	of	the	final	processing	plan.	To	understand	why	particular	decisions	are	made	for	debugging	or	support	you	will
want	to	obtain	the	full	debug	log	which	will	contain	the	intermediate	planning	steps	as	well	as	annotations	as	to	why	specific
pushdown	decisions	are	made.

A	query	plan	consists	of	a	set	of	nodes	organized	in	a	tree	structure.	If	you	are	executing	a	procedure,	the	overall	query	plan	will
contain	additional	information	related	the	surrounding	procedural	execution.

In	a	procedural	context	the	ordering	of	child	nodes	implies	the	order	of	execution.	In	most	other	situation,	child	nodes	may	be
executed	in	any	order	even	in	parallel.	Only	in	specific	optimizations,	such	as	dependent	join,	will	the	children	of	a	join	execute
serially.

Relational	query	plans
Relational	plans	represent	the	processing	plan	that	is	composed	of	nodes	representing	building	blocks	of	logical	relational
operations.	Relational	processing	plans	differ	from	logical	debug	relational	plans	in	that	they	will	contain	additional	operations
and	execution	specifics	that	were	chosen	by	the	optimizer.

The	nodes	for	a	relational	query	plan	are:

Access — Access	a	source.	A	source	query	is	sent	to	the	connection	factory	associated	with	the	source.	(For	a	dependent	join,
this	node	is	called	Dependent	Access.)

Dependent	procedure	access — Access	a	stored	procedure	on	a	source	using	multiple	sets	of	input	values.

Batched	update — Processes	a	set	of	updates	as	a	batch.

Project — Defines	the	columns	returned	from	the	node.	This	does	not	alter	the	number	of	records	returned.

Project	into — Like	a	normal	project,	but	outputs	rows	into	a	target	table.

Insert	plan	execution — Similar	to	a	project	into,	but	executes	a	plan	rather	than	a	source	query.	Typically	created	when
executing	an	insert	into	view	with	a	query	expression.

Window	function	project — Like	a	normal	project,	but	includes	window	functions.

Select — Select	is	a	criteria	evaluation	filter	node	(WHERE	/	HAVING).

Join — Defines	the	join	type,	join	criteria,	and	join	strategy	(merge	or	nested	loop).

Union	all — There	are	no	properties	for	this	node,	it	just	passes	rows	through	from	it’s	children.	Depending	upon	other
factors,	such	as	if	there	is	a	transaction	or	the	source	query	concurrency	allowed,	not	all	of	the	union	children	will	execute	in
parallel.

Sort — Defines	the	columns	to	sort	on,	the	sort	direction	for	each	column,	and	whether	to	remove	duplicates	or	not.

Dup	remove — Removes	duplicate	rows.	The	processing	uses	a	tree	structure	to	detect	duplicates	so	that	results	will
effectively	stream	at	the	cost	of	IO	operations.

Grouping — Groups	sets	of	rows	into	groups	and	evaluates	aggregate	functions.

Null — A	node	that	produces	no	rows.	Usually	replaces	a	Select	node	where	the	criteria	is	always	false	(and	whatever	tree	is
underneath).	There	are	no	properties	for	this	node.

Query	plans

723

Plan	execution — Executes	another	sub	plan.	Typically	the	sub	plan	will	be	a	non-relational	plan.

Dependent	procedure	execution — Executes	a	sub	plan	using	multiple	sets	of	input	values.

Limit — Returns	a	specified	number	of	rows,	then	stops	processing.	Also	processes	an	offset	if	present.

XML	table — Evaluates	XMLTABLE.	The	debug	plan	will	contain	more	information	about	the	XQuery/XPath	with	regards
to	their	optimization.	For	more	information,	see	XQuery	optimization.

Text	table	-	Evaluates	TEXTTABLE

Array	table	-	Evaluates	ARRAYTABLE

Object	table	-	Evaluates	OBJECTTABLE

Node	statistics
Every	node	has	a	set	of	statistics	that	are	output.	These	can	be	used	to	determine	the	amount	of	data	flowing	through	the	node.
Before	execution	a	processor	plan	will	not	contain	node	statistics.	Also	the	statistics	are	updated	as	the	plan	is	processed,	so
typically	you’ll	want	the	final	statistics	after	all	rows	have	been	processed	by	the	client.

Statistic Description Units

Node	output	rows Number	of	records	output	from	the
node. count

Node	next	batch	process	time Time	processing	in	this	node	only. millisec

Node	cumulative	next	batch	process
time

Time	processing	in	this	node	+	child
nodes. millisec

Node	cumulative	process	time Elapsed	time	from	beginning	of
processing	to	end. millisec

Node	next	batch	calls Number	of	times	a	node	was	called
for	processing. count

Node	blocks Number	of	times	a	blocked	exception
was	thrown	by	this	node	or	a	child. count

In	addition	to	node	statistics,	some	nodes	display	cost	estimates	computed	at	the	node.

Cost	Estimates Description Units

Estimated	node	cardinality
Estimated	number	of	records	that	will
be	output	from	the	node;	-1	if
unknown.

count

The	root	node	will	display	additional	information.

Top	level	statistics Description Units

Data	Bytes	Sent
The	size	of	the	serialized	data	result
(row	and	lob	values)	sent	to	the
client.

bytes

Reading	a	processor	plan

Query	plans

724

The	query	processor	plan	can	be	obtained	in	a	plain	text	or	XML	format.	The	plan	text	format	is	typically	easier	to	read,	while	the
XML	format	is	easier	to	process	by	tooling.	When	possible	tooling	should	be	used	to	examine	the	plans	as	the	tree	structures	can
be	deeply	nested.

Data	flows	from	the	leafs	of	the	tree	to	the	root.	Sub	plans	for	procedure	execution	can	be	shown	inline,	and	are	differentiated	by
different	indentation.	Given	a	user	query	of		SELECT	pm1.g1.e1,	pm1.g2.e2,	pm1.g3.e3	from	pm1.g1	inner	join	(pm1.g2	left
outer	join	pm1.g3	on	pm1.g2.e1=pm1.g3.e1)	on	pm1.g1.e1=pm1.g3.e1	,	the	text	for	a	processor	plan	that	does	not	push	down
the	joins	would	look	like:

ProjectNode

		+	Output	Columns:

				0:	e1	(string)

				1:	e2	(integer)

				2:	e3	(boolean)

		+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

		+	Child	0:

				JoinNode

						+	Output	Columns:

								0:	e1	(string)

								1:	e2	(integer)

								2:	e3	(boolean)

						+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

						+	Child	0:

								JoinNode

										+	Output	Columns:

												0:	e1	(string)

												1:	e1	(string)

												2:	e3	(boolean)

										+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

										+	Child	0:

												AccessNode

														+	Output	Columns:e1	(string)

														+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

														+	Query:SELECT	g_0.e1	AS	c_0	FROM	pm1.g1	AS	g_0	ORDER	BY	c_0

														+	Model	Name:pm1

										+	Child	1:

												AccessNode

														+	Output	Columns:

																0:	e1	(string)

																1:	e3	(boolean)

														+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

														+	Query:SELECT	g_0.e1	AS	c_0,	g_0.e3	AS	c_1	FROM	pm1.g3	AS	g_0	ORDER	BY	c_0

														+	Model	Name:pm1

										+	Join	Strategy:MERGE	JOIN	(ALREADY_SORTED/ALREADY_SORTED)

										+	Join	Type:INNER	JOIN

										+	Join	Criteria:pm1.g1.e1=pm1.g3.e1

						+	Child	1:

								AccessNode

										+	Output	Columns:

												0:	e1	(string)

												1:	e2	(integer)

										+	Cost	Estimates:Estimated	Node	Cardinality:	-1.0

										+	Query:SELECT	g_0.e1	AS	c_0,	g_0.e2	AS	c_1	FROM	pm1.g2	AS	g_0	ORDER	BY	c_0

										+	Model	Name:pm1

						+	Join	Strategy:ENHANCED	SORT	JOIN	(SORT/ALREADY_SORTED)

						+	Join	Type:INNER	JOIN

						+	Join	Criteria:pm1.g3.e1=pm1.g2.e1

		+	Select	Columns:

				0:	pm1.g1.e1

				1:	pm1.g2.e2

				2:	pm1.g3.e3

Query	plans

725

Note	that	the	nested	join	node	is	using	a	merge	join	and	expects	the	source	queries	from	each	side	to	produce	the	expected
ordering	for	the	join.	The	parent	join	is	an	enhanced	sort	join	which	can	delay	the	decision	to	perform	sorting	based	upon	the
incoming	rows.	Note	that	the	outer	join	from	the	user	query	has	been	modified	to	an	inner	join	since	none	of	the	null	inner	values
can	be	present	in	the	query	result.

The	preceding	plan	can	also	be	represented	in	in	XML	format	as	in	the	following	example:

<?xml	version="1.0"	encoding="UTF-8"?>

<node	name="ProjectNode">

				<property	name="Output	Columns">

								<value>e1	(string)</value>

								<value>e2	(integer)</value>

								<value>e3	(boolean)</value>

				</property>

				<property	name="Cost	Estimates">

								<value>Estimated	Node	Cardinality:	-1.0</value>

				</property>

				<property	name="Child	0">

								<node	name="JoinNode">

												<property	name="Output	Columns">

																<value>e1	(string)</value>

																<value>e2	(integer)</value>

																<value>e3	(boolean)</value>

												</property>

												<property	name="Cost	Estimates">

																<value>Estimated	Node	Cardinality:	-1.0</value>

												</property>

												<property	name="Child	0">

																<node	name="JoinNode">

																				<property	name="Output	Columns">

																								<value>e1	(string)</value>

																								<value>e1	(string)</value>

																								<value>e3	(boolean)</value>

																				</property>

																				<property	name="Cost	Estimates">

																								<value>Estimated	Node	Cardinality:	-1.0</value>

																				</property>

																				<property	name="Child	0">

																								<node	name="AccessNode">

																												<property	name="Output	Columns">

																																<value>e1	(string)</value>

																												</property>

																												<property	name="Cost	Estimates">

																																<value>Estimated	Node	Cardinality:	-1.0</value>

																												</property>

																												<property	name="Query">

																																<value>SELECT	g_0.e1	AS	c_0	FROM	pm1.g1	AS	g_0	ORDER	BY	c_0</value>

																												</property>

																												<property	name="Model	Name">

																																<value>pm1</value>

																												</property>

																								</node>

																				</property>

																				<property	name="Child	1">

																								<node	name="AccessNode">

																												<property	name="Output	Columns">

																																<value>e1	(string)</value>

																																<value>e3	(boolean)</value>

																												</property>

																												<property	name="Cost	Estimates">

																																<value>Estimated	Node	Cardinality:	-1.0</value>

																												</property>

																												<property	name="Query">

																																<value>SELECT	g_0.e1	AS	c_0,	g_0.e3	AS	c_1	FROM	pm1.g3	AS	g_0

																																				ORDER	BY	c_0</value>

																												</property>

																												<property	name="Model	Name">

Query	plans

726

																																<value>pm1</value>

																												</property>

																								</node>

																				</property>

																				<property	name="Join	Strategy">

																								<value>MERGE	JOIN	(ALREADY_SORTED/ALREADY_SORTED)</value>

																				</property>

																				<property	name="Join	Type">

																								<value>INNER	JOIN</value>

																				</property>

																				<property	name="Join	Criteria">

																								<value>pm1.g1.e1=pm1.g3.e1</value>

																				</property>

																</node>

												</property>

												<property	name="Child	1">

																<node	name="AccessNode">

																				<property	name="Output	Columns">

																								<value>e1	(string)</value>

																								<value>e2	(integer)</value>

																				</property>

																				<property	name="Cost	Estimates">

																								<value>Estimated	Node	Cardinality:	-1.0</value>

																				</property>

																				<property	name="Query">

																								<value>SELECT	g_0.e1	AS	c_0,	g_0.e2	AS	c_1	FROM	pm1.g2	AS	g_0

																												ORDER	BY	c_0</value>

																				</property>

																				<property	name="Model	Name">

																								<value>pm1</value>

																				</property>

																</node>

												</property>

												<property	name="Join	Strategy">

																<value>ENHANCED	SORT	JOIN	(SORT/ALREADY_SORTED)</value>

												</property>

												<property	name="Join	Type">

																<value>INNER	JOIN</value>

												</property>

												<property	name="Join	Criteria">

																<value>pm1.g3.e1=pm1.g2.e1</value>

												</property>

								</node>

				</property>

				<property	name="Select	Columns">

								<value>pm1.g1.e1</value>

								<value>pm1.g2.e2</value>

								<value>pm1.g3.e3</value>

				</property>

</node>

Note	that	the	same	information	appears	in	each	of	the	plan	forms.	In	some	cases	it	can	actually	be	easier	to	follow	the	simplified
format	of	the	debug	plan	final	processor	plan.	The	following	output	shows	how	the	debug	log	represents	the	plan	in	the	preceding
XML	example:

OPTIMIZATION	COMPLETE:

PROCESSOR	PLAN:

ProjectNode(0)	output=[pm1.g1.e1,	pm1.g2.e2,	pm1.g3.e3]	[pm1.g1.e1,	pm1.g2.e2,	pm1.g3.e3]

		JoinNode(1)	[ENHANCED	SORT	JOIN	(SORT/ALREADY_SORTED)]	[INNER	JOIN]	criteria=[pm1.g3.e1=pm1.g2.e1]	output=[pm

1.g1.e1,	pm1.g2.e2,	pm1.g3.e3]

				JoinNode(2)	[MERGE	JOIN	(ALREADY_SORTED/ALREADY_SORTED)]	[INNER	JOIN]	criteria=[pm1.g1.e1=pm1.g3.e1]	output

=[pm1.g3.e1,	pm1.g1.e1,	pm1.g3.e3]

						AccessNode(3)	output=[pm1.g1.e1]	SELECT	g_0.e1	AS	c_0	FROM	pm1.g1	AS	g_0	ORDER	BY	c_0

						AccessNode(4)	output=[pm1.g3.e1,	pm1.g3.e3]	SELECT	g_0.e1	AS	c_0,	g_0.e3	AS	c_1	FROM	pm1.g3	AS	g_0	ORDER	

BY	c_0

				AccessNode(5)	output=[pm1.g2.e1,	pm1.g2.e2]	SELECT	g_0.e1	AS	c_0,	g_0.e2	AS	c_1	FROM	pm1.g2	AS	g_0	ORDER	BY

	c_0

Query	plans

727

Common
Output	columns	-	what	columns	make	up	the	tuples	returned	by	this	node.

Data	bytes	sent	-	how	many	data	byte,	not	including	messaging	overhead,	were	sent	by	this	query.

Planning	time	-	the	amount	of	time	in	milliseconds	spent	planning	the	query.

Relational
Relational	node	ID — Matches	the	node	ids	seen	in	the	debug	log	Node(id).

Criteria — The	Boolean	expression	used	for	filtering.

Select	columns — he	columns	that	define	the	projection.

Grouping	columns — The	columns	used	for	grouping.

Grouping	mapping — Shows	the	mapping	of	aggregate	and	grouping	column	internal	names	to	their	expression	form.

Query — The	source	query.

Model	name — The	model	name.

Sharing	ID — Nodes	sharing	the	same	source	results	will	have	the	same	sharing	id.

Dependent	join — If	a	dependent	join	is	being	used.

Join	strategy — The	join	strategy	(Nested	Loop,	Sort	Merge,	Enhanced	Sort,	and	so	forth).

Join	type — The	join	type	(Left	Outer	Join,	Inner	Join,	Cross	Join).

Join	criteria — The	join	predicates.

Execution	plan — The	nested	execution	plan.

Into	target — The	insertion	target.

Upsert — If	the	insert	is	an	upsert.

Sort	columns — The	columns	for	sorting.

Sort	mode — If	the	sort	performs	another	function	as	well,	such	as	distinct	removal.

Rollup — If	the	group	by	has	the	rollup	option.

Statistics — The	processing	statistics.

Cost	estimates — The	cost/cardinality	estimates	including	dependent	join	cost	estimates.

Row	offset — The	row	offset	expression.

Row	limit — The	row	limit	expression.

With — The	with	clause.

Window	functions — The	window	functions	being	computed.

Table	function — The	table	function	(XMLTABLE,	OBJECTTABLE,	TEXTTABLE,	and	so	forth).

Streaming — If	the	XMLTABLE	is	using	stream	processing.

Procedure
Expression

Result	Set

Query	plans

728

Program

Variable

Then

Else

Other	plans
Procedure	execution	(including	instead	of	triggers)	use	intermediate	and	final	plan	forms	that	include	relational	plans.	Generally
the	structure	of	the	XML/procedure	plans	will	closely	match	their	logical	forms.	It’s	the	nested	relational	plans	that	will	be	of
interest	when	analyzing	performance	issues.

Query	plans

729

Federated	Optimizations
Access	patterns
Access	patterns	are	used	on	both	physical	tables	and	views	to	specify	the	need	for	criteria	against	a	set	of	columns.	Failure	to
supply	the	criteria	will	result	in	a	planning	error,	rather	than	a	run-away	source	query.	Access	patterns	can	be	applied	in	a	set	such
that	only	one	of	the	access	patterns	is	required	to	be	satisfied.

Currently	any	form	of	criteria	referencing	an	affected	column	may	satisfy	an	access	pattern.

Pushdown
In	federated	database	systems	pushdown	refers	to	decomposing	the	user	level	query	into	source	queries	that	perform	as	much
work	as	possible	on	their	respective	source	system.	Pushdown	analysis	requires	knowledge	of	source	system	capabilities,	which	is
provided	to	Teiid	though	the	Connector	API.	Any	work	not	performed	at	the	source	is	then	processed	in	Federate’s	relational
engine.

Based	upon	capabilities,	Teiid	will	manipulate	the	query	plan	to	ensure	that	each	source	performs	as	much	joining,	filtering,
grouping,	and	so	forth,	as	possible.	In	many	cases,	such	as	with	join	ordering,	planning	is	a	combination	of	standard	relational
techniques	along	with	costing	information,	and	heuristics	for	pushdown	optimization.

Criteria	and	join	push	down	are	typically	the	most	important	aspects	of	the	query	to	push	down	when	performance	is	a	concern.
For	information	about	how	to	read	a	plan	to	ensure	that	source	queries	are	as	efficient	as	possible,	see	Query	plans.

Dependent	joins
A	special	optimization	called	a	dependent	join	is	used	to	reduce	the	rows	returned	from	one	of	the	two	relations	involved	in	a
multi-source	join.	In	a	dependent	join,	queries	are	issued	to	each	source	sequentially	rather	than	in	parallel,	with	the	results
obtained	from	the	first	source	used	to	restrict	the	records	returned	from	the	second.	Dependent	joins	can	perform	some	joins	much
faster	by	drastically	reducing	the	amount	of	data	retrieved	from	the	second	source	and	the	number	of	join	comparisons	that	must
be	performed.

The	conditions	when	a	dependent	join	is	used	are	determined	by	the	query	planner	based	on	access	patterns,	hints,	and	costing
information.	You	can	use	the	following	types	of	dependent	joins	with	Teiid:

Join	based	on	equality	or	inequality
Where	the	engine	determines	how	to	break	up	large	queries	based	on	translator	capabilities.

Key	pushdown
Where	the	translator	has	access	to	the	full	set	of	key	values	and	determines	what	queries	to	send.

Full	pushdown
Where	the	translator	ships	the	all	data	from	the	independent	side	to	the	translator.	Can	be	used	automatically	by	costing	or	can
be	specified	as	an	option	in	the	hint.

You	can	use	the	following	types	of	hints	in	Teiid	to	control	dependent	join	behavior:

MAKEIND
Indicates	that	the	clause	should	be	the	independent	side	of	a	dependent	join.

MAKEDEP
Indicates	that	the	clause	should	be	the	dependent	side	of	a	join.	As	a	non-comment	hint,	you	can	use		MAKEDEP		with	the
following	optional		MAX		and		JOIN		arguments.

MAKEDEP(JOIN)
meaning	that	the	entire	join	should	be	pushed.

MAKEDEP(MAX:5000)

Federated	optimizations

730

meaning	that	the	dependent	join	should	only	be	performed	if	there	are	less	than	the	maximum	number	of	values	from	the
independent	side.

MAKENOTDEP
Prevents	the	clause	from	being	the	dependent	side	of	a	join.

These	can	be	placed	in	either	the	OPTION	Clause	or	directly	in	the	FROM	Clause.	As	long	as	all	Access	Patterns	can	be	met,	the
MAKEIND,	MAKEDEP,	and	MAKENOTDEP	hints	override	any	use	of	costing	information.	MAKENOTDEP	supersedes	the
other	hints.

Tip The	MAKEDEP	or	MAKEIND	hints	should	only	be	used	if	the	proper	query	plan	is	not	chosen	by	default.	You
should	ensure	that	your	costing	information	is	representative	of	the	actual	source	cardinality.

Note An	inappropriate	MAKEDEP	or	MAKEIND	hint	can	force	an	inefficient	join	structure	and	may	result	in	many
source	queries.

Tip
While	these	hints	can	be	applied	to	views,	the	optimizer	will	by	default	remove	views	when	possible.	This	can
result	in	the	hint	placement	being	significantly	different	than	the	original	intention.	You	should	consider	using	the
NO_UNNEST	hint	to	prevent	the	optimizer	from	removing	the	view	in	these	cases.

In	the	simplest	scenario	the	engine	will	use	IN	clauses	(or	just	equality	predicates)	to	filter	the	values	coming	from	the	dependent
side.	If	the	number	of	values	from	the	independent	side	exceeds	the	translators		MaxInCriteriaSize	,	the	values	will	be	split	into
multiple	IN	predicates	up	to		MaxDependentPredicates	.	When	the	number	of	independent	values	exceeds
	MaxInCriteriaSize*MaxDependentPredicates	,	then	multiple	dependent	queries	will	be	issued	in	parallel.

If	the	translator	returns	true	for		supportsDependentJoins	,	then	the	engine	may	provide	the	entire	set	of	independent	key	values.
This	will	occur	when	the	number	of	independent	values	exceeds		MaxInCriteriaSize*MaxDependentPredicates		so	that	the
translator	may	use	specific	logic	to	avoid	issuing	multiple	queries	as	would	happen	in	the	simple	scenario.

If	the	translator	returns	true	for	both		supportsDependentJoins		and		supportsFullDependentJoins		then	a	full	pushdown	may	be
chosen	by	the	optimizer	A	full	pushdown,	sometimes	also	called	as	data-ship	pushdown,	is	where	all	the	data	from	independent
side	of	the	join	is	sent	to	dependent	side.	This	has	an	added	benefit	of	allowing	the	plan	above	the	join	to	be	eligible	for	pushdown
as	well.	This	is	why	the	optimizer	may	choose	to	perform	a	full	pushdown	even	when	the	number	of	independent	values	does	not
exceed		MaxInCriteriaSize*MaxDependentPredicates	.	You	may	also	force	full	pushdown	using	the		MAKEDEP(JOIN)		hint.	The
translator	is	typically	responsible	for	creating,	populating,	and	removing	a	temporary	table	that	represents	the	independent	side.
For	more	information	about	how	to	use	custom	translators	with	dependent,	key,	and	full	pushdown,	see	Dependent	join	pushdown
in	Translator	Development.	NOTE:	By	default,	Key/Full	Pushdown	is	compatible	with	only	a	subset	of	JDBC	translators.	To	use
it,	set	the	translator	override	property		enableDependentJoins		to		true	.	The	JDBC	source	must	allow	for	the	creation	of
temporary	tables,	which	typically	requires	a	Hibernate	dialect.	The	following	translators	are	compatible	with	this	feature:	DB2,
Derby,	H2,	Hana,	HSQL,	MySQL,	Oracle,	PostgreSQL,	SQL	Server,	SAP	IQ,	Sybase,	Teiid,	and	Teradata.

Copy	criteria
Copy	criteria	is	an	optimization	that	creates	additional	predicates	based	upon	combining	join	and	where	clause	criteria.	For
example,	equi-join	predicates		(source1.table.column	=	source2.table.column)		are	used	to	create	new	predicates	by
substituting		source1.table.column		for		source2.table.column		and	vice	versa.	In	a	cross-source	scenario,	this	allows	for	where
criteria	applied	to	a	single	side	of	the	join	to	be	applied	to	both	source	queries

Projection	minimization
Teiid	ensures	that	each	pushdown	query	only	projects	the	symbols	required	for	processing	the	user	query.	This	is	especially
helpful	when	querying	through	large	intermediate	view	layers.

Partial	aggregate	pushdown
Partial	aggregate	pushdown	allows	for	grouping	operations	above	multi-source	joins	and	unions	to	be	decomposed	so	that	some	of
the	grouping	and	aggregate	functions	may	be	pushed	down	to	the	sources.

Optional	join

Federated	optimizations

731

An	optional	or	redundant	join	is	one	that	can	be	removed	by	the	optimizer.	The	optimizer	will	automatically	remove	inner	joins
based	upon	a	foreign	key	or	left	outer	joins	when	the	outer	results	are	unique.

The	optional	join	hint	goes	beyond	the	automatic	cases	to	indicate	to	the	optimizer	that	a	joined	table	should	be	omitted	if	none	of
its	columns	are	used	by	the	output	of	the	user	query	or	in	a	meaningful	way	to	construct	the	results	of	the	user	query.	This	hint	is
typically	only	used	in	view	layers	containing	multi-source	joins.

The	optional	join	hint	is	applied	as	a	comment	on	a	join	clause.	It	can	be	applied	in	both	ANSI	and	non-ANSI	joins.	With	non-
ANSI	joins	an	entire	joined	table	may	be	marked	as	optional.

Example:	Optional	join	hint

select	a.column1,	b.column2	from	a,	/*+	optional	*/	b	WHERE	a.key	=	b.key

Suppose	this	example	defines	a	view	layer		X	.	If		X		is	queried	in	such	a	way	as	to	not	need		b.column2	,	then	the	optional	join
hint	will	cause		b		to	be	omitted	from	the	query	plan.	The	result	would	be	the	same	as	if		X		were	defined	as:

Example:	Optional	join	hint

select	a.column1	from	a

Example:	ANSI	optional	join	hint

select	a.column1,	b.column2,	c.column3	from	/*+	optional	*/	(a	inner	join	b	ON	a.key	=	b.key)	INNER	JOIN	c	ON	a.

key	=	c.key

In	this	example	the	ANSI	join	syntax	allows	for	the	join	of	a	and	b	to	be	marked	as	optional.	Suppose	this	example	defines	a	view
layer	X.	Only	if	both		column	a.column1		and		b.column2		are	not	needed,	for	example,		SELECT	column3	FROM	X		will	the	join	be
removed.

The	optional	join	hint	will	not	remove	a	bridging	table	that	is	still	required.

Example:	Bridging	table

select	a.column1,	b.column2,	c.column3	from	/*+	optional	*/	a,	b,	c	WHERE	ON	a.key	=	b.key	AND	a.key	=	c.key

Suppose	this	example	defines	a	view	layer		X	.	If		b.column2		or		c.column3		are	solely	required	by	a	query	to		X	,	then	the	join
on	a	be	removed.	However	if		a.column1		or	both		b.column2		and		c.column3		are	needed,	then	the	optional	join	hint	will	not
take	effect.

When	a	join	clause	is	omitted	via	the	optional	join	hint,	the	relevant	criteria	is	not	applied.	Thus	it	is	possible	that	the	query	results
may	not	have	the	same	cardinality	or	even	the	same	row	values	as	when	the	join	is	fully	applied.

Left/right	outer	joins	where	the	inner	side	values	are	not	used	and	whose	rows	under	go	a	distinct	operation	will	automatically	be
treated	as	an	optional	join	and	do	not	require	a	hint.

Example:	Unnecessary	optional	join	hint

				select	distinct	a.column1	from	a	LEFT	OUTER	JOIN	/*+optional*/	b	ON	a.key	=	b.key

Note A	simple	"SELECT	COUNT(*)	FROM	VIEW"	against	a	view	where	all	join	tables	are	marked	as	optional	will
not	return	a	meaningful	result.

Source	hints
Teiid	user	and	transformation	queries	can	contain	a	meta	source	hint	that	can	provide	additional	information	to	source	queries.	The
source	hint	has	the	following	form:

Federated	optimizations

732

/*+	sh[[KEEP	ALIASES]:'arg']	source-name[KEEP	ALIASES]:'arg1'	...	*/

The	source	hint	is	expected	to	appear	after	the	query	(SELECT,	INSERT,	UPDATE,	DELETE)	keyword.

Source	hints	can	appear	in	any	subquery,	or	in	views.	All	hints	applicable	to	a	given	source	query	will	be	collected	and
pushed	down	together	as	a	list.	The	order	of	the	hints	is	not	guaranteed.

The	sh	arg	is	optional	and	is	passed	to	all	source	queries	via	the		ExecutionContext.getGeneralHints		method.	The
additional	args	should	have	a	source-name	that	matches	the	source	name	assigned	to	the	translator	in	the	VDB.	If	the	source-
name	matches,	the	hint	values	will	be	supplied	via	the		ExecutionContext.getSourceHints		method.	For	more	information
about	using	an	ExecutionContext,	see	Translator	Development	.

Each	of	the	arg	values	has	the	form	of	a	string	literal	-	it	must	be	surrounded	in	single	quotes	and	a	single	quote	can	be
escaped	with	another	single	quote.	Only	the	Oracle	translator	does	anything	with	source	hints	by	default.	The	Oracle
translator	will	use	both	the	source	hint	and	the	general	hint	(in	that	order)	if	available	to	form	an	Oracle	hint	enclosed	in		/*+
…	*/	.

If	the	KEEP	ALIASES	option	is	used	either	for	the	general	hint	or	on	the	applicable	source	specific	hint,	then	the	table/view
aliases	from	the	user	query	and	any	nested	views	will	be	preserved	in	the	push-down	query.	This	is	useful	in	situations	where
the	source	hint	may	need	to	reference	aliases	and	the	user	does	not	wish	to	rely	on	the	generated	aliases	(which	can	be	seen	in
the	query	plan	in	the	relevant	source	queries — see	above).	However	in	some	situations	this	may	result	in	an	invalid	source
query	if	the	preserved	alias	names	are	not	valid	for	the	source	or	result	in	a	name	collision.	If	the	usage	of	KEEP	ALIASES
results	in	an	error,	the	query	could	be	modified	by	preventing	view	removal	with	the	NO_UNNEST	hint,	the	aliases
modified,	or	the	KEEP	ALIASES	option	could	be	removed	and	the	query	plan	used	to	determine	the	generated	alias	names.

Sample	source	hints

SELECT	/*+	sh:'general	hint'	*/	...

SELECT	/*+	sh	KEEP	ALIASES:'general	hint'	my-oracle:'oracle	hint'	*/	...

Partitioned	union
Union	partitioning	is	inferred	from	the	transformation/inline	view.	If	one	(or	more)	of	the	UNION	columns	is	defined	by	constants
and/or	has	WHERE	clause	IN	predicates	containing	only	constants	that	make	each	branch	mutually	exclusive,	then	the	UNION	is
considered	partitioned.	UNION	ALL	must	be	used	and	the	UNION	cannot	have	a	LIMIT,	WITH,	or	ORDER	BY	clause	(although
individual	branches	may	use	LIMIT,	WITH,	or	ORDER	BY).	Partitioning	values	should	not	be	null.

Example:	Partitioned	union

create	view	part	as	select	1	as	x,	y	from	foo	union	all	select	z,	a	from	foo1	where	z	in	(2,	3)

The	view	is	partitioned	on	column	x,	since	the	first	branch	can	only	be	the	value	1	and	the	second	branch	can	only	be	the	values	2
or	3.

Note More	advanced	or	explicit	partitioning	will	be	considered	for	future	releases.

The	concept	of	a	partitioned	union	is	used	for	performing	partition-wise	joins,	in	Updatable	Views,	and	Partial	Aggregate
Pushdown.	These	optimizations	are	also	applied	when	using	the	multi-source	feature	as	well	-	which	introduces	an	explicit
partitioning	column.

Partition-wise	joins	take	a	join	of	unions	and	convert	the	plan	into	a	union	of	joins,	such	that	only	matching	partitions	are	joined
against	one	another.	If	you	want	a	partition-wise	join	to	be	performed	implicit	without	the	need	for	an	explicit	join	predicate	on
the	partitioning	column,	set	the	model/schema	property		implicit_partition.columnName		to	name	of	the	partitioning	column
used	on	each	partitioned	view	in	the	model/schema.

CREATE	VIRTUAL	SCHEMA	all_customers	SERVER	server	OPTIONS	("implicit_partition.columnName"	'theColumn');

Federated	optimizations

733

In	an	XML	VDB:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<vdb	name="partition"	version="1">

				<model	name="all_customers"	type="VIRTUAL">

								<property	name="implicit_partition.columnName"	value="theColumn"/>

				...

Standard	relational	techniques
Teiid	also	incorporates	many	standard	relational	techniques	to	ensure	efficient	query	plans.

Rewrite	analysis	for	function	simplification	and	evaluation.

Boolean	optimizations	for	basic	criteria	simplification.

Removal	of	unnecessary	view	layers.

Removal	of	unnecessary	sort	operations.

Advanced	search	techniques	through	the	left-linear	space	of	join	trees.

Parallelizing	of	source	access	during	execution.

Subquery	optimization.

Join	compensation
Some	source	systems	only	allow	"relationship"	queries	logically	producing	left	outer	join	results.	Even	when	queried	with	an
inner	join,	Teiid	will	attempt	to	form	an	appropriate	left	outer	join.	These	sources	are	restricted	to	use	with	key	joins.	In	some
circumstances	foreign	key	relationships	on	the	same	source	should	not	be	traversed	at	all	or	with	the	referenced	table	on	the	outer
side	of	join.	The	extension	property		teiid_rel:allow-join		can	be	used	on	the	foreign	key	to	further	restrict	the	pushdown
behavior.	With	a	value	of	"false"	no	join	pushdown	will	be	allowed,	and	with	a	value	of	"inner"	the	referenced	table	must	be	on
the	inner	side	of	the	join.	If	the	join	pushdown	is	prevented,	the	join	will	be	processed	as	a	federated	join.

Federated	optimizations

734

Subquery	optimization
EXISTS	subqueries	are	typically	rewrite	to	"SELECT	1	FROM	…"	to	prevent	unnecessary	evaluation	of	SELECT
expressions.

Quantified	compare	SOME	subqueries	are	always	turned	into	an	equivalent	IN	predicate	or	comparison	against	an	aggregate
value.	e.g.	col	>	SOME	(select	col1	from	table)	would	become	col	>	(select	min(col1)	from	table)

Uncorrelated	EXISTs	and	scalar	subquery	that	are	not	pushed	to	the	source	can	be	pre-evaluated	prior	to	source	command
formation.

Correlated	subqueries	used	in	DETELEs	or	UPDATEs	that	are	not	pushed	as	part	of	the	corresponding	DELETE/UPDATE
will	cause	Teiid	to	perform	row-by-row	compensating	processing.

The	merge	join	(MJ)	hint	directs	the	optimizer	to	use	a	traditional,	semijoin,	or	antisemijoin	merge	join	if	possible.	The
dependent	join	(DJ)	is	the	same	as	the	MJ	hint,	but	additionally	directs	the	optimizer	to	use	the	subquery	as	the	independent
side	of	a	dependent	join	if	possible.	This	will	only	happen	if	the	affected	table	has	a	primary	key.	If	it	does	not,	then	an
exception	will	be	thrown.

WHERE	or	HAVING	clause	IN,	Quantified	Comparison,	Scalar	Subquery	Compare,	and	EXISTs	predicates	can	take	the	MJ,
DJ,	or	NO_UNNEST	(no	unnest)	hints	appearing	just	before	the	subquery.	The	NO_UNNEST	hint,	which	supersedes	the
other	hints,	will	direct	the	optimizer	to	leave	the	subquery	in	place.

SELECT	scalar	subqueries	can	take	the	MJ	or	NO_UNNEST	hints	appearing	just	before	the	subquery.	The	MJ	hint	directs
the	optimizer	to	use	a	traditional	or	semijoin	merge	join	if	possible.	The	NO_UNNEST	hint,	which	supersedes	the	other
hints,	will	direct	the	optimizer	to	leave	the	subquery	in	place.

Merge	join	hint	usage

SELECT	col1	from	tbl	where	col2	IN	/*+	MJ*/	(SELECT	col1	FROM	tbl2)

Dependent	join	hint	usage

SELECT	col1	from	tbl	where	col2	IN	/*+	DJ	*/	(SELECT	col1	FROM	tbl2)

No	unnest	hint	usage

SELECT	col1	from	tbl	where	col2	IN	/*+	NO_UNNEST	*/	(SELECT	col1	FROM	tbl2)

The	system	property		org.teiid.subqueryUnnestDefault		controls	whether	the	optimizer	will	by	default	unnest	subqueries
during	rewrite.	If		true	,	then	most	non-negated	WHERE	or	HAVING	clause	EXISTS	or	IN	subquery	predicates	can	be
converted	to	a	traditional	join.

The	planner	will	always	convert	to	antijoin	or	semijoin	variants	if	costing	is	favorable.	Use	a	hint	to	override	this	behavior
needed.

EXISTs	and	scalar	subqueries	that	are	not	pushed	down,	and	not	converted	to	merge	joins,	are	implicitly	limited	to	1	and	2
result	rows	respectively	via	a	limit.

Conversion	of	subquery	predicates	to	nested	loop	joins	is	not	yet	available.

Subquery	optimization

735

Subquery	optimization

736

XQuery	optimization
A	technique	known	as	document	projection	is	used	to	reduce	the	memory	footprint	of	the	context	item	document.	Document
projection	loads	only	the	parts	of	the	document	needed	by	the	relevant	XQuery	and	path	expressions.	Since	document	projection
analysis	uses	all	relevant	path	expressions,	even	1	expression	that	could	potentially	use	many	nodes,	for	example,		//x	rather
than	/a/b/x		will	cause	a	larger	memory	footprint.	With	the	relevant	content	removed	the	entire	document	will	still	be	loaded	into
memory	for	processing.	Document	projection	will	only	be	used	when	there	is	a	context	item	(unnamed	PASSING	clause	item)
passed	to	XMLTABLE/XMLQUERY.	A	named	variable	will	not	have	document	projection	performed.	In	some	cases	the
expressions	used	may	be	too	complex	for	the	optimizer	to	use	document	projection.	You	should	check	the	SHOWPLAN	DEBUG
full	plan	output	to	see	if	the	appropriate	optimization	has	been	performed.

With	additional	restrictions,	simple	context	path	expressions	allow	the	processor	to	evaluate	document	subtrees	independently	-
without	loading	the	full	document	in	memory.	A	simple	context	path	expression	can	be	of	the	form		[/][ns:]root/[ns1:]elem/…
`	,	where	a	namespace	prefix	or	element	name	can	also	be	the	*	wild	card.	As	with	normal	XQuery	processing	if	namespace
prefixes	are	used	in	the	XQuery	expression,	they	should	be	declared	using	the	XMLNAMESPACES	clause.

Streaming	eligible	XMLQUERY

XMLQUERY('/*:root/*:child'	PASSING	doc)

Rather	than	loading	the	entire	doc	in-memory	as	a	DOM	tree,	each	child	element	will	be	independently	added	to	the	result.

Streaming	ineligible	XMLQUERY

XMLQUERY('//child'	PASSING	doc)

The	use	of	the	descendant	axis	prevents	the	streaming	optimization,	but	document	projection	can	still	be	performed.

When	using	XMLTABLE,	the	COLUMN	PATH	expressions	have	additional	restrictions.	They	are	allowed	to	reference	any	part	of
the	element	subtree	formed	by	the	context	expression	and	they	may	use	any	attribute	value	from	their	direct	parentage.	Any	path
expression	where	it	is	possible	to	reference	a	non-direct	ancestor	or	sibling	of	the	current	context	item	prevent	streaming	from
being	used.

Streaming	eligible	XMLTABLE

XMLTABLE('/*:root/*:child'	PASSING	doc	COLUMNS	fullchild	XML	PATH	'.',	parent_attr	string	PATH	'../@attr',	chil

d_val	integer)

The	context	XQuery	and	the	column	path	expression	allow	the	streaming	optimization,	rather	than	loading	the	entire	document	in-
memory	as	a	DOM	tree,	each	child	element	will	be	independently	added	to	the	result.

Streaming	ineligible	XMLTABLE

XMLTABLE('/*:root/*:child'	PASSING	doc	COLUMNS	sibling_attr	string	PATH	'../other_child/@attr')

The	reference	of	an	element	outside	of	the	child	subtree	in	the	sibling_attr	path	prevents	the	streaming	optimization	from	being
used,	but	document	projection	can	still	be	performed.

Note Column	paths	should	be	as	targeted	as	possible	to	avoid	performance	issues.	A	general	path	such	as		..//child	
will	cause	the	entire	subtree	of	the	context	item	to	be	searched	on	each	output	row.

XQuery	optimization

737

XQuery	optimization

738

Federated	failure	modes
Teiid	provides	the	capability	to	obtain	partial	results	in	the	event	of	data	source	unavailability	or	failure.	This	is	especially	useful
when	unioning	information	from	multiple	sources,	or	when	doing	a	left	outer	join,	where	you	are	appending	columns	to	a	master
record,	but	still	want	the	record	if	the	extra	information	is	not	available.

A	source	is	considered	to	be	unavailable	if	the	connection	factory	that	is	associated	with	the	source	generates	an	exception	in
response	to	a	query.	The	exception	will	be	propagated	to	the	query	processor,	where	it	will	become	a	warning	on	the	statement.
For	more	information	about	partial	results	and	SQLWarning	objects,	see	Partial	Results	Mode	in	the	Client	Developer’s	Guide.

Federated	failure	modes

739

Conformed	tables
A	conformed	table	is	a	source	table	that	is	the	same	in	several	physical	sources.

Unlike	Multisource	models	which	assume	a	partitioning	paradigm,	the	planner	assumes	any	conformed	table	may	be	substituted
for	another	to	improve	performance.

Typically	this	would	be	used	when	reference	data	exists	in	multiple	sources,	but	only	a	single	metadata	entry	is	desired	to
represent	the	table.

Conformed	tables	are	defined	by	adding	the	following	extension	metadata	property	to	the	appropriate	source	tables:

{http://www.teiid.org/ext/relational/2012}conformed-sources

You	can	set	extension	properties	in	the	DDL	file	by	using	full	DDL	metadata	or	alter	statements,	or	at	runtime	by	using	the
	setProperty		system	procedure.	The	property	is	expected	to	be	a	comma	separated	list	of	physical	model/schema	names.

DDL	alter	example

ALTER	FOREIGN	TABLE	"reference_data"	OPTIONS	(ADD	"teiid_rel:conformed-sources"	'source2,source3');

There	is	no	expectation	that	a	metadata	entry	exists	on	the	other	schemas.

Just	as	with	the	multi-source	feature,	there	is	then	no	source	specific	metadata	entry	to	the	conformed	sources.	Also	just	as	with
multi-source	planning,	the	capabilities	are	assumed	to	be	the	same	across	conformed	sources.

The	engine	will	take	the	list	of	conformed	sources	and	associate	a	set	of	model	metadata	ids	to	the	corresponding	access	node.	The
logic	considering	joins	and	subqueries	will	also	consider	the	conformed	sets	when	making	pushdown	decisions.	The	subquery
handling	will	only	check	for	conformed	sources	for	the	subquery — not	in	the	parent.	So	having	a	conformed	table	in	the
subquery	will	pushdown	as	expected,	but	not	vice	versa.

Conformed	tables

740

Teiid	Architecture
Teiid	Components

Designer	Plugin	-	Deprecated	Eclipse	Plugin	based	Teiid	design	environment,	used	to	connect/federate/transform
datasources	to	produce	a		.vdb		file.

JVM	-	Teiid	is	a	pure	Java	Data	Virtualization	Platform.

WildFly	-	Teiid	use	a	plugable	installation	which	need	a	WildFly	Server	installed,	alternatively,	a	full	installed	WildFly	kit	be
distributed.

Subsystem	-	Due	to	WildFly’s	Modular	and	Pluggable	Architecture(a	series	of	Management	commands	compose	of	a
subsystem,	a	series	of	subsystems	compose	of	the	whole	server),	Teiid	implement	WildFly’s	Controller/Management	API
developed	a		teiid		subsystem	and	reuse	lots	of	other	subsystems	like		resource-adapter	,		infinispan	,		security	,
	logging	,		datasource	.

odata.war	-	Teiid	support	OData	via	odata.war.	For	more	information,	see	OData	support	in	the	Client	Developer’s	Guide.

dashboard.war	-	A	web	based	dashboard	generator.

teiid-console	-	A	web	based	administrative	and	monitoring	tool	for	Teiid,	more	details	refer	to	Teiid	Console

JDBC	Driver	-	JDBC	Driver	to	connect	to	Teiid	Server.

AdminAPI	-	An	API	for	performing	management	and	monitoring:../dev/AdminAPI.adoc[AdminAPI]

quickstarts	-	A	maven	quickstart	showing	how	to	utilize	Teiid.

Architecture

741

Client::	Client	Developer’s	Guide

Transport
Transport	services	manage	client	connections:	security	authentication,	encryption,	and	so	forth.

Query	Engine
The	query	engine	has	several	layers	and	components.	At	a	high	level,	request	processing	is	structured	as	follows:

1.	 SQL	is	converted	to	a	processor	plan.	The	engine	receives	an	incoming	SQL	query.	It	is	parsed	to	a	internal
command.	Then	the	command	is	converted	a	logical	plan	via	resolving,	validating,	and	rewriting.	Finally,	rule	and
cost-based	optimization	convert	the	logical	plan	to	a	final	processor	plan.	For	more	information,	see	Federated
planning.

2.	 Batch	processing.	The	source	and	other	aspects	of	query	processing	may	return	results	asynchronously	to	the
processing	thread.	As	soon	as	possible,	batches	of	results	are	made	available	to	the	client.

3.	 Buffer	management	controls	the	bulk	of	the	on	and	off	heap	memory	that	Teiid	is	using.	It	prevents	consuming	too
much	memory	that	otherwise	might	exceed	the	VM	size.

4.	 Transaction	management	determines	when	transactions	are	needed	and	interacts	with	the	TransactionManager
subsystem	to	coordinate	XA	transactions.

Source	queries	are	handled	by	the	data	tier	layer	which	interfaces	with	the	query	engine	and	the	connector	layer
which	utilizes	a	translator	to	interact	directly	with	a	source.	Connectivity	is	provided	for	heterogeneous	data	stores,
such	as	databases	or	data	warehouses,	NoSQL,	Hadoop,	data	grid/cache,	files,	SaaS,	and	so	on.

Translator
Teiid	has	developed	a	series	of	translators.	For	more	information,	see	Translators.

Resource	adapter
Provides	container	managed	access	to	a	source.	For	more	information,	see	Developing	JEE	connectors	in	the	Developer’s
Guide.

Architecture

742

Terminology
VM	or	Process
A	WildFly	instance	running	Teiid.

Host
A	machine	that	runs	one	or	more	VMs.

Service
A	subsystem	that	runs	in	a	VM	(often	in	many	VMs)	and	provides	a	related	set	of	functionality.	In	addition	to	these	main
components,	the	service	platform	makes	the	following	core	set	of	services	available	to	the	applications	that	are	built	on	top	of
it:

Session
The	Session	service	manages	active	session	information.

Buffer	manager
The	Buffer	Manager	service	provides	access	to	data	management	for	intermediate	results.	For	more	information,	see
Buffer	management	in	Data	management.

Transaction
The	Transaction	service	manages	global,	local,	and	request	scoped	transactions.	For	more	information,	see	Transactions.

Terminology

743

Data	management
Cursoring	and	batching
Teiid	cursors	all	results,	regardless	of	whether	they	are	from	one	source	or	many	sources,	and	regardless	of	what	type	of
processing	(joins,	unions,	and	so	forth.)	have	been	performed	on	the	results.

Teiid	processes	results	in	batches.	A	batch	is	simply	a	set	of	records.	The	number	of	rows	in	a	batch	is	determined	by	the	buffer
system	property	processor-batch-size	and	is	scaled	upon	the	estimated	memory	footprint	of	the	batch.

Client	applications	have	no	direct	knowledge	of	batches	or	batch	sizes,	but	rather	specify	fetch	size.	However	the	first	batch,
regardless	of	fetch	size	is	always	proactively	returned	to	synchronous	clients.	Subsequent	batches	are	returned	based	on	client
demand	for	the	data.	Pre-fetching	is	utilized	at	both	the	client	and	connector	levels.

Buffer	management
The	buffer	manager	manages	memory	for	all	result	sets	used	in	the	query	engine.	That	includes	result	sets	read	from	a	connection
factory,	result	sets	used	temporarily	during	processing,	and	result	sets	prepared	for	a	user.	Each	result	set	is	referred	to	in	the
buffer	manager	as	a	tuple	source.

When	retrieving	batches	from	the	buffer	manager,	the	size	of	a	batch	in	bytes	is	estimated	and	then	allocated	against	the	max	limit.

Memory	management
The	buffer	manager	has	two	storage	managers	-	a	memory	manager	and	a	disk	manager.	The	buffer	manager	maintains	the	state	of
all	the	batches,	and	determines	when	batches	must	be	moved	from	memory	to	disk.

Disk	management
Each	tuple	source	has	a	dedicated	file	(named	by	the	ID)	on	disk.	This	file	will	be	created	only	if	at	least	one	batch	for	the	tuple
source	had	to	be	swapped	to	disk.	The	file	is	random	access.	The	processor	batch	size	property	defines	how	many	rows	should
nominally	exist	in	a	batch	assuming	2048	bits	worth	of	data	in	a	row.	If	the	row	is	larger	or	smaller	than	that	target,	the	engine	will
adjust	the	batch	size	for	those	tuples	accordingly.	Batches	are	always	read	and	written	from	the	storage	manager	whole.

The	disk	storage	manager	caps	the	maximum	number	of	open	files	to	prevent	running	out	of	file	handles.	In	cases	with	heavy
buffering,	this	can	cause	wait	times	while	waiting	for	a	file	handle	to	become	available	(the	default	maximum	open	files	is	64).

Cleanup
When	a	tuple	source	is	no	longer	needed,	it	is	removed	from	the	buffer	manager.	The	buffer	manager	will	remove	it	from	both	the
memory	storage	manager	and	the	disk	storage	manager.	The	disk	storage	manager	will	delete	the	file.	In	addition,	every	tuple
source	is	tagged	with	a	"group	name"	which	is	typically	the	session	ID	of	the	client.	When	the	client’s	session	is	terminated	(by
closing	the	connection,	server	detecting	client	shutdown,	or	administrative	termination),	a	call	is	sent	to	the	buffer	manager	to
remove	all	tuple	sources	for	the	session.

In	addition,	when	the	query	engine	is	shutdown,	the	buffer	manager	is	shut	down,	which	will	remove	all	state	from	the	disk
storage	manager	and	cause	all	files	to	be	closed.	When	the	query	engine	is	stopped,	it	is	safe	to	delete	any	files	in	the	buffer
directory	as	they	are	not	used	across	query	engine	restarts	and	must	be	due	to	a	system	crash	where	buffer	files	were	not	cleaned
up.

Data	management

744

Query	termination
Canceling	queries
When	a	query	is	canceled,	processing	will	be	stopped	in	the	query	engine	and	in	all	connectors	involved	in	the	query.	The
semantics	of	what	a	connector	does	in	response	to	a	cancellation	command	depends	on	the	connector	implementation.	For
example,	JDBC	connectors	will	asynchronously	call		cancel		on	the	underlying	JDBC	driver,	which	might	or	might	not	be
compatible	with	this	method.

User	query	timeouts
User	query	timeouts	in	Teiid	can	be	managed	on	the	client-side	or	the	server-side.	Timeouts	are	only	relevant	for	the	first	record
returned.	If	the	first	record	has	not	been	received	by	the	client	within	the	specified	timeout	period,	a		cancel		command	is	issued
to	the	server	for	the	request	and	no	results	are	returned	to	the	client.	The	cancel	command	is	issued	asynchronously	without	the
client’s	intervention.

The	JDBC	API	uses	the	query	timeout	set	by	the		java.sql.Statement.setQueryTimeout		method.	You	can	also	set	a	default
statement	timeout	via	the	connection	property	"QUERYTIMEOUT".	ODBC	clients	can	also	use	QUERYTIMEOUT	as	an
execution	property	via	a	set	statement	to	control	the	default	timeout	setting.	See	the	Client	Developer’s	Guide	for	more	on
connection/execution	properties	and	set	statements.

Server-side	timeouts	start	when	the	query	is	received	by	the	engine.	Network	latency	or	server	load	can	delays	the	processing	of
I/O	work	after	a	client	issues	the	query.	The	timeout	will	be	cancelled	if	the	first	result	is	sent	back	before	the	timeout	has	ended.
For	more	information	about	setting	the		query-timeout		property	for	a	virtual	database,	see	Virtual	database	properties.	For	more
information	about	modifying	system	properties	to	set	a	default	query	timeout	for	all	queries,	see	System	properties	in	the
Administrator’s	Guide.

Query	termination

745

Processing
Join	algorithms
Nested	loop	does	the	most	obvious	processing.	For	every	row	in	the	outer	source,	it	compares	with	every	row	in	the	inner	source.
Nested	loop	is	only	used	when	the	join	criteria	has	no	equi-join	predicates.

A	merge	join	first	sorts	the	input	sources	on	the	joined	columns.	You	can	then	walk	through	each	side	in	parallel	(effectively	one
pass	through	each	sorted	source),	and	when	you	have	a	match,	emit	a	row.	In	general,	merge	join	is	on	the	order	of	n+m	rather
than	n*m	in	nested	loop.	Merge	join	is	the	default	algorithm.

Using	costing	information	the	engine	may	also	delay	the	decision	to	perform	a	full	sort	merge	join.	Based	upon	the	actual	row
counts	involved,	the	engine	can	choose	to	build	an	index	of	the	smaller	side	(which	will	perform	similarly	to	a	hash	join)	or	to
only	partially	sort	the	larger	side	of	the	relation.

Joins	involving	equi-join	predicates	can	be	converted	into	dependent	joins.	For	more	information,	see	Dependent	joins	in
Federated	optimizations.

Sort-based	algorithms
Sorting	is	used	as	the	basis	of	the	Sort	(ORDER	BY),	Grouping	(GROUP	BY),	and	DupRemoval	(SELECT	DISTINCT)
operations.	The	sort	algorithm	is	a	multi-pass	merge-sort	that	does	not	require	all	of	the	result	set	to	ever	be	in	memory,	yet	uses
the	maximal	amount	of	memory	allowed	by	the	buffer	manager.

Sorting	consists	of	two	phases.	In	the	first	phase	("sort"),	the	algorithm	processes	an	unsorted	input	stream	to	produce	one	or	more
sorted	input	streams.	Each	pass	reads	as	much	of	the	unsorted	stream	as	possible,	sorts	it,	and	writes	it	back	out	as	a	new	stream.
When	an	unsorted	stream	is	processed,	the	resulting	sorted	stream	might	be	too	large	to	reside	in	memory.	If	the	size	of	a	sorted
stream	exceeds	the	available	memory,	it	is	written	out	to	multiple	sorted	streams.

The	second	phase	of	the	sort	algorithm	("merge")	consists	of	a	set	of	phases	that	grab	the	next	batch	from	as	many	sorted	input
streams	as	will	fit	in	memory.	It	then	repeatedly	grabs	the	next	tuple	in	sorted	order	from	each	stream	and	outputs	merged	sorted
batches	to	a	new	sorted	stream.	At	completion	of	the	phase,	all	input	streams	are	dropped.	In	this	way,	each	phase	reduces	the
number	of	sorted	streams.		When	only	one	stream	remains,	it	is	the	final	output.

Processing

746

BNF	for	SQL	Grammar
Main	Entry	Points

callable	statement

ddl	statement

explain

directly	executable	statement

Reserved	Keywords

Non-Reserved	Keywords

Reserved	Keywords	For	Future	Use

Tokens

Production	Cross-Reference

Productions

Reserved	Keywords

Keyword Usage

ADD add	set	child	option,	add	set	option,	ADD	column,	ADD
constraint

ALL
standard	aggregate	function,	CREATE	POLICY,	function,
GRANT,	query	expression	body,	query	term,	Revoke
GRANT,	select	clause,	quantified	comparison	predicate

ALTER alter,	ALTER	PROCEDURE,	alterStatement,	ALTER
TABLE,	grant	type

AND between	predicate,	boolean	term,	window	frame

ANY standard	aggregate	function,	with	role,	quantified
comparison	predicate

ARRAY ARRAY	expression	constructor

ARRAY_AGG ordered	aggregate	function

AS

alter,	ALTER	PROCEDURE,	ALTER	TABLE,	ALTER
TRIGGER,	array	table,	create	procedure,	create	a	domain
or	type	alias,	option	namespace,	create	trigger,	create	view,
delete	statement,	derived	column,	dynamic	data	statement,
function,	json	table,	loop	statement,	xml	namespace
element,	object	table,	select	derived	column,	table
subquery,	text	table,	table	name,	unescapedFunction,
update	statement,	with	list	element,	xml	serialize,	xml	table

BNF	for	SQL	grammar

747

ATOMIC compound	statement,	for	each	row	trigger	action

AUTHENTICATED with	role

BEGIN compound	statement,	for	each	row	trigger	action

BETWEEN between	predicate,	window	frame

BIGDECIMAL simple	data	type

BIGINT simple	data	type

BIGINTEGER simple	data	type

BLOB simple	data	type,	xml	serialize

BOOLEAN simple	data	type

BOTH function

BREAK branching	statement

BY group	by	clause,	order	by	clause,	window	specification

BYTE simple	data	type

CALL callable	statement,	call	statement

CASE case	expression,	searched	case	expression

CAST function

CHAR function,	simple	data	type

CLOB simple	data	type,	xml	serialize

COLUMN ADD	column,	DROP	column,	ALTER	TABLE,	GRANT,
Revoke	GRANT

COMMIT create	temporary	table

CONSTRAINT GRANT,	table	constraint

CONTINUE branching	statement

CONVERT function

CREATE

create	procedure,	create	data	wrapper,	create	database,
create	a	domain	or	type	alias,	create	foreign	temp	table,
CREATE	POLICY,	create	role,	create	schema,	create
server,	create	table,	create	temporary	table,	create	trigger

BNF	for	SQL	grammar

748

CROSS cross	join

CUME_DIST analytic	aggregate	function

CURRENT_DATE function

CURRENT_TIME function

CURRENT_TIMESTAMP function

DATE non	numeric	literal,	simple	data	type

DAY function

DECIMAL simple	data	type

DECLARE declare	statement

DELETE alter,	ALTER	TRIGGER,	CREATE	POLICY,	create
trigger,	delete	statement,	grant	type

DESC sort	specification

DISTINCT standard	aggregate	function,	function,	is	distinct,	query
expression	body,	query	term,	select	clause

DOUBLE simple	data	type

DOW function

DOY function

DROP
DROP	column,	drop	option,	Drop	data	wrapper,	drop
option,	DROP	POLICY,	drop	procedure,	drop	role,	drop
schema,	drop	server,	drop	table,	drop	table,	grant	type

EACH for	each	row	trigger	action

ELSE case	expression,	if	statement,	searched	case	expression

END case	expression,	compound	statement,	for	each	row	trigger
action,	searched	case	expression

ERROR raise	error	statement

ESCAPE match	predicate,	text	table

EXCEPT query	expression	body

EXEC dynamic	data	statement,	call	statement

EXECUTE dynamic	data	statement,	grant	type,	call	statement

EXISTS exists	predicate

BNF	for	SQL	grammar

749

EXISTS exists	predicate

FALSE explain	option,	json	table,	non	numeric	literal

FETCH fetch	clause

FILTER filter	clause

FLOAT simple	data	type

FOR
CREATE	POLICY,	for	each	row	trigger	action,	function,
json	table	column,	text	aggreate	function,	text	table
column,	xml	table	column

FOREIGN

ALTER	PROCEDURE,	ALTER	TABLE,	create	procedure,
create	data	wrapper,	create	foreign	or	global	temporary
table,	create	foreign	temp	table,	create	schema,	create
server,	Drop	data	wrapper,	drop	procedure,	drop	schema,
drop	table,	foreign	key,	Import	foreign	schema,	with	role

FROM delete	statement,	from	clause,	function,	Import	foreign
schema,	is	distinct,	Revoke	GRANT

FULL qualified	table

FUNCTION create	procedure,	drop	procedure,	GRANT,	Revoke
GRANT

GLOBAL create	foreign	or	global	temporary	table,	drop	table

GRANT GRANT

GROUP function,	group	by	clause

HAVING having	clause

HOUR function

IF if	statement

IMMEDIATE dynamic	data	statement

IMPORT Import	VDB,	Import	foreign	schema

IN function,	procedure	parameter,	in	predicate

INNER qualified	table

INOUT procedure	parameter

INSERT alter,	ALTER	TRIGGER,	CREATE	POLICY,	create
trigger,	function,	insert	statement,	grant	type

INTEGER simple	data	type

BNF	for	SQL	grammar

750

INTERSECT query	term

INTO dynamic	data	statement,	Import	foreign	schema,	insert
statement,	into	clause

IS is	distinct,	is	null	predicate

JOIN cross	join,	make	dep	options,	qualified	table

LANGUAGE GRANT,	object	table,	Revoke	GRANT

LATERAL table	subquery

LEADING function

LEAVE branching	statement

LEFT function,	qualified	table

LIKE match	predicate

LIKE_REGEX like	regex	predicate

LIMIT limit	clause

LOCAL create	foreign	temp	table,	create	temporary	table

LONG simple	data	type

LOOP loop	statement

MAKEDEP option	clause,	table	primary

MAKEIND option	clause,	table	primary

MAKENOTDEP option	clause,	table	primary

MERGE insert	statement

MINUTE function

MONTH function

NO make	dep	options,	xml	namespace	element,	text	aggreate
function,	text	table	column,	text	table

NOCACHE option	clause

NOT

alter	column	options,	between	predicate,	compound
statement,	table	element,	create	a	domain	or	type	alias,
view	element,	GRANT,	is	distinct,	is	null	predicate,	match
predicate,	boolean	factor,	procedure	parameter,	procedure
result	column,	like	regex	predicate,	in	predicate,	temporary
table	element

BNF	for	SQL	grammar

751

NULL

alter	column	options,	table	element,	create	a	domain	or
type	alias,	view	element,	is	null	predicate,	non	numeric
literal,	procedure	parameter,	procedure	result	column,
temporary	table	element,	xml	query

OF alter,	ALTER	TRIGGER,	create	trigger

OFFSET limit	clause

ON

alter,	ALTER	TRIGGER,	create	foreign	temp	table,
CREATE	POLICY,	create	temporary	table,	create	trigger,
DROP	POLICY,	GRANT,	loop	statement,	qualified	table,
Revoke	GRANT,	xml	query

ONLY fetch	clause

OPTION option	clause

OPTIONS alter	child	options	list,	alter	options	list,	options	clause

OR boolean	value	expression

ORDER GRANT,	order	by	clause

OUT procedure	parameter

OUTER qualified	table

OVER window	specification

PARAMETER ALTER	PROCEDURE

PARTITION window	specification

PERCENT_RANK analytic	aggregate	function

PRIMARY create	temporary	table,	inline	constraint,	primary	key

PROCEDURE
alter,	ALTER	PROCEDURE,	create	procedure,	CREATE
POLICY,	DROP	POLICY,	drop	procedure,	GRANT,
Revoke	GRANT

RANGE window	frame

REAL simple	data	type

REFERENCES foreign	key

RETURN assignment	statement,	return	statement,	data	statement

RETURNS create	procedure

REVOKE Revoke	GRANT

BNF	for	SQL	grammar

752

RIGHT function,	qualified	table

ROLLUP group	by	clause

ROW array	table,	fetch	clause,	for	each	row	trigger	action,	limit
clause,	text	table,	window	frame	bound

ROWS array	table,	create	temporary	table,	fetch	clause,	limit
clause,	window	frame

SECOND function

SELECT CREATE	POLICY,	grant	type,	select	clause

SERVER ALTER	SERVER,	create	schema,	create	server,	drop
server,	Import	foreign	schema

SESSION_USER function

SET add	set	child	option,	add	set	option,	option	namespace,
update	statement,	set	schema

SHORT simple	data	type

SIMILAR match	predicate

SMALLINT simple	data	type

SOME standard	aggregate	function,	quantified	comparison
predicate

SQLEXCEPTION sql	exception

SQLSTATE sql	exception

SQLWARNING raise	statement

STRING dynamic	data	statement,	simple	data	type,	xml	serialize

TABLE

ALTER	TABLE,	create	procedure,	create	foreign	or	global
temporary	table,	create	foreign	temp	table,	create
temporary	table,	drop	table,	drop	table,	GRANT,	query
primary,	Revoke	GRANT,	table	subquery

TEMPORARY
create	foreign	or	global	temporary	table,	create	foreign
temp	table,	create	temporary	table,	drop	table,	GRANT,
Revoke	GRANT

THEN case	expression,	searched	case	expression

TIME non	numeric	literal,	simple	data	type

TIMESTAMP non	numeric	literal,	simple	data	type

BNF	for	SQL	grammar

753

TINYINT simple	data	type

TO rename	column	options,	RENAME	Table,	CREATE
POLICY,	DROP	POLICY,	GRANT,	match	predicate

TRAILING function

TRANSLATE function

TRIGGER alter,	ALTER	TRIGGER,	create	trigger

TRUE explain	option,	json	table,	non	numeric	literal

UNION cross	join,	query	expression	body

UNIQUE other	constraints,	inline	constraint

UNKNOWN non	numeric	literal

UPDATE
alter,	ALTER	TRIGGER,	CREATE	POLICY,	create
trigger,	dynamic	data	statement,	grant	type,	update
statement

USER function

USING CREATE	POLICY,	dynamic	data	statement

VALUES query	primary

VARBINARY simple	data	type,	xml	serialize

VARCHAR simple	data	type,	xml	serialize

VIRTUAL
ALTER	PROCEDURE,	ALTER	TABLE,	create	procedure,
create	schema,	create	view,	drop	procedure,	drop	schema,
drop	table

WHEN case	expression,	searched	case	expression

WHERE filter	clause,	where	clause

WHILE while	statement

WITH assignment	statement,	create	role,	Import	VDB,	query
expression,	data	statement

WITHIN function

WITHOUT assignment	statement,	data	statement

WRAPPER ALTER	DATA	WRAPPER,	create	data	wrapper,	create
server,	Drop	data	wrapper

XML explain	option,	simple	data	type

BNF	for	SQL	grammar

754

XMLAGG ordered	aggregate	function

XMLATTRIBUTES xml	attributes

XMLCAST unescapedFunction

XMLCOMMENT function

XMLCONCAT function

XMLELEMENT xml	element

XMLEXISTS xml	query

XMLFOREST xml	forest

XMLNAMESPACES xml	namespaces

XMLPARSE xml	parse

XMLPI function

XMLQUERY xml	query

XMLSERIALIZE xml	serialize

XMLTABLE xml	table

XMLTEXT function

YEAR function

Non-Reserved	Keywords

Name Usage

ACCESS basicNonReserved,	Import	VDB

ACCESSPATTERN basicNonReserved,	other	constraints

AFTER alter,	basicNonReserved,	create	trigger

ANALYZE basicNonReserved,	explain	option

ARRAYTABLE array	table,	basicNonReserved

AUTO_INCREMENT alter	column	options,	basicNonReserved,	table	element,
view	element

AVG standard	aggregate	function,	basicNonReserved

BNF	for	SQL	grammar

755

CHAIN basicNonReserved,	sql	exception

COLUMNS array	table,	basicNonReserved,	json	table,	object	table,	text
table,	xml	table

CONDITION basicNonReserved,	GRANT,	Revoke	GRANT

CONTENT basicNonReserved,	xml	parse,	xml	serialize

CONTROL basicNonReserved,	Import	VDB

COUNT standard	aggregate	function,	basicNonReserved

COUNT_BIG standard	aggregate	function,	basicNonReserved

CURRENT basicNonReserved,	window	frame	bound

DATA ALTER	DATA	WRAPPER,	basicNonReserved,	create	data
wrapper,	create	server,	Drop	data	wrapper

DATABASE ALTER	DATABASE,	basicNonReserved,	create	database,
Import	VDB,	use	database

DEFAULT
xml	namespace	element,	non-reserved	identifier,	object
table	column,	post	create	column,	procedure	parameter,
xml	table	column

DELIMITER basicNonReserved,	text	aggreate	function,	text	table

DENSE_RANK analytic	aggregate	function,	basicNonReserved

DISABLED alter,	ALTER	TRIGGER,	basicNonReserved

DOCUMENT basicNonReserved,	xml	parse,	xml	serialize

DOMAIN basicNonReserved,	create	a	domain	or	type	alias

EMPTY basicNonReserved,	xml	query

ENABLED alter,	ALTER	TRIGGER,	basicNonReserved

ENCODING basicNonReserved,	text	aggreate	function,	xml	serialize

EPOCH basicNonReserved,	function

EVERY standard	aggregate	function,	basicNonReserved

EXCEPTION compound	statement,	declare	statement,	non-reserved
identifier

EXCLUDING basicNonReserved,	xml	serialize

EXPLAIN basicNonReserved,	explain

BNF	for	SQL	grammar

756

EXTRACT basicNonReserved,	function

FIRST basicNonReserved,	fetch	clause,	sort	specification

FOLLOWING basicNonReserved,	window	frame	bound

FORMAT basicNonReserved,	explain	option

GEOGRAPHY non-reserved	identifier,	simple	data	type

GEOMETRY non-reserved	identifier,	simple	data	type

HEADER basicNonReserved,	text	aggreate	function,	text	table
column,	text	table

INCLUDING basicNonReserved,	xml	serialize

INDEX other	constraints,	inline	constraint,	non-reserved	identifier

INSTEAD alter,	ALTER	TRIGGER,	basicNonReserved,	create	trigger

JAAS basicNonReserved,	with	role

JSON non-reserved	identifier,	simple	data	type

JSONARRAY_AGG basicNonReserved,	ordered	aggregate	function

JSONOBJECT basicNonReserved,	json	object

JSONTABLE basicNonReserved,	json	table

KEY basicNonReserved,	create	temporary	table,	foreign	key,
inline	constraint,	primary	key

LAST basicNonReserved,	sort	specification

LISTAGG basicNonReserved,	function

MASK basicNonReserved,	GRANT,	Revoke	GRANT

MAX standard	aggregate	function,	basicNonReserved,	make	dep
options

MIN standard	aggregate	function,	basicNonReserved

NAME basicNonReserved,	function,	xml	element

NAMESPACE basicNonReserved,	option	namespace

NEXT basicNonReserved,	fetch	clause

NONE basicNonReserved

BNF	for	SQL	grammar

757

NULLS basicNonReserved,	sort	specification

OBJECT non-reserved	identifier,	simple	data	type

OBJECTTABLE basicNonReserved,	object	table

ORDINALITY basicNonReserved,	json	table	column,	text	table	column,
xml	table	column

PASSING basicNonReserved,	object	table,	xml	query,	xml	query,	xml
table

PATH basicNonReserved,	json	table	column,	xml	table	column

POLICY basicNonReserved,	CREATE	POLICY,	DROP	POLICY

POSITION basicNonReserved,	function

PRECEDING basicNonReserved,	window	frame	bound

PRESERVE basicNonReserved,	create	temporary	table

PRIVILEGES basicNonReserved,	GRANT,	Revoke	GRANT

QUARTER basicNonReserved,	function

QUERYSTRING basicNonReserved,	querystring	function

QUOTE basicNonReserved,	text	aggreate	function,	text	table

RAISE basicNonReserved,	raise	statement

RANK analytic	aggregate	function,	basicNonReserved

RENAME ALTER	PROCEDURE,	ALTER	TABLE,
basicNonReserved

REPOSITORY basicNonReserved,	Import	foreign	schema

RESULT basicNonReserved,	procedure	parameter

ROLE basicNonReserved,	create	role,	drop	role,	with	role

ROW_NUMBER analytic	aggregate	function,	basicNonReserved

SCHEMA basicNonReserved,	create	schema,	drop	schema,	GRANT,
Import	foreign	schema,	Revoke	GRANT,	set	schema

SELECTOR basicNonReserved,	text	table	column,	text	table

SERIAL alter	column	options,	table	element,	view	element,	non-
reserved	identifier,	temporary	table	element

BNF	for	SQL	grammar

758

SKIP basicNonReserved,	text	table

SQL_TSI_DAY basicNonReserved,	time	interval

SQL_TSI_FRAC_SECOND basicNonReserved,	time	interval

SQL_TSI_HOUR basicNonReserved,	time	interval

SQL_TSI_MINUTE basicNonReserved,	time	interval

SQL_TSI_MONTH basicNonReserved,	time	interval

SQL_TSI_QUARTER basicNonReserved,	time	interval

SQL_TSI_SECOND basicNonReserved,	time	interval

SQL_TSI_WEEK basicNonReserved,	time	interval

SQL_TSI_YEAR basicNonReserved,	time	interval

STDDEV_POP standard	aggregate	function,	basicNonReserved

STDDEV_SAMP standard	aggregate	function,	basicNonReserved

SUBSTRING basicNonReserved,	function

SUM standard	aggregate	function,	basicNonReserved

TEXT basicNonReserved,	explain	option

TEXTAGG basicNonReserved,	text	aggreate	function

TEXTTABLE basicNonReserved,	text	table

TIMESTAMPADD basicNonReserved,	function

TIMESTAMPDIFF basicNonReserved,	function

TO_BYTES basicNonReserved,	function

TO_CHARS basicNonReserved,	function

TRANSLATOR ALTER	DATA	WRAPPER,	basicNonReserved,	create	data
wrapper,	create	server,	Drop	data	wrapper

TRIM basicNonReserved,	function,	text	table	column,	text	table

TYPE alter	column	options,	basicNonReserved,	create	data
wrapper,	create	server

UNBOUNDED basicNonReserved,	window	frame	bound

UPSERT basicNonReserved,	insert	statement

BNF	for	SQL	grammar

759

USAGE basicNonReserved,	GRANT,	Revoke	GRANT

USE basicNonReserved,	use	database

VARIADIC basicNonReserved,	procedure	parameter

VAR_POP standard	aggregate	function,	basicNonReserved

VAR_SAMP standard	aggregate	function,	basicNonReserved

VERSION basicNonReserved,	create	database,	create	server,	Import
VDB,	use	database,	xml	serialize

VIEW alter,	ALTER	TABLE,	basicNonReserved,	create	view,
drop	table

WELLFORMED basicNonReserved,	xml	parse

WIDTH basicNonReserved,	text	table	column

XMLDECLARATION basicNonReserved,	xml	serialize

YAML basicNonReserved,	explain	option

Reserved	Keywords	For	Future	Use

ALLOCATE ARE ASENSITIVE

ASYMETRIC AUTHORIZATION BINARY

CALLED CASCADED CHARACTER

CHECK CLOSE COLLATE

CONNECT CORRESPONDING CRITERIA

CURRENT_USER CURSOR CYCLE

DATALINK DEALLOCATE DEC

DEREF DESCRIBE DETERMINISTIC

DISCONNECT DLNEWCOPY DLPREVIOUSCOPY

DLURLCOMPLETE DLURLCOMPLETEONLY DLURLCOMPLETEWRITE

DLURLPATH DLURLPATHONLY DLURLPATHWRITE

DLURLSCHEME DLURLSERVER DLVALUE

BNF	for	SQL	grammar

760

DYNAMIC ELEMENT EXTERNAL

FREE GET HANDLER

HAS HOLD IDENTITY

INDICATOR INPUT INSENSITIVE

INT INTERVAL ISOLATION

LARGE LOCALTIME LOCALTIMESTAMP

MATCH MEMBER METHOD

MODIFIES MODULE MULTISET

NATIONAL NATURAL NCHAR

NCLOB NEW NUMERIC

OLD OPEN OUTPUT

OVERLAPS PRECISION PREPARE

READS RECURSIVE REFERENCING

RELEASE ROLLBACK SAVEPOINT

SCROLL SEARCH SENSITIVE

SPECIFIC SPECIFICTYPE SQL

START STATIC SUBMULTILIST

SYMETRIC SYSTEM SYSTEM_USER

TIMEZONE_HOUR TIMEZONE_MINUTE TRANSLATION

TREAT VALUE VARYING

WHENEVER WINDOW XMLBINARY

XMLDOCUMENT XMLITERATE XMLVALIDATE

Tokens

Name Definition Usage

all	in	group	identifier <identifier>	<period>	<star> all	in	group

binary	string	literal "X"	|	"x"	"\'"	(<hexit>	<hexit>)+	"\'" non	numeric	literal

BNF	for	SQL	grammar

761

colon ":" make	dep	options,	statement

comma ","

alter	child	options	list,	alter	options
list,	ARRAY	expression	constructor,
column	list,	create	procedure,	typed
element	list,	CREATE	POLICY,
create	table	body,	create	temporary
table,	create	view	body,	derived
column	list,	sql	exception,	named
parameter	list,	explain,	expression
list,	from	clause,	function,	GRANT,
identifier	list,	json	table,	limit	clause,
nested	expression,	object	table,
option	clause,	options	clause,	order
by	clause,	simple	data	type,	query
expression,	query	primary,
querystring	function,	Revoke
GRANT,	select	clause,	set	clause	list,
in	predicate,	text	aggreate	function,
text	table,	xml	attributes,	xml
element,	xml	query,	xml	forest,	xml
namespaces,	xml	query,	xml	table

concat_op "||" common	value	expression

decimal	numeric	literal (<digit>)*	<period>	<unsigned
integer	literal> unsigned	numeric	literal

digit \["0"\-"9"\]

dollar "$" parameter	reference

double_amp_op "&&" common	value	expression

eq "="

assignment	statement,	callable
statement,	declare	statement,	named
parameter	list,	comparison	operator,
set	clause	list

escaped	function "{"	"fn" unsigned	value	expression	primary

escaped	join "{"	"oj" table	reference

escaped	type "{"	("d"	|	"t"	|	"ts"	|	"b") non	numeric	literal

approximate	numeric	literal
<digit>	<period>	<unsigned	integer
literal>	\["e","E"\]	(<plus>	|
<minus>)?	<unsigned	integer	literal>

unsigned	numeric	literal

ge ">=" comparison	operator

gt ">" named	parameter	list,	comparison
operator

hexit \["a"\-"f","A"\-"F"\]	|	<digit>

BNF	for	SQL	grammar

762

identifier <quoted_id>	(<period>
<quoted_id>)*

create	a	domain	or	type	alias,
identifier,	data	type,	Unqualified
identifier,	unsigned	value	expression
primary

id_part (""	|	"@"	|	"#"	|	<letter>)	(<letter>	|
""	|	<digit>)*

lbrace "{" callable	statement,	match	predicate

le "⇐" comparison	operator

letter \["a"\-"z","A"\-"Z"\]	|	\["\u0153"\-
"\ufffd"\]

lparen "("

standard	aggregate	function,	alter
child	options	list,	alter	options	list,
analytic	aggregate	function,	ARRAY
expression	constructor,	array	table,
callable	statement,	column	list,	other
constraints,	create	procedure,
CREATE	POLICY,	create	table
body,	create	temporary	table,	create
view	body,	explain,	filter	clause,
function,	group	by	clause,	if
statement,	json	object,	json	table,
loop	statement,	make	dep	options,
nested	expression,	object	table,
options	clause,	ordered	aggregate
function,	simple	data	type,	query
primary,	querystring	function,	in
predicate,	call	statement,	subquery,
quantified	comparison	predicate,
table	subquery,	table	primary,	text
aggreate	function,	text	table,
unescapedFunction,	while	statement,
window	specification,	with	list
element,	xml	attributes,	xml	element,
xml	query,	xml	forest,	xml
namespaces,	xml	parse,	xml	query,
xml	serialize,	xml	table

lsbrace "["
ARRAY	expression	constructor,
basic	data	type,	data	type,	value
expression	primary

lt "<" comparison	operator

minus "-" plus	or	minus

ne "<>" comparison	operator

ne2 "!=" comparison	operator

period "."

plus "+" plus	or	minus

qmark "?" callable	statement,	parameter
reference

BNF	for	SQL	grammar

763

quoted_id <id_part>	|	"\""	("\"\""	|	~\["\""\])+
"\""

rbrace "}"
callable	statement,	match	predicate,
non	numeric	literal,	table	reference,
unsigned	value	expression	primary

rparen ")"

standard	aggregate	function,	alter
child	options	list,	alter	options	list,
analytic	aggregate	function,	ARRAY
expression	constructor,	array	table,
callable	statement,	column	list,	other
constraints,	create	procedure,
CREATE	POLICY,	create	table
body,	create	temporary	table,	create
view	body,	explain,	filter	clause,
function,	group	by	clause,	if
statement,	json	object,	json	table,
loop	statement,	make	dep	options,
nested	expression,	object	table,
options	clause,	ordered	aggregate
function,	simple	data	type,	query
primary,	querystring	function,	in
predicate,	call	statement,	subquery,
quantified	comparison	predicate,
table	subquery,	table	primary,	text
aggreate	function,	text	table,
unescapedFunction,	while	statement,
window	specification,	with	list
element,	xml	attributes,	xml	element,
xml	query,	xml	forest,	xml
namespaces,	xml	parse,	xml	query,
xml	serialize,	xml	table

rsbrace "]"
ARRAY	expression	constructor,
basic	data	type,	data	type,	value
expression	primary

semicolon ";" delimited	statement

slash "/" star	or	slash

star "*"
standard	aggregate	function,	dynamic
data	statement,	select	clause,	star	or
slash

string	literal ("N"	|	"E")?	"\'"	("\'\'"	|	~\["\'"\])*	"\'" string

unsigned	integer	literal (<digit>)+ unsigned	integer,	unsigned	numeric
literal

Production	Cross-Reference

Name Usage

add	set	child	option alter	child	options	list

add	set	option alter	options	list

BNF	for	SQL	grammar

764

standard	aggregate	function unescapedFunction

all	in	group select	sublist

alter directly	executable	statement

ADD	column ALTER	TABLE

ADD	constraint ALTER	TABLE

alter	child	option	pair add	set	child	option

alter	child	options	list alter	column	options

alter	column	options ALTER	PROCEDURE,	ALTER	TABLE

ALTER	DATABASE alterStatement

DROP	column ALTER	TABLE

alter	option	pair add	set	option

alter	options	list ALTER	DATABASE,	ALTER	PROCEDURE,	ALTER
SERVER,	ALTER	TABLE,	ALTER	DATA	WRAPPER

ALTER	PROCEDURE alterStatement

rename	column	options ALTER	PROCEDURE,	ALTER	TABLE

RENAME	Table ALTER	TABLE

ALTER	SERVER alterStatement

alterStatement ddl	statement

ALTER	TABLE alterStatement

ALTER	DATA	WRAPPER alterStatement

ALTER	TRIGGER alterStatement

analytic	aggregate	function unescapedFunction

ARRAY	expression	constructor unsigned	value	expression	primary

array	table table	primary

assignment	statement delimited	statement

assignment	statement	operand assignment	statement,	declare	statement

BNF	for	SQL	grammar

765

basicNonReserved create	a	domain	or	type	alias,	non-reserved	identifier,	data
type

between	predicate boolean	primary

boolean	primary CREATE	POLICY,	filter	clause,	GRANT,	boolean	factor

branching	statement delimited	statement

callable	statement

case	expression unsigned	value	expression	primary

character match	predicate,	text	aggreate	function,	text	table

column	list other	constraints,	create	temporary	table,	foreign	key,
insert	statement,	primary	key,	with	list	element

common	value	expression
between	predicate,	boolean	primary,	comparison	predicate,
sql	exception,	function,	is	distinct,	match	predicate,	like
regex	predicate,	in	predicate,	text	table

comparison	predicate boolean	primary

boolean	term boolean	value	expression

boolean	value	expression condition

compound	statement statement,	directly	executable	statement

other	constraints table	constraint

table	element ADD	column,	create	table	body

create	procedure ddl	statement

create	data	wrapper ddl	statement

create	database ddl	statement

create	a	domain	or	type	alias ddl	statement

typed	element	list array	table,	dynamic	data	statement

create	foreign	or	global	temporary	table create	table

create	foreign	temp	table directly	executable	statement

option	namespace ddl	statement

CREATE	POLICY ddl	statement

create	role ddl	statement

BNF	for	SQL	grammar

766

create	schema ddl	statement

create	server ddl	statement

create	table ddl	statement

create	table	body create	foreign	or	global	temporary	table,	create	foreign
temp	table

create	temporary	table directly	executable	statement

create	trigger ddl	statement,	directly	executable	statement

create	view create	table

create	view	body create	view

view	element create	view	body

condition expression,	having	clause,	if	statement,	qualified	table,
searched	case	expression,	where	clause,	while	statement

cross	join joined	table

ddl	statement ddl	statement

declare	statement delimited	statement

delete	statement assignment	statement	operand,	directly	executable
statement

delimited	statement statement

derived	column
derived	column	list,	object	table,	querystring	function,	text
aggreate	function,	xml	attributes,	xml	query,	xml	query,
xml	table

derived	column	list json	object,	xml	forest

drop	option alter	child	options	list

Drop	data	wrapper ddl	statement

drop	option alter	options	list

DROP	POLICY ddl	statement

drop	procedure ddl	statement

drop	role ddl	statement

drop	schema ddl	statement

BNF	for	SQL	grammar

767

drop	server ddl	statement

drop	table directly	executable	statement

drop	table ddl	statement

dynamic	data	statement data	statement

raise	error	statement delimited	statement

sql	exception assignment	statement	operand,	exception	reference

exception	reference sql	exception,	raise	statement

named	parameter	list callable	statement,	call	statement

exists	predicate boolean	primary

explain

explain	option explain

expression

standard	aggregate	function,	ARRAY	expression
constructor,	assignment	statement	operand,	case
expression,	derived	column,	dynamic	data	statement,	raise
error	statement,	named	parameter	list,	expression	list,
function,	nested	expression,	object	table	column,	ordered
aggregate	function,	post	create	column,	procedure
parameter,	querystring	function,	return	statement,	searched
case	expression,	select	derived	column,	set	clause	list,	sort
key,	quantified	comparison	predicate,	unescapedFunction,
xml	table	column,	xml	element,	xml	parse,	xml	serialize

expression	list callable	statement,	other	constraints,	function,	group	by
clause,	query	primary,	call	statement,	window	specification

fetch	clause limit	clause

filter	clause function,	unescapedFunction

for	each	row	trigger	action alter,	ALTER	TRIGGER,	create	trigger

foreign	key table	constraint

from	clause query

function unescapedFunction,	unsigned	value	expression	primary

GRANT ddl	statement

group	by	clause query

having	clause query

BNF	for	SQL	grammar

768

identifier

alter,	alter	child	option	pair,	alter	column	options,	ALTER
DATABASE,	DROP	column,	alter	option	pair,	ALTER
PROCEDURE,	rename	column	options,	RENAME	Table,
ALTER	SERVER,	ALTER	TABLE,	ALTER	DATA
WRAPPER,	ALTER	TRIGGER,	array	table,	assignment
statement,	branching	statement,	callable	statement,	column
list,	compound	statement,	table	element,	create	data
wrapper,	create	database,	typed	element	list,	create	foreign
temp	table,	option	namespace,	CREATE	POLICY,	create
schema,	create	trigger,	view	element,	declare	statement,
delete	statement,	derived	column,	drop	option,	Drop	data
wrapper,	drop	option,	DROP	POLICY,	drop	procedure,
drop	role,	drop	schema,	drop	server,	drop	table,	drop	table,
dynamic	data	statement,	exception	reference,	named
parameter	list,	foreign	key,	function,	GRANT,	identifier
list,	Import	VDB,	Import	foreign	schema,	insert	statement,
into	clause,	json	table	column,	json	table,	loop	statement,
xml	namespace	element,	object	table	column,	object	table,
option	clause,	option	pair,	procedure	parameter,	procedure
result	column,	query	primary,	Revoke	GRANT,	select
derived	column,	set	clause	list,	statement,	call	statement,
table	subquery,	table	constraint,	temporary	table	element,
text	aggreate	function,	text	table	column,	text	table,	table
name,	update	statement,	use	database,	set	schema,	with	list
element,	xml	table	column,	xml	element,	xml	serialize,	xml
table

identifier	list create	schema,	with	role

if	statement statement

Import	VDB ddl	statement

Import	foreign	schema ddl	statement

inline	constraint post	create	column

insert	statement assignment	statement	operand,	directly	executable
statement

integer	parameter fetch	clause,	limit	clause

unsigned	integer

dynamic	data	statement,	function,	GRANT,	integer
parameter,	make	dep	options,	parameter	reference,	simple
data	type,	text	table	column,	text	table,	window	frame
bound

time	interval function

into	clause query

is	distinct boolean	primary

is	null	predicate boolean	primary

joined	table table	primary,	table	reference

json	table	column json	table

BNF	for	SQL	grammar

769

json	object function

json	table table	primary

limit	clause query	expression	body

loop	statement statement

make	dep	options option	clause,	table	primary

match	predicate boolean	primary

xml	namespace	element xml	namespaces

nested	expression unsigned	value	expression	primary

non	numeric	literal alter	child	option	pair,	alter	option	pair,	option	pair,	value
expression	primary

non-reserved	identifier identifier,	Unqualified	identifier,	unsigned	value
expression	primary

boolean	factor boolean	term

object	table	column object	table

object	table table	primary

comparison	operator comparison	predicate,	quantified	comparison	predicate

option	clause callable	statement,	delete	statement,	insert	statement,	query
expression	body,	call	statement,	update	statement

option	pair options	clause

options	clause

create	procedure,	create	data	wrapper,	create	database,
create	schema,	create	server,	create	table	body,	create	view,
create	view	body,	Import	foreign	schema,	post	create
column,	procedure	parameter,	procedure	result	column,
table	constraint

order	by	clause function,	ordered	aggregate	function,	query	expression
body,	text	aggreate	function,	window	specification

ordered	aggregate	function unescapedFunction

parameter	reference unsigned	value	expression	primary

basic	data	type
typed	element	list,	json	table	column,	object	table	column,
data	type,	temporary	table	element,	text	table	column,	xml
table	column

data	type

alter	column	options,	table	element,	create	procedure,
create	a	domain	or	type	alias,	view	element,	declare
statement,	function,	procedure	parameter,	procedure	result

BNF	for	SQL	grammar

770

column,	unescapedFunction

simple	data	type basic	data	type

numeric	value	expression common	value	expression,	value	expression	primary

plus	or	minus alter	child	option	pair,	alter	option	pair,	option	pair,
numeric	value	expression,	value	expression	primary

post	create	column table	element,	view	element

primary	key table	constraint

procedure	parameter create	procedure

procedure	result	column create	procedure

qualified	table joined	table

query query	primary

query	expression

alter,	ALTER	TABLE,	ARRAY	expression	constructor,
assignment	statement	operand,	create	view,	insert
statement,	loop	statement,	subquery,	table	subquery,
directly	executable	statement,	with	list	element

query	expression	body query	expression,	query	primary

query	primary query	term

querystring	function function

query	term query	expression	body

raise	statement delimited	statement

grant	type GRANT,	Revoke	GRANT

with	role create	role

like	regex	predicate boolean	primary

return	statement delimited	statement

Revoke	GRANT ddl	statement

searched	case	expression unsigned	value	expression	primary

select	clause query

select	derived	column select	sublist

select	sublist select	clause

BNF	for	SQL	grammar

771

set	clause	list dynamic	data	statement,	update	statement

in	predicate boolean	primary

sort	key sort	specification

sort	specification order	by	clause

data	statement delimited	statement

statement
alter,	ALTER	PROCEDURE,	compound	statement,	create
procedure,	for	each	row	trigger	action,	if	statement,	loop
statement,	while	statement

call	statement assignment	statement,	subquery,	table	subquery,	directly
executable	statement

string

character,	create	database,	option	namespace,	create	server,
function,	GRANT,	Import	VDB,	json	table	column,	json
table,	xml	namespace	element,	non	numeric	literal,	object
table	column,	object	table,	text	table	column,	text	table,	use
database,	xml	table	column,	xml	query,	xml	query,	xml
serialize,	xml	table

subquery exists	predicate,	in	predicate,	quantified	comparison
predicate,	unsigned	value	expression	primary

quantified	comparison	predicate boolean	primary

table	subquery table	primary

table	constraint ADD	constraint,	create	table	body,	create	view	body

temporary	table	element create	temporary	table

table	primary cross	join,	joined	table

table	reference from	clause,	qualified	table

text	aggreate	function unescapedFunction

text	table	column text	table

text	table table	primary

term numeric	value	expression

star	or	slash term

table	name table	primary

unescapedFunction unsigned	value	expression	primary

BNF	for	SQL	grammar

772

Unqualified	identifier create	procedure,	create	data	wrapper,	create	foreign	or
global	temporary	table,	create	foreign	temp	table,	create
role,	create	server,	create	temporary	table,	create	view

unsigned	numeric	literal alter	child	option	pair,	alter	option	pair,	option	pair,	value
expression	primary

unsigned	value	expression	primary integer	parameter,	value	expression	primary

update	statement assignment	statement	operand,	directly	executable
statement

use	database ddl	statement

set	schema ddl	statement

directly	executable	statement explain,	data	statement

value	expression	primary array	table,	json	table,	term

where	clause delete	statement,	query,	update	statement

while	statement statement

window	frame window	specification

window	frame	bound window	frame

window	specification unescapedFunction

with	list	element query	expression

xml	attributes xml	element

xml	table	column xml	table

xml	element function

xml	query boolean	primary

xml	forest function

xml	namespaces xml	element,	xml	query,	xml	forest,	xml	query,	xml	table

xml	parse function

xml	query function

xml	serialize function

xml	table table	primary

BNF	for	SQL	grammar

773

Productions

string	::=

<string	literal>

A	string	literal	value.	Use	''	to	escape	'	in	the	string.

Example:

'a	string'

'it''s	a	string'

non-reserved	identifier	::=

EXCEPTION

SERIAL

OBJECT

INDEX

JSON

GEOMETRY

GEOGRAPHY

DEFAULT

<basicNonReserved>

Allows	non-reserved	keywords	to	be	parsed	as	identifiers

Example:	SELECT	COUNT	FROM	…

basicNonReserved	::=

INSTEAD

VIEW

ENABLED

DISABLED

KEY

TEXTAGG

COUNT

COUNT_BIG

ROW_NUMBER

BNF	for	SQL	grammar

774

RANK

DENSE_RANK

SUM

AVG

MIN

MAX

EVERY

STDDEV_POP

STDDEV_SAMP

VAR_SAMP

VAR_POP

DOCUMENT

CONTENT

TRIM

EMPTY

ORDINALITY

PATH

FIRST

LAST

NEXT

SUBSTRING

EXTRACT

TO_CHARS

TO_BYTES

TIMESTAMPADD

TIMESTAMPDIFF

QUERYSTRING

NAMESPACE

RESULT

ACCESSPATTERN

AUTO_INCREMENT

WELLFORMED

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

BNF	for	SQL	grammar

775

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

TEXTTABLE

ARRAYTABLE

JSONTABLE

SELECTOR

SKIP

WIDTH

PASSING

NAME

ENCODING

COLUMNS

DELIMITER

QUOTE

HEADER

NULLS

OBJECTTABLE

VERSION

INCLUDING

EXCLUDING

XMLDECLARATION

VARIADIC

RAISE

CHAIN

JSONARRAY_AGG

JSONOBJECT

PRESERVE

UPSERT

AFTER

BNF	for	SQL	grammar

776

TYPE

TRANSLATOR

JAAS

CONDITION

MASK

ACCESS

CONTROL

NONE

DATA

DATABASE

PRIVILEGES

ROLE

SCHEMA

USE

REPOSITORY

RENAME

DOMAIN

USAGE

POSITION

CURRENT

UNBOUNDED

PRECEDING

FOLLOWING

LISTAGG

EXPLAIN

ANALYZE

TEXT

FORMAT

YAML

EPOCH

QUARTER

POLICY

Unqualified	identifier	::=

BNF	for	SQL	grammar

777

<identifier>

<non-reserved	identifier>

Unqualified	name	of	a	single	entity.

Example:

"tbl"

identifier	::=

<identifier>

<non-reserved	identifier>

Partial	or	full	name	of	a	single	entity.

Example:

tbl.col

"tbl"."col"

create	trigger	::=

CREATE	TRIGGER	(<identifier>)?	ON	<identifier>	((INSTEAD	OF)	|	AFTER)	(INSERT	|	UPDATE	|	DELETE)	AS
<for	each	row	trigger	action>

Creates	a	trigger	action	on	the	given	target.

Example:

CREATE	TRIGGER	ON	vw	INSTEAD	OF	INSERT	AS	FOR	EACH	ROW	BEGIN	ATOMIC	...	END

alter	::=

ALTER	((VIEW	<identifier>	AS	<query	expression>)	|	(PROCEDURE	<identifier>	AS	<statement>)	|	(TRIGGER	(
<identifier>)?	ON	<identifier>	((INSTEAD	OF)	|	AFTER)	(INSERT	|	UPDATE	|	DELETE)	((AS	<for	each	row	trigger
action>)	|	ENABLED	|	DISABLED)))

Alter	the	given	target.

Example:

ALTER	VIEW	vw	AS	SELECT	col	FROM	tbl

for	each	row	trigger	action	::=

BNF	for	SQL	grammar

778

FOR	EACH	ROW	((BEGIN	(ATOMIC)?	(<statement>)*	END)	|	<statement>)

Defines	an	action	to	perform	on	each	row.

Example:

FOR	EACH	ROW	BEGIN	ATOMIC	...	END

explain	::=

EXPLAIN	(<lparen>	<explain	option>	(<comma>	<explain	option>)*	<rparen>)?	<directly	executable	statement>

Returns	the	query	plan	for	the	statement

Example:	EXPLAIN	select	1

explain	option	::=

(ANALYZE	(TRUE	|	FALSE)?)

(FORMAT	(XML	|	TEXT	|	YAML)?)

Option	for	the	explain	statement

Example:	FORMAT	YAML

directly	executable	statement	::=

<query	expression>

<call	statement>

<insert	statement>

<update	statement>

<delete	statement>

<drop	table>

<create	temporary	table>

<create	foreign	temp	table>

<alter>

<create	trigger>

<compound	statement>

A	statement	that	can	be	executed	at	runtime.

Example:

SELECT	*	FROM	tbl

BNF	for	SQL	grammar

779

drop	table	::=

DROP	TABLE	<identifier>

Drop	the	given	table.

Example:

DROP	TABLE	#temp

create	temporary	table	::=

CREATE	(LOCAL)?	TEMPORARY	TABLE	<Unqualified	identifier>	<lparen>	<temporary	table	element>	(<comma>
<temporary	table	element>)*	(<comma>	PRIMARY	KEY	<column	list>)?	<rparen>	(ON	COMMIT	PRESERVE	ROWS
)?

Creates	a	temporary	table.

Example:

CREATE	LOCAL	TEMPORARY	TABLE	tmp	(col	integer)

temporary	table	element	::=

<identifier>	(<basic	data	type>	|	SERIAL)	(NOT	NULL)?

Defines	a	temporary	table	column.

Example:

col	string	NOT	NULL

raise	error	statement	::=

ERROR	<expression>

Raises	an	error	with	the	given	message.

Example:

ERROR	'something	went	wrong'

raise	statement	::=

RAISE	(SQLWARNING)?	<exception	reference>

Raises	an	error	or	warning	with	the	given	message.

Example:

RAISE	SQLEXCEPTION	'something	went	wrong'

BNF	for	SQL	grammar

780

exception	reference	::=

<identifier>

<sql	exception>

a	reference	to	an	exception

Example:

SQLEXCEPTION	'something	went	wrong'	SQLSTATE	'00X',	2

sql	exception	::=

SQLEXCEPTION	<common	value	expression>	(SQLSTATE	<common	value	expression>	(<comma>	<common	value
expression>)?)?	(CHAIN	<exception	reference>)?

creates	a	sql	exception	or	warning	with	the	specified	message,	state,	and	code

Example:

SQLEXCEPTION	'something	went	wrong'	SQLSTATE	'00X',	2

statement	::=

((<identifier>	<colon>)?	(<loop	statement>	|	<while	statement>	|	<compound	statement>))

<if	statement>	|	<delimited	statement>

A	procedure	statement.

Example:

IF	(x	=	5)	BEGIN	...	END

delimited	statement	::=

(<assignment	statement>	|	<data	statement>	|	<raise	error	statement>	|	<raise	statement>	|	<declare	statement>	|	<branching
statement>	|	<return	statement>)	<semicolon>

A	procedure	statement	terminated	by	;.

Example:

SELECT	*	FROM	tbl;

compound	statement	::=

BNF	for	SQL	grammar

781

BEGIN	((NOT)?	ATOMIC)?	(<statement>)*	(EXCEPTION	<identifier>	(<statement>)*)?	END

A	procedure	statement	block	contained	in	BEGIN	END.

Example:

BEGIN	NOT	ATOMIC	...	END

branching	statement	::=

((BREAK	|	CONTINUE)	(<identifier>)?)

(LEAVE	<identifier>)

A	procedure	branching	control	statement,	which	typically	specifies	a	label	to	return	control	to.

Example:

BREAK	x

return	statement	::=

RETURN	(<expression>)?

A	return	statement.

Example:

RETURN	1

while	statement	::=

WHILE	<lparen>	<condition>	<rparen>	<statement>

A	procedure	while	statement	that	executes	until	its	condition	is	false.

Example:

WHILE	(var)	BEGIN	...	END

loop	statement	::=

LOOP	ON	<lparen>	<query	expression>	<rparen>	AS	<identifier>	<statement>

A	procedure	loop	statement	that	executes	over	the	given	cursor.

Example:

LOOP	ON	(SELECT	*	FROM	tbl)	AS	x	BEGIN	...	END

BNF	for	SQL	grammar

782

if	statement	::=

IF	<lparen>	<condition>	<rparen>	<statement>	(ELSE	<statement>)?

A	procedure	loop	statement	that	executes	over	the	given	cursor.

Example:

IF	(boolVal)	BEGIN	variables.x	=	1	END	ELSE	BEGIN	variables.x	=	2	END

declare	statement	::=

DECLARE	(<data	type>	|	EXCEPTION)	<identifier>	(<eq>	<assignment	statement	operand>)?

A	procedure	declaration	statement	that	creates	a	variable	and	optionally	assigns	a	value.

Example:

DECLARE	STRING	x	=	'a'

assignment	statement	::=

<identifier>	<eq>	(<assignment	statement	operand>	|	(<call	statement>	((WITH	|	WITHOUT)	RETURN)?))

Assigns	a	variable	a	value	in	a	procedure.

Example:

x	=	'b'

assignment	statement	operand	::=

<insert	statement>

<update	statement>

<delete	statement>

<expression>

<query	expression>

<sql	exception>

A	value	or	command	that	can	be	used	in	an	assignment.	{note}All	assignments	except	for	expression	are	deprecated.{note}

data	statement	::=

(<directly	executable	statement>	|	<dynamic	data	statement>)	((WITH	|	WITHOUT)	RETURN)?

A	procedure	statement	that	executes	a	SQL	statement.	An	update	statement	can	have	its	update	count	accessed	via	the
ROWCOUNT	variable.

BNF	for	SQL	grammar

783

dynamic	data	statement	::=

(EXECUTE	|	EXEC)	(STRING	|	IMMEDIATE)?	<expression>	(AS	<typed	element	list>	(INTO	<identifier>)?)?	(
USING	<set	clause	list>)?	(UPDATE	(<unsigned	integer>	|	<star>))?

A	procedure	statement	that	can	execute	arbitrary	sql.

Example:

EXECUTE	IMMEDIATE	'SELECT	*	FROM	tbl'	AS	x	STRING	INTO	#temp

set	clause	list	::=

<identifier>	<eq>	<expression>	(<comma>	<identifier>	<eq>	<expression>)*

A	list	of	value	assignments.

Example:

col1	=	'x',	col2	=	'y'	...

typed	element	list	::=

<identifier>	<basic	data	type>	(<comma>	<identifier>	<basic	data	type>)*

A	list	of	typed	elements.

Example:

col1	string,	col2	integer	...

callable	statement	::=

<lbrace>	(<qmark>	<eq>)?	CALL	<identifier>	(<lparen>	(<named	parameter	list>	|	(<expression	list>)?)	<rparen>)?
<rbrace>	(<option	clause>)?

A	callable	statement	defined	using	JDBC	escape	syntax.

Example:

{?	=	CALL	proc}

call	statement	::=

((EXEC	|	EXECUTE	|	CALL)	<identifier>	<lparen>	(<named	parameter	list>	|	(<expression	list>)?)	<rparen>)	(
<option	clause>)?

Executes	the	procedure	with	the	given	parameters.

BNF	for	SQL	grammar

784

Example:

CALL	proc('a',	1)

named	parameter	list	::=

(<identifier>	<eq>	(<gt>)?	<expression>	(<comma>	<identifier>	<eq>	(<gt>)?	<expression>)*)

A	list	of	named	parameters.

Example:

param1	=>	'x',	param2	=>	1

insert	statement	::=

(INSERT	|	MERGE	|	UPSERT)	INTO	<identifier>	(<column	list>)?	<query	expression>	(<option	clause>)?

Inserts	values	into	the	given	target.

Example:

INSERT	INTO	tbl	(col1,	col2)	VALUES	('a',	1)

expression	list	::=

<expression>	(<comma>	<expression>)*

A	list	of	expressions.

Example:

col1,	'a',	...

update	statement	::=

UPDATE	<identifier>	((AS)?	<identifier>)?	SET	<set	clause	list>	(<where	clause>)?	(<option	clause>)?

Update	values	in	the	given	target.

Example:

UPDATE	tbl	SET	(col1	=	'a')	WHERE	col2	=	1

delete	statement	::=

DELETE	FROM	<identifier>	((AS)?	<identifier>)?	(<where	clause>)?	(<option	clause>)?

BNF	for	SQL	grammar

785

Delete	rows	from	the	given	target.

Example:

DELETE	FROM	tbl	WHERE	col2	=	1

query	expression	::=

(WITH	<with	list	element>	(<comma>	<with	list	element>)*)?	<query	expression	body>

A	declarative	query	for	data.

Example:

SELECT	*	FROM	tbl	WHERE	col2	=	1

with	list	element	::=

<identifier>	(<column	list>)?	AS	<lparen>	<query	expression>	<rparen>

A	query	expression	for	use	in	the	enclosing	query.

Example:

X	(Y,	Z)	AS	(SELECT	1,	2)

query	expression	body	::=

<query	term>	((UNION	|	EXCEPT)	(ALL	|	DISTINCT)?	<query	term>)*	(<order	by	clause>)?	(<limit	clause>)?	(
<option	clause>)?

The	body	of	a	query	expression,	which	can	optionally	be	ordered	and	limited.

Example:

SELECT	*	FROM	tbl	ORDER	BY	col1	LIMIT	1

query	term	::=

<query	primary>	(INTERSECT	(ALL	|	DISTINCT)?	<query	primary>)*

Used	to	establish	INTERSECT	precedence.

Example:

SELECT	*	FROM	tbl

SELECT	*	FROM	tbl1	INTERSECT	SELECT	*	FROM	tbl2

BNF	for	SQL	grammar

786

query	primary	::=

<query>

(VALUES	<lparen>	<expression	list>	<rparen>	(<comma>	<lparen>	<expression	list>	<rparen>)*)

(TABLE	<identifier>)

(<lparen>	<query	expression	body>	<rparen>)

A	declarative	source	of	rows.

Example:

TABLE	tbl

SELECT	*	FROM	tbl1

query	::=

<select	clause>	(<into	clause>)?	(<from	clause>	(<where	clause>)?	(<group	by	clause>)?	(<having	clause>)?)?

A	SELECT	query.

Example:

SELECT	col1,	max(col2)	FROM	tbl	GROUP	BY	col1

into	clause	::=

INTO	<identifier>

Used	to	direct	the	query	into	a	table.	{note}This	is	deprecated.	Use	INSERT	INTO	with	a	query	expression	instead.{note}

Example:

INTO	tbl

select	clause	::=

SELECT	(ALL	|	DISTINCT)?	(<star>	|	(<select	sublist>	(<comma>	<select	sublist>)*))

The	columns	returned	by	a	query.	Can	optionally	be	distinct.

Example:

SELECT	*

SELECT	DISTINCT	a,	b,	c

BNF	for	SQL	grammar

787

select	sublist	::=

<select	derived	column>

<all	in	group>

An	element	in	the	select	clause

Example:

tbl.*

tbl.col	AS	x

select	derived	column	::=

(<expression>	((AS)?	<identifier>)?)

A	select	clause	item	that	selects	a	single	column.	{note}This	is	slightly	different	than	a	derived	column	in	that	the	AS	keyword	is
optional.{note}

Example:

tbl.col	AS	x

derived	column	::=

(<expression>	(AS	<identifier>)?)

An	optionally	named	expression.

Example:

tbl.col	AS	x

all	in	group	::=

<all	in	group	identifier>

A	select	sublist	that	can	select	all	columns	from	the	given	group.

Example:

tbl.*

ordered	aggregate	function	::=

(XMLAGG	|	ARRAY_AGG	|	JSONARRAY_AGG)	<lparen>	<expression>	(<order	by	clause>)?	<rparen>

BNF	for	SQL	grammar

788

An	aggregate	function	that	can	optionally	be	ordered.

Example:

XMLAGG(col1)	ORDER	BY	col2

ARRAY_AGG(col1)

text	aggreate	function	::=

TEXTAGG	<lparen>	(FOR)?	<derived	column>	(<comma>	<derived	column>)*	(DELIMITER	<character>)?	((
QUOTE	<character>)	|	(NO	QUOTE))?	(HEADER)?	(ENCODING	<identifier>)?	(<order	by	clause>)?	<rparen>

An	aggregate	function	for	creating	separated	value	clobs.

Example:

TEXTAGG	(col1	as	t1,	col2	as	t2	DELIMITER	','	HEADER)

standard	aggregate	function	::=

((COUNT	|	COUNT_BIG)	<lparen>	<star>	<rparen>)

((COUNT	|	COUNT_BIG	|	SUM	|	AVG	|	MIN	|	MAX	|	EVERY	|	STDDEV_POP	|	STDDEV_SAMP	|	VAR_SAMP	|
VAR_POP	|	SOME	|	ANY)	<lparen>	(DISTINCT	|	ALL)?	<expression>	<rparen>)

A	standard	aggregate	function.

Example:

COUNT(*)

analytic	aggregate	function	::=

(ROW_NUMBER	|	RANK	|	DENSE_RANK	|	PERCENT_RANK	|	CUME_DIST)	<lparen>	<rparen>

An	analytic	aggregate	function.

Example:

ROW_NUMBER()

filter	clause	::=

FILTER	<lparen>	WHERE	<boolean	primary>	<rparen>

An	aggregate	filter	clause	applied	prior	to	accumulating	the	value.

Example:

BNF	for	SQL	grammar

789

FILTER	(WHERE	col1='a')

from	clause	::=

FROM	(<table	reference>	(<comma>	<table	reference>)*)

A	query	from	clause	containing	a	list	of	table	references.

Example:

FROM	a,	b

FROM	a	right	outer	join	b,	c,	d	join	e".</p>

table	reference	::=

(<escaped	join>	<joined	table>	<rbrace>)

<joined	table>

An	optionally	escaped	joined	table.

Example:

a

a	inner	join	b

joined	table	::=

<table	primary>	(<cross	join>	|	<qualified	table>)*

A	table	or	join.

Example:

a

a	inner	join	b

cross	join	::=

((CROSS	|	UNION)	JOIN	<table	primary>)

A	cross	join.

Example:

BNF	for	SQL	grammar

790

a	CROSS	JOIN	b

qualified	table	::=

(((RIGHT	(OUTER)?)	|	(LEFT	(OUTER)?)	|	(FULL	(OUTER)?)	|	INNER)?	JOIN	<table	reference>	ON
<condition>)

An	INNER	or	OUTER	join.

Example:

a	inner	join	b

table	primary	::=

(<text	table>	|	<array	table>	|	<json	table>	|	<xml	table>	|	<object	table>	|	<table	name>	|	<table	subquery>	|	(<lparen>
<joined	table>	<rparen>))	((MAKEDEP	<make	dep	options>)	|	MAKENOTDEP)?	((MAKEIND	<make	dep	options>)
)?

A	single	source	of	rows.

Example:

a

make	dep	options	::=

(<lparen>	(MAX	<colon>	<unsigned	integer>)?	((NO)?	JOIN)?	<rparen>)?

options	for	the	make	dep	hint

Example:

(min:10000)

xml	serialize	::=

XMLSERIALIZE	<lparen>	(DOCUMENT	|	CONTENT)?	<expression>	(AS	(STRING	|	VARCHAR	|	CLOB	|
VARBINARY	|	BLOB))?	(ENCODING	<identifier>)?	(VERSION	<string>)?	((INCLUDING	|	EXCLUDING)
XMLDECLARATION)?	<rparen>

Serializes	an	XML	value.

Example:

XMLSERIALIZE(col1	AS	CLOB)

BNF	for	SQL	grammar

791

array	table	::=

ARRAYTABLE	<lparen>	(ROW	|	ROWS)?	<value	expression	primary>	COLUMNS	<typed	element	list>	<rparen>	(AS
)?	<identifier>

The	ARRAYTABLE	table	function	creates	tabular	results	from	arrays.	It	can	be	used	as	a	nested	table	reference.

Example:

ARRAYTABLE	(col1	COLUMNS	x	STRING)	AS	y

json	table	::=

JSONTABLE	<lparen>	<value	expression	primary>	<comma>	<string>	(<comma>	(TRUE	|	FALSE))?	COLUMNS	<json
table	column>	(<comma>	<json	table	column>)*	<rparen>	(AS)?	<identifier>

The	JSONTABLE	table	function	creates	tabular	results	from	JSON.	It	can	be	used	as	a	nested	table	reference.

Example:

JSONTABLE	(col1,	'$..book',	false	COLUMNS	x	STRING)	AS	y

json	table	column	::=

<identifier>	((FOR	ORDINALITY)	|	(<basic	data	type>	(PATH	<string>)?))

json	table	column.

Example:

col	FOR	ORDINALITY

text	table	::=

TEXTTABLE	<lparen>	<common	value	expression>	(SELECTOR	<string>)?	COLUMNS	<text	table	column>	(
<comma>	<text	table	column>)*	((NO	ROW	DELIMITER)	|	(ROW	DELIMITER	<character>))?	(DELIMITER
<character>)?	((ESCAPE	<character>)	|	(QUOTE	<character>))?	(HEADER	(<unsigned	integer>)?)?	(SKIP
<unsigned	integer>)?	(NO	TRIM)?	<rparen>	(AS)?	<identifier>

The	TEXTTABLE	table	function	creates	tabular	results	from	text.	It	can	be	used	as	a	nested	table	reference.

Example:

TEXTTABLE	(file	COLUMNS	x	STRING)	AS	y

text	table	column	::=

<identifier>	((FOR	ORDINALITY)	|	((HEADER	<string>)?	<basic	data	type>	(WIDTH	<unsigned	integer>	(NO	TRIM
)?)?	(SELECTOR	<string>	<unsigned	integer>)?))

BNF	for	SQL	grammar

792

A	text	table	column.

Example:

x	INTEGER	WIDTH	6

xml	query	::=

XMLEXISTS	<lparen>	(<xml	namespaces>	<comma>)?	<string>	(PASSING	<derived	column>	(<comma>	<derived
column>)*)?	<rparen>

Executes	an	XQuery	to	return	an	XML	result.

Example:

XMLQUERY('<a>...'	PASSING	doc)

xml	query	::=

XMLQUERY	<lparen>	(<xml	namespaces>	<comma>)?	<string>	(PASSING	<derived	column>	(<comma>	<derived
column>)*)?	((NULL	|	EMPTY)	ON	EMPTY)?	<rparen>

Executes	an	XQuery	to	return	an	XML	result.

Example:

XMLQUERY('<a>...'	PASSING	doc)

object	table	::=

OBJECTTABLE	<lparen>	(LANGUAGE	<string>)?	<string>	(PASSING	<derived	column>	(<comma>	<derived
column>)*)?	COLUMNS	<object	table	column>	(<comma>	<object	table	column>)*	<rparen>	(AS)?	<identifier>

Returns	table	results	by	processing	a	script.

Example:

OBJECTTABLE('z'	PASSING	val	AS	z	COLUMNS	col	OBJECT	'teiid_row')	AS	X

object	table	column	::=

<identifier>	<basic	data	type>	<string>	(DEFAULT	<expression>)?

object	table	column.

Example:

y	integer	'teiid_row_number'

BNF	for	SQL	grammar

793

xml	table	::=

XMLTABLE	<lparen>	(<xml	namespaces>	<comma>)?	<string>	(PASSING	<derived	column>	(<comma>	<derived
column>)*)?	(COLUMNS	<xml	table	column>	(<comma>	<xml	table	column>)*)?	<rparen>	(AS)?	<identifier>

Returns	table	results	by	processing	an	XQuery.

Example:

XMLTABLE('/a/b'	PASSING	doc	COLUMNS	col	XML	PATH	'.')	AS	X

xml	table	column	::=

<identifier>	((FOR	ORDINALITY)	|	(<basic	data	type>	(DEFAULT	<expression>)?	(PATH	<string>)?))

XML	table	column.

Example:

y	FOR	ORDINALITY

unsigned	integer	::=

<unsigned	integer	literal>

An	unsigned	interger	value.

Example:

12345

table	subquery	::=

(TABLE	|	LATERAL)?	<lparen>	(<query	expression>	|	<call	statement>)	<rparen>	(AS)?	<identifier>

A	table	defined	by	a	subquery.

Example:

(SELECT	*	FROM	tbl)	AS	x

table	name	::=

(<identifier>	((AS)?	<identifier>)?)

A	table	named	in	the	FROM	clause.

Example:

tbl	AS	x

BNF	for	SQL	grammar

794

where	clause	::=

WHERE	<condition>

Specifies	a	search	condition

Example:

WHERE	x	=	'a'

condition	::=

<boolean	value	expression>

A	boolean	expression.

boolean	value	expression	::=

<boolean	term>	(OR	<boolean	term>)*

An	optionally	ORed	boolean	expression.

boolean	term	::=

<boolean	factor>	(AND	<boolean	factor>)*

An	optional	ANDed	boolean	factor.

boolean	factor	::=

(NOT)?	<boolean	primary>

A	boolean	factor.

Example:

NOT	x	=	'a'

boolean	primary	::=

(<common	value	expression>	(<between	predicate>	|	<match	predicate>	|	<like	regex	predicate>	|	<in	predicate>	|	<is	null
predicate>	|	<quantified	comparison	predicate>	|	<comparison	predicate>	|	<is	distinct>)?)

<exists	predicate>

<xml	query>

A	boolean	predicate	or	simple	expression.

BNF	for	SQL	grammar

795

Example:

col	LIKE	'a%'

comparison	operator	::=

<eq>

<ne>

<ne2>

<lt>

<le>

<gt>

<ge>

A	comparison	operator.

Example:

=

is	distinct	::=

IS	(NOT)?	DISTINCT	FROM	<common	value	expression>

Is	Distinct	Right	Hand	Side

Example:

IS	DISTINCT	FROM	expression

comparison	predicate	::=

<comparison	operator>	<common	value	expression>

A	value	comparison.

Example:

=	'a'

subquery	::=

<lparen>	(<query	expression>	|	<call	statement>)	<rparen>

A	subquery.

BNF	for	SQL	grammar

796

Example:

(SELECT	*	FROM	tbl)

quantified	comparison	predicate	::=

<comparison	operator>	(ANY	|	SOME	|	ALL)	(<subquery>	|	(<lparen>	<expression>	<rparen>))

A	subquery	comparison.

Example:

=	ANY	(SELECT	col	FROM	tbl)

match	predicate	::=

(NOT)?	(LIKE	|	(SIMILAR	TO))	<common	value	expression>	(ESCAPE	<character>	|	(<lbrace>	ESCAPE	<character>
<rbrace>))?

Matches	based	upon	a	pattern.

Example:

LIKE	'a_'

like	regex	predicate	::=

(NOT)?	LIKE_REGEX	<common	value	expression>

A	regular	expression	match.

Example:

LIKE_REGEX	'a.*b'

character	::=

<string>

A	single	character.

Example:

'a'

between	predicate	::=

(NOT)?	BETWEEN	<common	value	expression>	AND	<common	value	expression>

BNF	for	SQL	grammar

797

A	comparison	between	two	values.

Example:

BETWEEN	1	AND	5

is	null	predicate	::=

IS	(NOT)?	NULL

A	null	test.

Example:

IS	NOT	NULL

in	predicate	::=

(NOT)?	IN	(<subquery>	|	(<lparen>	<common	value	expression>	(<comma>	<common	value	expression>)*	<rparen>))

A	comparison	with	multiple	values.

Example:

IN	(1,	5)

exists	predicate	::=

EXISTS	<subquery>

A	test	if	rows	exist.

Example:

EXISTS	(SELECT	col	FROM	tbl)

group	by	clause	::=

GROUP	BY	(ROLLUP	<lparen>	<expression	list>	<rparen>	|	<expression	list>)

Defines	the	grouping	columns

Example:

GROUP	BY	col1,	col2

having	clause	::=

BNF	for	SQL	grammar

798

HAVING	<condition>

Search	condition	applied	after	grouping.

Example:

HAVING	max(col1)	=	5

order	by	clause	::=

ORDER	BY	<sort	specification>	(<comma>	<sort	specification>)*

Specifices	row	ordering.

Example:

ORDER	BY	x,	y	DESC

sort	specification	::=

<sort	key>	(ASC	|	DESC)?	(NULLS	(FIRST	|	LAST))?

Defines	how	to	sort	on	a	particular	expression

Example:

col1	NULLS	FIRST

sort	key	::=

<expression>

A	sort	expression.

Example:

col1

integer	parameter	::=

<unsigned	integer>

<unsigned	value	expression	primary>

A	literal	integer	or	parameter	reference	to	an	integer.

Example:

?

BNF	for	SQL	grammar

799

limit	clause	::=

(LIMIT	<integer	parameter>	((<comma>	<integer	parameter>)	|	(OFFSET	<integer	parameter>))?)

(OFFSET	<integer	parameter>	(ROW	|	ROWS)	(<fetch	clause>)?)

<fetch	clause>

Limits	and/or	offsets	the	resultant	rows.

Example:

LIMIT	2

fetch	clause	::=

FETCH	(FIRST	|	NEXT)	(<integer	parameter>)?	(ROW	|	ROWS)	ONLY

ANSI	limit.

Example:

FETCH	FIRST	1	ROWS	ONLY

option	clause	::=

OPTION	(MAKEDEP	<identifier>	<make	dep	options>	(<comma>	<identifier>	<make	dep	options>)*	|	MAKEIND
<identifier>	<make	dep	options>	(<comma>	<identifier>	<make	dep	options>)*	|	MAKENOTDEP	<identifier>	(<comma>
<identifier>)*	|	NOCACHE	(<identifier>	(<comma>	<identifier>)*)?)*

Specifies	query	options.

Example:

OPTION	MAKEDEP	tbl

expression	::=

<condition>

A	value.

Example:

col1

common	value	expression	::=

(<numeric	value	expression>	((<double_amp_op>	|	<concat_op>)	<numeric	value	expression>)*)

Establishes	the	precedence	of	concat.

BNF	for	SQL	grammar

800

Example:

'a'	||	'b'

numeric	value	expression	::=

(<term>	(<plus	or	minus>	<term>)*)

Example:

1	+	2

plus	or	minus	::=

<plus>

<minus>

The	+	or	-	operator.

Example:

+

term	::=

(<value	expression	primary>	(<star	or	slash>	<value	expression	primary>)*)

A	numeric	term

Example:

1	*	2

star	or	slash	::=

<star>

<slash>

The	*	or	/	operator.

Example:

/

value	expression	primary	::=

BNF	for	SQL	grammar

801

<non	numeric	literal>

(<plus	or	minus>)?	(<unsigned	numeric	literal>	|	(<unsigned	value	expression	primary>	(<lsbrace>	<numeric	value
expression>	<rsbrace>)*))

A	simple	value	expression.

Example:

+col1

parameter	reference	::=

<qmark>

(<dollar>	<unsigned	integer>)

A	parameter	reference	to	be	bound	later.

Example:

?

unescapedFunction	::=

((<text	aggreate	function>	|	<standard	aggregate	function>	|	<ordered	aggregate	function>)	(<filter	clause>)?	(<window
specification>)?)	|	(<analytic	aggregate	function>	(<filter	clause>)?	<window	specification>)	|	(<function>	(<window
specification>)?)

(XMLCAST	<lparen>	<expression>	AS	<data	type>	<rparen>)

nested	expression	::=

(<lparen>	(<expression>	(<comma>	<expression>)*)?	(<comma>)?	<rparen>)

An	expression	nested	in	parens

Example:

(1)

unsigned	value	expression	primary	::=

<parameter	reference>

(<escaped	function>	<function>	<rbrace>)

<unescapedFunction>

<identifier>	|	<non-reserved	identifier>

<subquery>

BNF	for	SQL	grammar

802

<nested	expression>

<ARRAY	expression	constructor>

<searched	case	expression>

<case	expression>

An	unsigned	simple	value	expression.

Example:

col1

ARRAY	expression	constructor	::=

ARRAY	((<lsbrace>	(<expression>	(<comma>	<expression>)*)?	<rsbrace>)	|	(<lparen>	<query	expression>	<rparen>)
)

Creates	and	array	of	the	given	expressions.

Example:

ARRAY[1,2]

window	specification	::=

OVER	<lparen>	(PARTITION	BY	<expression	list>)?	(<order	by	clause>)?	(<window	frame>)?	<rparen>

The	window	specification	for	an	analytical	or	windowed	aggregate	function.

Example:

OVER	(PARTION	BY	col1)

window	frame	::=

(RANGE	|	ROWS)	((BETWEEN	<window	frame	bound>	AND	<window	frame	bound>)	|	<window	frame	bound>)

Defines	the	mode,	start,	and	optionally	end	of	the	window	frame

Example:

RANGE	UNBOUNDED	PRECEDING

window	frame	bound	::=

((UNBOUNDED	|	<unsigned	integer>)	(FOLLOWING	|	PRECEDING))

(CURRENT	ROW)

Defines	the	start	or	end	of	a	window	frame

BNF	for	SQL	grammar

803

Example:

CURRENT	ROW

case	expression	::=

CASE	<expression>	(WHEN	<expression>	THEN	<expression>)+	(ELSE	<expression>)?	END

If/then/else	chain	using	a	common	search	predicand.

Example:

CASE	col1	WHEN	'a'	THEN	1	ELSE	2

searched	case	expression	::=

CASE	(WHEN	<condition>	THEN	<expression>)+	(ELSE	<expression>)?	END

If/then/else	chain	using	multiple	search	conditions.

Example:

CASE	WHEN	x	=	'a'	THEN	1	WHEN	y	=	'b'	THEN	2

function	::=

(CONVERT	<lparen>	<expression>	<comma>	<data	type>	<rparen>)

(CAST	<lparen>	<expression>	AS	<data	type>	<rparen>)

(SUBSTRING	<lparen>	<expression>	((FROM	<expression>	(FOR	<expression>)?)	|	(<comma>	<expression	list>))
<rparen>)

(EXTRACT	<lparen>	(YEAR	|	MONTH	|	DAY	|	HOUR	|	MINUTE	|	SECOND	|	QUARTER	|	EPOCH	|	DOW	|	DOY)
FROM	<expression>	<rparen>)

(TRIM	<lparen>	((((LEADING	|	TRAILING	|	BOTH)	(<expression>)?)	|	<expression>)	FROM)?	<expression>
<rparen>)

((TO_CHARS	|	TO_BYTES)	<lparen>	<expression>	<comma>	<string>	(<comma>	<expression>)?	<rparen>)

((TIMESTAMPADD	|	TIMESTAMPDIFF)	<lparen>	<time	interval>	<comma>	<expression>	<comma>	<expression>
<rparen>)

<querystring	function>

((LEFT	|	RIGHT	|	CHAR	|	USER	|	YEAR	|	MONTH	|	HOUR	|	MINUTE	|	SECOND	|	XMLCONCAT	|	XMLCOMMENT	|
XMLTEXT)	<lparen>	(<expression	list>)?	<rparen>)

((TRANSLATE	|	INSERT)	<lparen>	(<expression	list>)?	<rparen>)

<xml	parse>

<xml	element>

BNF	for	SQL	grammar

804

(XMLPI	<lparen>	((NAME)?	<identifier>)	(<comma>	<expression>)?	<rparen>)

<xml	forest>

<json	object>

<xml	serialize>

<xml	query>

(POSITION	<lparen>	<common	value	expression>	IN	<common	value	expression>	<rparen>)

(LISTAGG	<lparen>	<expression>	(<comma>	<string>)?	<rparen>	WITHIN	GROUP	<lparen>	<order	by	clause>
<rparen>)

(<identifier>	<lparen>	(ALL	|	DISTINCT)?	(<expression	list>)?	(<order	by	clause>)?	<rparen>	(<filter	clause>)?)

(CURRENT_DATE	(<lparen>	<rparen>)?)

((CURRENT_TIMESTAMP	|	CURRENT_TIME)	(<lparen>	<unsigned	integer>	<rparen>)?)

SESSION_USER

Calls	a	scalar	function.

Example:

func('1',	col1)

xml	parse	::=

XMLPARSE	<lparen>	(DOCUMENT	|	CONTENT)	<expression>	(WELLFORMED)?	<rparen>

Parses	the	given	value	as	XML.

Example:

XMLPARSE(DOCUMENT	doc	WELLFORMED)

querystring	function	::=

QUERYSTRING	<lparen>	<expression>	(<comma>	<derived	column>)*	<rparen>

Produces	a	URL	query	string	from	the	given	arguments.

Example:

QUERYSTRING('path',	col1	AS	opt,	col2	AS	val)

xml	element	::=

XMLELEMENT	<lparen>	((NAME)?	<identifier>)	(<comma>	<xml	namespaces>)?	(<comma>	<xml	attributes>)?	(
<comma>	<expression>)*	<rparen>

Creates	an	XML	element.

BNF	for	SQL	grammar

805

Example:

XMLELEMENT(NAME	"root",	child)

xml	attributes	::=

XMLATTRIBUTES	<lparen>	<derived	column>	(<comma>	<derived	column>)*	<rparen>

Creates	attributes	for	the	containing	element.

Example:

XMLATTRIBUTES(col1	AS	attr1,	col2	AS	attr2)

json	object	::=

JSONOBJECT	<lparen>	<derived	column	list>	<rparen>

Produces	a	JSON	object	containing	name	value	pairs.

Example:

JSONOBJECT(col1	AS	val1,	col2	AS	val2)

derived	column	list	::=

<derived	column>	(<comma>	<derived	column>)*

a	list	of	name	value	pairs

Example:

col1	AS	val1,	col2	AS	val2

xml	forest	::=

XMLFOREST	<lparen>	(<xml	namespaces>	<comma>)?	<derived	column	list>	<rparen>

Produces	an	element	for	each	derived	column.

Example:

XMLFOREST(col1	AS	ELEM1,	col2	AS	ELEM2)

xml	namespaces	::=

XMLNAMESPACES	<lparen>	<xml	namespace	element>	(<comma>	<xml	namespace	element>)*	<rparen>

BNF	for	SQL	grammar

806

Defines	XML	namespace	URI/prefix	combinations

Example:

XMLNAMESPACES('http://foo'	AS	foo)

xml	namespace	element	::=

(<string>	AS	<identifier>)

(NO	DEFAULT)

(DEFAULT	<string>)

An	xml	namespace

Example:

NO	DEFAULT

simple	data	type	::=

(STRING	(<lparen>	<unsigned	integer>	<rparen>)?)

(VARCHAR	(<lparen>	<unsigned	integer>	<rparen>)?)

BOOLEAN

BYTE

TINYINT

SHORT

SMALLINT

(CHAR	(<lparen>	<unsigned	integer>	<rparen>)?)

INTEGER

LONG

BIGINT

(BIGINTEGER	(<lparen>	<unsigned	integer>	<rparen>)?)

FLOAT

REAL

DOUBLE

(BIGDECIMAL	(<lparen>	<unsigned	integer>	(<comma>	<unsigned	integer>)?	<rparen>)?)

(DECIMAL	(<lparen>	<unsigned	integer>	(<comma>	<unsigned	integer>)?	<rparen>)?)

DATE

TIME

BNF	for	SQL	grammar

807

(TIMESTAMP	(<lparen>	<unsigned	integer>	<rparen>)?)

(OBJECT	(<lparen>	<unsigned	integer>	<rparen>)?)

(BLOB	(<lparen>	<unsigned	integer>	<rparen>)?)

(CLOB	(<lparen>	<unsigned	integer>	<rparen>)?)

JSON

(VARBINARY	(<lparen>	<unsigned	integer>	<rparen>)?)

GEOMETRY

GEOGRAPHY

XML

A	non-collection	data	type.

Example:

STRING

basic	data	type	::=

<simple	data	type>	(<lsbrace>	<rsbrace>)*

A	data	type.

Example:

STRING[]

data	type	::=

<basic	data	type>

((<identifier>	|	<basicNonReserved>)	(<lsbrace>	<rsbrace>)*)

A	data	type.

Example:

STRING[]

time	interval	::=

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

BNF	for	SQL	grammar

808

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

A	time	interval	keyword.

Example:

SQL_TSI_HOUR

non	numeric	literal	::=

<string>

<binary	string	literal>

FALSE

TRUE

UNKNOWN

NULL

(<escaped	type>	<string>	<rbrace>)

((DATE	|	TIME	|	TIMESTAMP)	<string>)

An	escaped	or	simple	non	numeric	literal.

Example:

'a'

unsigned	numeric	literal	::=

<unsigned	integer	literal>

<approximate	numeric	literal>

<decimal	numeric	literal>

An	unsigned	numeric	literal	value.

Example:

1.234

ddl	statement	::=

BNF	for	SQL	grammar

809

<create	table>	(<create	table>	|	<create	procedure>)?

<option	namespace>

<alterStatement>

<create	trigger>

<create	a	domain	or	type	alias>

<create	server>

<create	role>

<drop	role>

<GRANT>

<Revoke	GRANT>

<CREATE	POLICY>

<DROP	POLICY>

<drop	server>

<drop	table>

<Import	foreign	schema>

<Import	VDB>

<create	database>

<use	database>

<drop	schema>

<set	schema>

<create	schema>

<create	procedure>	(<ddl	statement>)?

<create	data	wrapper>

<Drop	data	wrapper>

<drop	procedure>

A	data	definition	statement.

Example:

CREATE	FOREIGN	TABLE	X	(Y	STRING)

option	namespace	::=

SET	NAMESPACE	<string>	AS	<identifier>

A	namespace	used	to	shorten	the	full	name	of	an	option	key.

Example:

BNF	for	SQL	grammar

810

SET	NAMESPACE	'http://foo'	AS	foo

create	database	::=

CREATE	DATABASE	<identifier>	(VERSION	<string>)?	(<options	clause>)?

create	a	new	database

Example:

CREATE	DATABASE	foo	OPTIONS(x	'y')

use	database	::=

USE	DATABASE	<identifier>	(VERSION	<string>)?

database	into	working	context

Example:

USE	DATABASE	foo

create	schema	::=

CREATE	(VIRTUAL	|	FOREIGN)?	SCHEMA	<identifier>	(SERVER	<identifier	list>)?	(<options	clause>)?

create	a	schema	in	database

Example:

CREATE	VIRTUAL	SCHEMA	foo	SERVER	(s1,s2,s3);

drop	schema	::=

DROP	(VIRTUAL	|	FOREIGN)?	SCHEMA	<identifier>

drop	a	schema	in	database

Example:

DROP	SCHEMA	foo

set	schema	::=

SET	SCHEMA	<identifier>

set	the	schema	for	subsequent	ddl	statements

BNF	for	SQL	grammar

811

Example:

SET	SCHEMA	foo

create	a	domain	or	type	alias	::=

CREATE	DOMAIN	(<identifier>	|	<basicNonReserved>)	(AS)?	<data	type>	(NOT	NULL)?

creates	a	named	type	with	optional	constraints

Example:

CREATE	DOMAIN	my_type	AS	INTEGER	NOT	NULL

create	data	wrapper	::=

CREATE	FOREIGN	((DATA	WRAPPER)	|	TRANSLATOR)	<Unqualified	identifier>	(TYPE	<identifier>	(<options
clause>)?)?

Defines	a	translator;	use	the	options	to	override	the	translator	properties.

Example:

CREATE	FOREIGN	DATA	WRAPPER	wrapper	OPTIONS	(x	true)

Drop	data	wrapper	::=

DROP	FOREIGN	((DATA	WRAPPER)	|	TRANSLATOR)	<identifier>

Deletes	a	translator

Example:

DROP	FOREIGN	DATA	WRAPPER	wrapper

create	role	::=

CREATE	ROLE	<Unqualified	identifier>	(WITH	<with	role>)?

Defines	data	role	for	the	database

Example:

CREATE	ROLE	lowly	WITH	FOREIGN	ROLE	"role"

with	role	::=

(ANY	AUTHENTICATED)

BNF	for	SQL	grammar

812

((JAAS	|	FOREIGN)	ROLE	<identifier	list>)

drop	role	::=

DROP	ROLE	<identifier>

Removes	data	role	for	the	database

Example:

DROP	ROLE	<data-role>

CREATE	POLICY	::=

CREATE	POLICY	<identifier>	ON	((<identifier>	(FOR	(ALL	|	((SELECT	|	INSERT	|	UPDATE	|	DELETE)	(
<comma>	(SELECT	|	INSERT	|	UPDATE	|	DELETE))*)))?)	|	(PROCEDURE	<identifier>	(FOR	ALL)?))	TO
<identifier>	USING	<lparen>	<boolean	primary>	<rparen>

CREATE	row	level	policy

Example:

CREATE	POLICY	pname	ON	tbl	FOR	SELECT,INSERT	TO	role	USING	col	=	user();

DROP	POLICY	::=

DROP	POLICY	<identifier>	ON	(<identifier>	|	(PROCEDURE	<identifier>))	TO	<identifier>

DROP	row	level	policy

Example:

DROP	POLICY	pname	ON	tbl	TO	role

GRANT	::=

GRANT	(((<grant	type>	(<comma>	<grant	type>)*)?	ON	((TABLE	<identifier>	(CONDITION	((NOT)?
CONSTRAINT)?	<string>)?)	|	(FUNCTION	<identifier>)	|	(PROCEDURE	<identifier>	(CONDITION	((NOT)?
CONSTRAINT)?	<string>)?)	|	(SCHEMA	<identifier>)	|	(COLUMN	<identifier>	(MASK	(ORDER	<unsigned
integer>)?	<string>)?	(CONDITION	(<boolean	primary>	|	<string>))?)))	|	(ALL	PRIVILEGES)	|	(TEMPORARY
TABLE)	|	(USAGE	ON	LANGUAGE	<identifier>))	TO	<identifier>

Defines	GRANT	for	a	role

Example:

GRANT	SELECT	ON	TABLE	x.y	TO	role

BNF	for	SQL	grammar

813

Revoke	GRANT	::=

REVOKE	(((<grant	type>	(<comma>	<grant	type>)*)?	ON	(TABLE	<identifier>	(CONDITION)?	|	FUNCTION
<identifier>	|	PROCEDURE	<identifier>	(CONDITION)?	|	SCHEMA	<identifier>	|	COLUMN	<identifier>	(MASK)?))	|
(ALL	PRIVILEGES)	|	(TEMPORARY	TABLE)	|	(USAGE	ON	LANGUAGE	<identifier>))	FROM	<identifier>

Revokes	GRANT	for	a	role

Example:

REVOKE	SELECT	ON	TABLE	x.y	TO	role

create	server	::=

CREATE	SERVER	<Unqualified	identifier>	(TYPE	<string>)?	(VERSION	<string>)?	FOREIGN	((DATA	WRAPPER)
|	TRANSLATOR)	<Unqualified	identifier>	(<options	clause>)?

Defines	a	connection	to	a	source

Example:

CREATE	SERVER	"h2-connector"	FOREIGN	DATA	WRAPPER	h2	OPTIONS	("resource-name"	'java:/accounts-ds');

drop	server	::=

DROP	SERVER	<identifier>

Defines	dropping	connection	to	foreign	source

Example:

DROP	SERVER	server_name

create	procedure	::=

CREATE	(VIRTUAL	|	FOREIGN)?	(PROCEDURE	|	FUNCTION)	<Unqualified	identifier>	(<lparen>	(<procedure
parameter>	(<comma>	<procedure	parameter>)*)?	<rparen>	(RETURNS	(<options	clause>)?	(((TABLE)?	<lparen>
<procedure	result	column>	(<comma>	<procedure	result	column>)*	<rparen>)	|	<data	type>))?	(<options	clause>)?	(
AS	<statement>)?)

Defines	a	procedure	or	function	invocation.

Example:

CREATE	FOREIGN	PROCEDURE	proc	(param	STRING)	RETURNS	STRING

drop	procedure	::=

DROP	(VIRTUAL	|	FOREIGN)?	(PROCEDURE	|	FUNCTION)	<identifier>

BNF	for	SQL	grammar

814

Drops	a	table	or	view.

Example:

DROP	FOREIGN	TABLE	table-name

procedure	parameter	::=

(IN	|	OUT	|	INOUT	|	VARIADIC)?	<identifier>	<data	type>	(NOT	NULL)?	(RESULT)?	(DEFAULT	<expression>)?	(
<options	clause>)?

A	procedure	or	function	parameter

Example:

OUT	x	INTEGER

procedure	result	column	::=

<identifier>	<data	type>	(NOT	NULL)?	(<options	clause>)?

A	procedure	result	column.

Example:

x	INTEGER

create	table	::=

CREATE	(<create	view>	|	<create	foreign	or	global	temporary	table>)

Defines	a	table	or	view.

Example:

CREATE	VIEW	vw	AS	SELECT	1

create	foreign	or	global	temporary	table	::=

((FOREIGN	TABLE)	|	(GLOBAL	TEMPORARY	TABLE))	<Unqualified	identifier>	<create	table	body>

Defines	a	foreign	or	global	temporary	table.

Example:

FOREIGN	TABLE	ft	(col	integer)

create	view	::=

BNF	for	SQL	grammar

815

(VIRTUAL)?	VIEW	<Unqualified	identifier>	(<create	view	body>	|	(<options	clause>)?)	AS	<query	expression>

Defines	a	view.

Example:

VIEW	vw	AS	SELECT	1

drop	table	::=

DROP	((FOREIGN	TABLE)	|	((VIRTUAL)?	VIEW)	|	(GLOBAL	TEMPORARY	TABLE))	<identifier>

Drops	a	table	or	view.

Example:

DROP	VIEW	name

create	foreign	temp	table	::=

CREATE	(LOCAL)?	FOREIGN	TEMPORARY	TABLE	<Unqualified	identifier>	<create	table	body>	ON	<identifier>

Defines	a	foreign	temp	table

Example:

CREATE	FOREIGN	TEMPORARY	TABLE	t	(x	string)	ON	z

create	table	body	::=

<lparen>	<table	element>	(<comma>	(<table	constraint>	|	<table	element>))*	<rparen>	(<options	clause>)?

Defines	a	table.

Example:

(x	string)	OPTIONS	(CARDINALITY	100)

create	view	body	::=

<lparen>	<view	element>	(<comma>	(<table	constraint>	|	<view	element>))*	<rparen>	(<options	clause>)?

Defines	a	view.

Example:

(x)	OPTIONS	(CARDINALITY	100)

BNF	for	SQL	grammar

816

table	constraint	::=

(CONSTRAINT	<identifier>)?	(<primary	key>	|	<other	constraints>	|	<foreign	key>)	(<options	clause>)?

Defines	a	constraint	on	a	table	or	view.

Example:

FOREIGN	KEY	(a,	b)	REFERENCES	tbl	(x,	y)

foreign	key	::=

FOREIGN	KEY	<column	list>	REFERENCES	<identifier>	(<column	list>)?

Defines	the	foreign	key	referential	constraint.

Example:

FOREIGN	KEY	(a,	b)	REFERENCES	tbl	(x,	y)

primary	key	::=

PRIMARY	KEY	<column	list>

Defines	the	primary	key.

Example:

PRIMARY	KEY	(a,	b)

other	constraints	::=

((UNIQUE	|	ACCESSPATTERN)	<column	list>)

(INDEX	<lparen>	<expression	list>	<rparen>)

Defines	ACCESSPATTERN	and	UNIQUE	constraints	and	INDEXes.

Example:

UNIQUE	(a)

column	list	::=

<lparen>	<identifier>	(<comma>	<identifier>)*	<rparen>

A	list	of	column	names.

Example:

(a,	b)

BNF	for	SQL	grammar

817

table	element	::=

<identifier>	(SERIAL	|	(<data	type>	(NOT	NULL)?	(AUTO_INCREMENT)?))	<post	create	column>

Defines	a	table	column.

Example:

x	INTEGER	NOT	NULL

view	element	::=

<identifier>	(SERIAL	|	(<data	type>	(NOT	NULL)?	(AUTO_INCREMENT)?))?	<post	create	column>

Defines	a	view	column	with	optional	type.

Example:

x	INTEGER	NOT	NULL

post	create	column	::=

(<inline	constraint>)?	(DEFAULT	<expression>)?	(<options	clause>)?

Common	options	trailing	a	column

Example:

PRIMARY	KEY

inline	constraint	::=

(PRIMARY	KEY)

UNIQUE

INDEX

Defines	a	constraint	on	a	single	column

Example:

x	INTEGER	PRIMARY	KEY

options	clause	::=

OPTIONS	<lparen>	<option	pair>	(<comma>	<option	pair>)*	<rparen>

BNF	for	SQL	grammar

818

A	list	of	statement	options.

Example:

OPTIONS	('x'	'y',	'a'	'b')

option	pair	::=

<identifier>	(<non	numeric	literal>	|	(<plus	or	minus>)?	<unsigned	numeric	literal>)

An	option	key/value	pair.

Example:

'key'	'value'

alter	option	pair	::=

<identifier>	(<non	numeric	literal>	|	(<plus	or	minus>)?	<unsigned	numeric	literal>)

Alter	An	option	key/value	pair.

Example:

'key'	'value'

alterStatement	::=

ALTER	(<ALTER	TABLE>	|	<ALTER	PROCEDURE>	|	<ALTER	TRIGGER>	|	<ALTER	SERVER>	|	<ALTER	DATA
WRAPPER>	|	<ALTER	DATABASE>)

ALTER	TABLE	::=

(((VIRTUAL)?	VIEW	<identifier>)	|	((FOREIGN)?	TABLE	<identifier>))	((AS	<query	expression>)	|	<ADD
column>	|	<ADD	constraint>	|	<alter	options	list>	|	<DROP	column>	|	(ALTER	COLUMN	<alter	column	options>)	|	(
RENAME	(<RENAME	Table>	|	(COLUMN	<rename	column	options>))))

alters	options	of	database

Example:

ALTER	TABLE	foo	ADD	COLUMN	x	xml

RENAME	Table	::=

TO	<identifier>

alters	table	name

BNF	for	SQL	grammar

819

Example:

ALTER	TABLE	foo	RENAME	TO	BAR;

ADD	constraint	::=

ADD	<table	constraint>

alters	table	and	adds	a	constraint

Example:

ADD	PRIMARY	KEY	(ID)

ADD	column	::=

ADD	COLUMN	<table	element>

alters	table	and	adds	a	column

Example:

ADD	COLUMN	bar	type	OPTIONS	(ADD	updatable	true)

DROP	column	::=

DROP	COLUMN	<identifier>

alters	table	and	adds	a	column

Example:

DROP	COLUMN	bar

alter	column	options	::=

<identifier>	((TYPE	(SERIAL	|	(<data	type>	(NOT	NULL)?	(AUTO_INCREMENT)?)))	|	<alter	child	options	list>)

alters	a	set	of	column	options

Example:

ALTER	COLUMN	bar	OPTIONS	(ADD	updatable	true)

rename	column	options	::=

<identifier>	TO	<identifier>

BNF	for	SQL	grammar

820

renames	either	a	table	column	or	procedure’s	parameter	name

Example:

RENAME	COLUMN	bar	TO	foo

ALTER	PROCEDURE	::=

(VIRTUAL	|	FOREIGN)?	PROCEDURE	<identifier>	((AS	<statement>)	|	<alter	options	list>	|	(ALTER	PARAMETER
<alter	column	options>)	|	(RENAME	PARAMETER	<rename	column	options>))

alters	options	of	database

Example:

ALTER	PROCEDURE	foo	OPTIONS	(ADD	x	y)

ALTER	TRIGGER	::=

TRIGGER	ON	<identifier>	INSTEAD	OF	(INSERT	|	UPDATE	|	DELETE)	(AS	<for	each	row	trigger	action>	|
ENABLED	|	DISABLED)

alters	options	of	table	triggers

Example:

ALTER	TRIGGER	ON	vw	INSTEAD	OF	INSERT	ENABLED

ALTER	SERVER	::=

SERVER	<identifier>	<alter	options	list>

alters	options	of	database

Example:

ALTER	SERVER	foo	OPTIONS	(ADD	x	y)

ALTER	DATA	WRAPPER	::=

((DATA	WRAPPER)	|	TRANSLATOR)	<identifier>	<alter	options	list>

alters	options	of	data	wrapper

Example:

ALTER	DATA	WRAPPER	foo	OPTIONS	(ADD	x	y)

BNF	for	SQL	grammar

821

ALTER	DATABASE	::=

DATABASE	<identifier>	<alter	options	list>

alters	options	of	database

Example:

ALTER	DATABASE	foo	OPTIONS	(ADD	x	y)

alter	options	list	::=

OPTIONS	<lparen>	(<add	set	option>	|	<drop	option>)	(<comma>	(<add	set	option>	|	<drop	option>))*	<rparen>

a	list	of	alterations	to	options

Example:

OPTIONS	(ADD	updatable	true)

drop	option	::=

DROP	<identifier>

drop	option

Example:

DROP	updatable

add	set	option	::=

(ADD	|	SET)	<alter	option	pair>

add	or	set	an	option	pair

Example:

ADD	updatable	true

alter	child	options	list	::=

OPTIONS	<lparen>	(<add	set	child	option>	|	<drop	option>)	(<comma>	(<add	set	child	option>	|	<drop	option>))*
<rparen>

a	list	of	alterations	to	options

Example:

OPTIONS	(ADD	updatable	true)

BNF	for	SQL	grammar

822

drop	option	::=

DROP	<identifier>

drop	option

Example:

DROP	updatable

add	set	child	option	::=

(ADD	|	SET)	<alter	child	option	pair>

add	or	set	an	option	pair

Example:

ADD	updatable	true

alter	child	option	pair	::=

<identifier>	(<non	numeric	literal>	|	(<plus	or	minus>)?	<unsigned	numeric	literal>)

Alter	An	option	key/value	pair.

Example:

'key'	'value'

Import	foreign	schema	::=

IMPORT	(FOREIGN	SCHEMA	<identifier>)?	FROM	(SERVER	|	REPOSITORY)	<identifier>	INTO	<identifier>	(
<options	clause>)?

imports	schema	metadata	from	server

Example:

IMPORT	FOREIGN	SCHEMA	foo	FROM	SERVER	bar

Import	VDB	::=

IMPORT	DATABASE	<identifier>	VERSION	<string>	(WITH	ACCESS	CONTROL)?

imports	another	VDB	into	current	database

Example:

BNF	for	SQL	grammar

823

IMPORT	DATABASE	vdb	VERSION	'1.2.3'	WITH	ACCESS	CONTROL

identifier	list	::=

<identifier>	(<comma>	<identifier>)*

grant	type	::=

SELECT

INSERT

UPDATE

DELETE

EXECUTE

ALTER

DROP

BNF	for	SQL	grammar

824

Security	Guide
The	Teiid	system	provides	a	range	of	built-in	and	extensible	security	features	to	enable	secure	data	access.	This	introduction
provides	a	high-level	guide	to	security	concerns.	The	rest	of	the	guide	provides	specifics	on	configuring	clients,	the	Teiid	server,
and	the	application	server.

Elytron	Configuration

Examples	in	this	guide	are	based	upon	the	legacy	security	framework	-	which	is	still	supported.	If	you	want	to	migrate	to	the
newer	Elytron	system	you	should	remove	the	legacy	teiid-security	security	domain	and	instead	work	with	an	analogous	one
created	in	Elytron.	This	also	requires	telling	undertow	to	use	the	new	security	domain.

The	standalone	cli	for	this	change	to	Elytron:

/subsystem=security/security-domain=teiid-security:remove()

/subsystem=elytron/security-domain=teiid-security:add(realms=[{realm=ApplicationRealm}])

/subsystem=undertow/application-security-domain=teiid-security:add(security-domain=teiid-security)

reload

From	there	you	would	not	completely	follow	the	examples	shown	here,	but	rather	use	them	as	a	guide	to	follow	migration
documentation	such	as	Migrate	Legacy	Security.

Authentication

Client	Authentication

JDBC/ODBC/Web	Service	clients	may	use	simple	passwords	to	authenticate	a	user.

Typically	a	user	name	is	required,	however	user	names	may	be	considered	optional	if	the	identity	of	the	user	can	be	discerned	by
the	password	credential	alone.	In	any	case	it	is	up	to	the	configured	security	domain	to	determine	whether	a	user	can	be
authenticated.	If	you	need	authentication,	the	administrator	must	configure	LoginModules	for	Teiid.

Caution
By	default,	access	to	Teiid	is	NOT	secure.	The	default	LoginModules	are	only	backed	by	file	based
authentication,	which	has	a	well	known	user	name	and	password.	We	DO	NOT	recommend	leaving	the	default
security	profile	as	defined	when	you	are	exposing	sensitive	data.

Teiid	JDBC/ODBC	also	supports	Kerberos	authentication	with	additional	configuration.

Auto-generated	web	services,	such	as	OData,	for	consuming	Teiid	typically	support	HTTPBasic	authentication,	which	in	turn
should	utilize	Pass-through	Authentication.

Source	Authentication

Source	authentication	is	generally	determined	by	the	capabilities	of	JCA	resource	adapters	used	to	connect	to	external	resources.
Consult	the	AS	JCA	documentation	for	the	capabilities	of	source	pooling	and	supplied	resource	adapters	for	more	information.
Typically	a	single	username/password	credential	is	supported,	such	as	when	creating	JDBC	Data	Sources.	In	more	advanced	usage
scenarios	the	source	and/or	translator	may	be	configured	or	customized	to	use	an	execution	payload,	the	Teiid	subject,	or	even	the
calling	application	subject	via	Pass-through	Authentication.	See	also	Developing	JEE	Connectors	and	Translator	Development

Pass-through	Authentication

Security	Guide

825

https://docs.wildfly.org/19/WildFly_Elytron_Security.html#Migrate_Legacy_Security_to_Elytron_Security

If	your	client	application	(web	application	or	Web	service)	resides	in	the	same	WildFly	instance	as	Teiid	and	the	client	application
uses	a	security	domain,	then	you	can	configure	Teiid	to	use	the	same	security	domain	and	not	force	the	user	to	re-authenticate.	In
pass-through	mode	Teiid	looks	for	an	authenticated	subject	in	the	calling	thread	context	and	uses	it	for	sessioning	and
authorization.	To	configure	Teiid	for	pass-through	authentication,	change	the	Teiid	security-domain	name	to	the	same	name	as
your	application’s	security	domain	name.	This	change	can	be	made	via	the	CLI	or	in	the		standalone-teiid.xml		file	if	running	in
standalone	mode.	The	security	domain	must	be	a	JAAS	based	LoginModule	and	your	client	application	MUST	obtain	its	Teiid
connection	using	a	Local	Connection	with	the	_PassthroughAuthentication=true	connection	flag	set.	You	may	also	set	the
security-domain	on	the	VDB.

Authorization

Authorization	covers	both	administrative	activities	and	data	roles.	A	data	role	is	a	collection	of	permissions	(also	referred	to	as
entitlements)	and	a	collection	of	entitled	principals	or	groups.	With	the	deployment	of	a	VDB	the	deployer	can	choose	which
principals	and	groups	have	which	data	roles.	Check	out	Reference	Guide	Data	Roles	chapter	for	more	information.	Any	source
level	authorization	decisions	are	up	to	the	source	systems	being	integrated.

VDBs	without	data	roles	defined	are	accessible	by	any	authenticated	user.	If	you	want	to	ensure	some	attempt	has	been	made	at
securing	access,	then	set	the	data-roles-required	configuration	element	to	true	via	the	CLI	or	in	the	standalone.xml	on	the	teiid
subsystem.

Encryption

Teiid	Transports

Teiid	provides	built-in	support	for	JDBC/ODBC	over	SSL.	JDBC	defaults	to	just	sensitive	message	encryption	(login	mode),
while	ODBC	(the	pg	transport)	defaults	to	just	clear	text	passwords	if	using	simple	username/password	authentication.

The	AS	instance	must	be	configured	for	SSL	as	well	so	that	Any	web	services	consuming	Teiid	may	use	SSL.

Configuration

Passwords	in	configuration	files	are	by	default	stored	in	plain	text.	If	you	need	these	values	to	be	encrypted,	please	see	encrypting
passwords	for	instructions	on	encryption	facilities	provided	by	the	container.

Source	Access

Encrypting	remote	source	access	is	the	responsibility	for	the	resource	adapter	and	library/driver	used	to	access	the	source	system.

Temporary	Data

Teiid	temporary	data	which	can	be	stored	on	the	file	system	as	configured	by	the	BufferManager	may	optionally	be	encrypted.	Set
the		buffer-service-encrypt-files		property	to	true	on	the	Teiid	subsystem	to	use	128-bit	AES	to	encrypt	any	files	written	by
the	BufferManager.	A	new	symmetric	key	will	be	generated	for	each	start	of	the	Teiid	system	on	each	server.	A	performance	hit
will	be	seen	for	processing	that	is	memory	intensive	such	that	data	typically	spills	to	disk.	This	setting	does	not	affect	how	VDBs
(either	the	artifact	or	an	exploded	form)	or	log	files	are	written	to	disk.

Security	Guide

826

http://community.jboss.org/wiki/maskingpasswordsinjbossasxmlconfiguration

LoginModules

LoginModules	are	an	essential	part	of	the	JAAS	security	framework	and	provide	Teiid	customizable	user	authentication	and	the
ability	to	reuse	existing	LoginModules	defined	for	WildFly.	Refer	to	the	WildFly	security	documentation	for	information	about
configuring	security	in	WildFly,	http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html.

Teiid	can	be	configured	with	multiple	named	application	policies	that	group	together	relevant	LoginModules.	These	security-
domain	names	can	be	referenced	on	a	per	vdb.

You	can	control	at	the	server	level	and	per	VDB	what	security	domain	and	authentication	type	to	use.	You	need	to	ensure	that
security	domain	supports	the	chosen	authentication	type	-	that	is	if	you	for	example	specify	SSL	authentication	that	you	have
configured	a	LoginModule	that	accepts	certificates.

The	security-domain	attribute	under	the	authentication	element	in		teiid		subsystem	in	the		<jboss-
install>/standalone/configuration/standalone-teiid.xml		file	is	used	set	the	security-domain	name.	For	example,	in	default
configuration	under		teiid		subsystem	you	will	find

<authentication	security-domain="teiid-security"/>

<transport	name="jdbc"	protocol="teiid"	socket-binding="teiid-jdbc">

			<ssl	mode="login"/>

</transport>

If	no	domain	can	authenticate	the	user,	the	login	attempt	will	fail.	Details	of	the	failed	attempt	including	invalid	users,	which
domains	were	consulted,	etc.	will	be	in	the	server	log	with	appropriate	levels	of	severity.

security-domain	in	VDB

A	VDB	can	be	configured	to	use	a	security-domain	other	than	the	Teiid	default	security-domain.	This	configuration	is	defined	in
the	vdb.xml	file,	see	VDB	Properties	for	more	information.	The	security-domain	defined	on	transport	configuration	will	be	used
as	default	security-domain,	if	a	security-domain	is	not	configured	for	a	specific	VDB.

<vdb	name="vdb"	version="1">

				<property	name="security-domain"	value="custom-security"	/>

				...

</vdb>

Tip
In	existing	installations	an	appropriate	security	domain	may	already	be	configured	for	use	by	administrative	clients
(typically	for		admin-console).	If	the	admin	connections	(CLI)	are	not	secured,	it	is	recommended	that	you	secure
that	interface	by	executing		add-user.sh		script	in	the		bin/scripts		directory.

Built-in	LoginModules
JBossAS	provides	several	LoginModules	for	common	authentication	needs,	such	as	authenticating	from	a	Text	Based
LoginModule	or	a	LDAP	Based	LoginModule.

You	can	install	multiple	login	modules	as	part	of	single	security	domain	configuration	and	configure	them	to	be	part	of	the	login
process.	For	example,	for		teiid-security		domain,	you	can	configure	a	file	based	and	also	LDAP	based	login	modules,	and
have	your	user	authenticated	with	either	or	both	login	modules.	If	you	want	to	write	your	own	custom	login	module,	refer	to	the
Developer’s	Guide	for	instructions.

For	all	the	available	login	modules	refer	to	http://community.jboss.org/docs/DOC-11287.

LoginModules

827

http://docs.jboss.org/jbossas/admindevel326/html/ch8.chapter.html
http://community.jboss.org/docs/DOC-11287

Realm	Based	LoginModule

The	RealmDirectLoginModule	utilizes	a	common	security	realm	across	installed	WildFly/EAP	instance	defined	by	default
ApplicationRealm	to	perform	authentication	and	authorization.	To	use	this	security	relam	add	the	following	XML	under	"security"
subsystem	in	standalone-teiid.xml	or	domain.xml

standalone-teiid.xml

	<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="teiid-security"	cache-type="default">

												<authentication>

																<login-module	code="RealmDirect"	flag="required">

																				<module-option	name="password-stacking"	value="useFirstPass"/>

																</login-module>

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

When	using	this	security	domain,	use	<wildfly>/bin/add-user.sh	or	<wildfly>/bin/add-user.bat	scripts	to	add/update	a	user	in
"ApplicationRelam".	When	using	this	relam,	the	password	as	stored	in	encrypted	form.	This	is	the	default	security	module	that	is
used.

Text	Based	LoginModule

The	UsersRolesLoginModule	utilizes	simple	text	files	to	authenticate	users	and	to	define	their	groups.	To	use	this	add	the
following	XML	under	"security"	subsystem	in	standalone-teiid.xml	or	domain.xml

standalone-teiid.xml

	<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="teiid-security"	cache-type="default">

												<authentication>

																<login-module	code="UsersRoles"	flag="required">

																				<module-option	name="usersProperties"	value="${jboss.server.config.dir}/users.properties"/>

																				<module-option	name="rolesProperties"	value="${jboss.server.config.dir}/roles.properties"/>

																</login-module>

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

Warning The	UsersRolesLoginModule	is	not	recommended	for	production	use	and	is	strongly	recommended	that	you
replace	this	login	module.

Per	above	configuration,	User	names	and	passwords	are	stored	in	the	<wildfly>/standalone/configuration/users.properties	file,	an
example	user.properties	file	looks	like	below

users.properties

#	A	users.properties	file	for	use	with	the	UsersRolesLoginModule

#	username=password

fred=password

george=password

...

LoginModules

828

The	role	assignments	are	stored	in	the	<wildfly>/standalone/configuration/roles.properties	file,	an	example	roles.properties	file
looks	like	below

roles.properties

#	A	roles.properties	file	for	use	with	the	UsersRolesLoginModule

#	username=role1,role2,...

data_role_1=fred,sally

data_role_2=george

User	and	role	names	are	entirely	up	to	the	needs	of	the	given	deployment.	For	example	each	application	team	can	set	their	own
security	constraints	for	their	VDBs,	by	mapping	their	VDB	data	roles	to	application	specific	JAAS	roles,	e.g.
app_role_1=user1,user2,user3.

Note When	you	configure	this	security	domain,	you	must	provide	the	empty	user.properties	and	roles.properties	files	at
the	correct	path	defined	in	the	configuration,	otherwise	the	initialization	of	security	domain	will	endup	in	failure.

Note Teiid	data	roles	names	are	independent	of	JAAS	roles.	VDB	creators	can	choose	whatever	name	they	want	for
their	data	roles,	which	are	then	mapped	at	deployment	time	to	JAAS	roles.

LDAP	Based	LoginModule

For	more	complete	information	to	configure	a	LDAP	based	login	module	consult	EAP	documentation

Configure	LDAP	authentication	by	editing	standalone-teiid.xml	under	'security'	subsystem.	Once	the	security-domain	is	defined,
then	edit	the	'security-domain'	attribute	for	Teiid’s	'transport'	for	which	you	want	use	this	LDAP	login.

standalone-teiid.xml

<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="ldap_security_domain">

												<authentication>

																<login-module	code="LdapExtended"	flag="required">

																				<module-option	name="java.naming.factory.initial"	value="com.sun.jndi.ldap.LdapCtxFactory"	

/>

																				<module-option	name="java.naming.provider.url"	value="ldap://mydomain.org:389"	/>

																				<module-option	name="java.naming.security.authentication"	value="simple"	/>

																				<module-option	name="bindDN"	value="myuser"	/>

																				<module-option	name="bindCredential"	value="mypasswd"	/>

																				<module-option	name="baseCtxDN"	value="ou=People,dc=XXXX,dc=ca"	/>

																				<module-option	name="baseFilter"	value="(cn={0})"	/>

																				<module-option	name="rolesCtxDN"	value="ou=Webapp-Roles,ou=Groups,dc=XXXX,dc=ca"	/>

																				<module-option	name="roleFilter"	value="(member={1})"	/>

																				<module-option	name="uidAttributeID"	value="member"	/>

																				<module-option	name="roleAttributeID"	value="cn"	/>

																				<module-option	name="roleAttributeIsDN"	value="true"	/>

																				<module-option	name="roleNameAttributeID"	value="cn"	/>

																				<module-option	name="roleRecursion"	value="-1"	/>

																				<module-option	name="searchScope"	value="ONELEVEL_SCOPE"	/>

																				<module-option	name="allowEmptyPasswords"	value="false"	/>

																				<module-option	name="throwValidateError"	value="true"	/>

																</login-module>

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

LoginModules

829

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/red-hat-jboss-enterprise-application-platform-64-how-to-configure-identity-management/how-to-configure-identity-management

Note If	using	SSL	to	the	LDAP	server,	ensure	that	the	Corporate	CA	Certificate	is	added	to	the	JRE	trust	store.

Note Sometimes	role	information	is	DN,	then	you	will	requirethe	property	"parseRoleNameFromDN=true".

Database	LoginModule

For	information	to	configure	a	Database	based	login	module	consult	EAP	documentation

Cert	LoginModule

For	more	complete	information	to	configure	a	Certificate	based	login	module	consult	EAP	documentation

Role	Mapping	LoginModule

If	the	LoginModule	you	are	using	exposes	role	names	that	you	wish	to	map	to	more	application	specific	names,	then	you	can	use
the	RoleMappingLoginModule.	This	uses	a	properties	file	to	inject	additional	role	names,	and	optionally	replace	the	existing	role,
on	authenticated	subjects.

standalone-teiid.xml

<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="ldap_security_domain">

												<authentication>

																...

																<login-module	code="org.jboss.security.auth.spi.RoleMappingLoginModule"	flag="optional">

																				<module-option	name="rolesProperties"	value="${jboss-install}/standalone/configuration/role

s.properties"	/>

																				<module-option	name="replaceRole"	value="false"	/>

																</login-module>

																...

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

Custom	LoginModules

If	your	authentication	needs	go	beyond	the	provided	LoginModules,	please	refer	to	the	JAAS	development	guide	at
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html.	There	are	also	numerous	guides	available.

If	you	are	extending	one	of	the	built-in	LoginModules,	refer	to	http://community.jboss.org/docs/DOC-9466.

LoginModules

830

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/red-hat-jboss-enterprise-application-platform-64-how-to-configure-identity-management/how-to-configure-identity-management
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/version-6.4/red-hat-jboss-enterprise-application-platform-64-how-to-configure-identity-management/how-to-configure-identity-management
http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASLMDevGuide.html
http://community.jboss.org/docs/DOC-9466

Teiid	Server	Transport	Security
There	are	two	types	of	direct	remote	transports,	each	with	it’s	own	encryption	configuration:

"teiid"	-	Defaults	to	only	encrypt	login	traffic,	in	which	none	of	the	other	configuration	properties	are	used.

"odbc"	-	Defaults	to	no	SSL

Example	Transport	Configuration

												<authentication	security-domain="teiid-security"/>

												<transport	name="jdbc"	socket-binding="teiid-jdbc"	protocol="teiid"/>

												<transport	name="odbc"	socket-binding="teiid-odbc"	protocol="pg">

																<ssl	mode="disabled"/>

												</transport>

Warning The	pg	protocol	for	ODBC	access	defaults	to	clear	text	username	password	authentication.	You	should
consider	using	a	security	domain	that	utilizes	non-plaintext	passwords,	kerberos,	or	SSL.

SSL	configuration	is	part	of	the	transport	configuration	in	the	Teiid	subsystem.

Other	indirect	access	into	Teiid,	such	as	OData	or	REST	via	WARs,	relies	on	the	container	settings	for	HTTP/HTTPS	access.

Encryption	Modes

Teiid	supports	a	couple	different	encryption	modes	based	on	the	mode	attribute	on	ssl	element.

logIn	-	This	is	the	default	setting	for	the	transports.

Teiid	JDBC	(non-data	by	default)	messages	between	client	and	server	are	encrypted	using	128	bit	AES	with	a	Diffie-
Hellman	key	that	is	negotiated	per	connection.	When	possible	a	2048	bit	key	exchange	will	be	used	otherwise	1024	bit
will	be	used.	Oracle/Sun	1.7	JREs	are	known	not	to	support	key	lengths	over	1024	bits.	The	connection	property
encryptRequest	can	be	used	to	encrypt	requests	and	results	using	the	same	128	bit	AES	scheme.	Pre	9.x	and	unpatched
client/server	combinations	will	use	a	less	secure	ECB	block	mode,	which	is	not	recommended	for	large	authentication
payloads	and	the	encryptRequest	option.

pg	authentication	is	expected	to	be	secure	(see	the	system	property	org.teiid.ODBCRequireSecure).	However	the	pg
transport	does	not	support	just	logIn	encryption.	Thus	the	server	will	throw	an	exception	rather	than	attempting	to	send	a
username	password	authentication	request.	GSS	authentication	is	allowed	though.

enabled	-	Mode	to	enable	SSL.	Clients	are	required	to	connect	using	SSL.

disabled	-	turns	off	any	kind	of	encryption.	This	is	the	default	for	the	odbc	transport.

SSL	Client	Authentication	Modes

anonymous	–	DEPRECATED	No	certificates	are	required,	but	all	communications	are	still	encrypted	using	the
TLS_DH_anon_WITH_AES_128_CBC_SHA	SSL	cipher	suite.	In	most	secure	intranet	environments	anonymous	is	suitable
to	just	bulk	encrypt	traffic	without	the	need	to	setup	SSL	certificates.	No	certificates	are	exchanged,	and	settings	are	not
needed	for	the	keystore	and	truststore	properties.	JDBC	Clients	must	have	'org.teiid.ssl.allowAnon'	set	to	true	(the	default)	to
connect	to	an	anonymous	server.

Note

ODBC	clients	and	some	VMs,	such	as	IBM,	may	not	have	the	TLS_DH_anon_WITH_AES_128_CBC_SHA
cipher	suite	available.	On	other	VMs	it	may	require	modifying	the	java.security	file	to	enable	the	anon	cipher

Teiid	Server	Transport	Security

831

http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

suites.

When	the	client	or	server	lack	the	anonymous	cipher	suite,	consider	using	server	only	or	1-way	authentication	with	a	self-signed
certificate.	ODBC	clients	typically	do	not	require	server	certificate	validation.	Teiid	JDBC	clients	by	default	validate	the	server
certificate,	but	can	use	the	org.teiid.ssl.trustAll	property	to	accept	any	server	certificate.

This	mode	is	deprecated,	as	you	may	set	the	authentication	mode	to	1-way	and	the	enabled-cipher-suites	to
TLS_DH_anon_WITH_AES_128_CBC_SHA	for	the	same	effect.

NONE,	previously	known	as	1-way,	is	the	default.	Only	authenticates	the	server	to	the	client.	Requires	a	private	key
keystore	to	be	created	for	the	server.	If	the	client	is	configured	to	validate	the	server	certificate,	the	client	will	need	an
appropriate	truststore	configured.

NEED,	previously	known	as	2-way,	is	mutual	client	and	server	authentication.	The	server	and	client	applications	each	have	a
keystore	for	their	private	keys	and	each	has	a	truststore	that	authenticates	the	other.	The	server	will	present	a	certificate,
which	is	obtained	from	the	keystore	related	properties.	The	client	should	have	a	truststore	configured	to	accept	the	server
certificate.	The	client	is	also	required	to	present	a	certificate,	which	is	obtained	from	its	keystore.	The	client	certificate	should
be	accepted	by	the	trust	store	configured	by	the	truststore	related	properties.

WANT	–	Similar	to	NEED,	but	the	client	is	not	required	to	authenticate.

If	you	have	configured	the	authentication-type	to	be	SSL	or	expect	VDBs	to	specify	an	authentication-type	of	SSL,	then	you	will
need	to	use	either	the	NEED	or	WANT	client	authentication	modes.

For	non-anonymous	SSL,	the	suite	is	negotiated	-	see	enabled-cipher-suites	below	below.

Depending	upon	the	SSL	mode,	follow	the	guidelines	of	your	organization	around	creating/obtaining	private	keys.	If	you	have	no
organizational	requirements,	then	follow	this	guide	to	create	self-signed	certificates	with	their	respective	keystores	and	truststores.
The	following	keystore	and	truststore	combinations	are	required	for	different	SSL	modes.	The	names	of	the	files	can	be	chosen	by
the	user.	The	following	files	are	shown	for	example	purposes	only.

For	any	non-anonymous	server	configuration,	you	must	supply

1.	 server.keystore	-	has	server’s	private	key

2.	 server.truststore	-	has	server’s	public	key

For	NEED	or	WANT	client	authentication,	a	client	may	also	need	to	provide

1.	 client.keystore	-	client’s	private	key

2.	 client.truststore	-	has	client’s	public	key

Full	Configuration	Options

Example	XML	Configuration

<ssl	mode="enabled"	authentication-mode="NONE"	ssl-protocol="TSLv1"	keymanagement-algorithm="algo"

									enabled-cipher-suites="SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA">

												<keystore	name="cert.keystore"	password="passwd"	type="JKS"	key-alias="alias"	key-password="passwd1"

/>

												<truststore	name="cert.truststore"	password="passwd"/>

</ssl>

Properties

mode	-	disabled|login|enabled	disabled	=	no	transport	or	message	level	security	will	be	used.	login	=	only	the	login	traffic
will	be	encrypted	at	a	message	level	using	128	bit	AES	with	an	ephemeral	DH	key	exchange.	Only	applies	to	the		teiid	
transport	and	no	other	config	values	are	needed	in	this	mode.	enabled	=	traffic	will	be	secured	with	SSL	using	the	other

Teiid	Server	Transport	Security

832

configuration	properties.		teiid		transport	clients	must	connect	using	SSL	with	the	mms	protocol.	ODBC	"pg"	transport
clients	may	optionally	use	SSL.

ssl-protocol-	Type	of	SSL	protocol	to	be	used.	Optional	-	by	default	TLSv1.

Caution SSLv3	is	not	recommended	due	to	the	POODLE	security	vulnerability.

keystore/type	-	Keystore	type	created	by	the	keytool.	Optional	-	by	default	"JKS"	is	used.

authentication-mode	-	NONE|NEED|WANT	-	Type	of	SSL	Client	Authentication	Mode.

keymanagement-algorithm	-	Type	of	key	algorithm	used.	Optional	-	by	default	is	based	upon	the	VM,	e.g.	"SunX509"

keystore/name	-	The	file	name	of	the	keystore,	which	contains	the	private	key	of	the	Server.	The	file	name	can	be	relative
resource	path	available	to	the	Teiid	deployer	classloader	or	an	absolute	file	system	path.	A	typical	installation	would	place	the
keystore	file	in	the	conf	directory	of	the	profile	where	Teiid	is	deployed	with	a	file	name	relative	to	the	conf	path.	Typically
required	for	non-anonymous	authentication.

keystore/password	-	password	for	the	keystore.	Required	if	the	keystore	has	a	password.

keystore/key-alias	-	Alias	name	for	the	private	key	to	use.	Optional	-	only	needed	if	there	are	multiple	private	keys	in	the
keystore	and	you	need	to	choose	which	one	to	use.

keystore/key-password	-	Alias	name	for	the	private	key	to	use.	Optional	-	only	needed	if	the	key	password	is	different	than
the	keystore	password.

truststore/name	-	This	is	the	truststore	containing	the	public	certificate(s)	for	client	keys.	Depending	upon	how	you	created
the	keystore	and	truststores,	this	may	be	same	file	as	defined	under	"keystore/name"	property.	Required	if
"authenticationMode"	is	"WANT"	or	"NEED".

truststore/password	-	password	for	the	truststore.	Required	if	the	truststore	has	a	password.

truststore/check-expired	-	Whether	to	check	for	expired	client	certificates.	Default	false.

enabled-cipher-suites	-	A	comma	separated	list	of	cipher	suites	allowed	for	encryption	between	server	and	client.	The	values
must	be	valid	supported	cipher	suites	otherwise	SSL	connections	will	fail.	Optional	-	defaults	to	all	supported	cipher	suites
for	the	vm.

Alternatively,	you	can	use	the	CLI	to	add	or	modify	the	transport	configuration

/subsystem=teiid/transport=jdbc:write-attribute(name=ssl-mode,value=enabled)

/subsystem=teiid/transport=jdbc:write-attribute(name=ssl-authentication-

mode,value=1-way)

/subsystem=teiid/transport=jdbc:write-attribute(name=ssl-ssl-protocol,value=TLSv1)

/subsystem=teiid/transport=jdbc:write-attribute(name=ssl-keymanagement-

algorithm,value=SunX509)

/subsystem=teiid/transport=jdbc:write-attribute(name=ssl-enabled-cipher-

suites,value="SSL_RSA_WITH_RC4_128_MD5,SSL_RSA_WITH_RC4_128_SHA")

/subsystem=teiid/transport=jdbc:write-attribute(name=keystore-name,value=ssl-

example.keystore)

/subsystem=teiid/transport=jdbc:write-attribute(name=keystore-

password,value=redhat)

/subsystem=teiid/transport=jdbc:write-attribute(name=keystore-type,value=JKS)

/subsystem=teiid/transport=jdbc:write-attribute(name=keystore-key-

alias,value=teiid)

/subsystem=teiid/transport=jdbc:write-attribute(name=keystore-key-

password,value=redhat)

Teiid	Server	Transport	Security

833

/subsystem=teiid/transport=jdbc:write-attribute(name=truststore-name,value=ssl-

example.truststore)

/subsystem=teiid/transport=jdbc:write-attribute(name=truststore-

password,value=redhat)

Note
If	you	do	not	like	to	leave	clear	text	passwords	in	the	configuration	file,	then	you	can	use	WildFly	vault
mechanism	for	storing	the	keystore	and	truststore	passwords.	Use	the	directions	defined	here
https://community.jboss.org/docs/DOC-17248

Encryption	Strength

Both	anonymous	SSL	and	login	only	(JDBC	specific)	encryption	are	configured	to	use	128	bit	AES	encryption	by	default.	By
default	non-anonymous	SSL	allow	for	cipher	suite	negotiation	based	upon	the	default	cipher	suites	supported	by	the	respective
Java	platforms	of	the	client	and	server.	Users	can	restrict	the	cipher	suites	used	by	specifying	the	enabled-cipher-suites	property
above	in	the	SSL	configuration.

Examples

1-way	ssl	authentication	mode

Teiid	Server	Transport	Security

834

https://community.jboss.org/docs/DOC-17248
https://developer.jboss.org/docs/DOC-55352

JDBC/ODBC	SSL	connection	using	self-signed	SSL
certificates
When	you	are	operating	in	a	secure	environment,	you	need	to	think	about	mutual	authentication	with	the	server	you	connecting	to
and	also	encrypt	all	the	messages	going	back	and	forth	between	the	client	and	server.	In	Teiid,	both	JDBC	and	ODBC	protocols
support	SSL	based	connections.	Typically	for	development	purposes	you	will	not	have	CA	signed	certificates,	and	you	need	to
validate	with	self-signed	certificates.	In	article,	I	will	show	the	steps	to	generate	a	self-signed	certificate	and	then	configuring
them	in	Teiid.	Then	configuring	the	JDBC	and	ODBC	clients	with	the	defined	SSL	certificates	to	communicate	with	the	Teiid
server.

Creating	self-signed	certificates

If	you	do	not	already	have	it,	download	the	"openssl"	libraries	for	your	environment.	Follow	the	below	script	for	creating	the
certificate(s).

Create	root	CA	Certificate

To	begin	with,	you	need	to	generate	the	root	CA	key	(this	is	what	signs	all	issued	certs),	make	sure	you	give	a	strong	pass	phrase.

openssl	genrsa	-des3	-passout	pass:changeme		-out	rootCA.key	2048

openssl	rsa	-passin	pass:changeme	-in	rootCA.key	-out	rootCA.key

Generate	the	self-signed	(with	the	key	previously	generated)	root	CA	certificate:

openssl	req	-new	-key	rootCA.key	-out	rootCA.csr

openssl	req	-x509	-in	rootCA.csr	-key	rootCA.key	-days	365	-out	rootCA.crt

You	can	install	this	on	Teiid	Server	machine	that	will	be	communicating	with	services	using	SSL	certificates	generated	by	this
root	certificate.	Typically,	you’ll	want	to	install	this	on	all	of	the	servers	on	your	internal	network.

To	work	with	Teiid	server,	you	need	to	import	this	certificate	into	keystore.	Follow	the	below	steps

openssl	pkcs12	-export	-in	rootCA.crt	-inkey	rootCA.key	-out	rootCA.p12	-noiter	-

nomaciter	-name	root

keytool	-importkeystore	-destkeystore	rootCA.keystore	-srckeystore	rootCA.p12	-

srcstoretype	pkcs12	-alias	root

Generating	client	side	certificates
Once	you	have	the	root	CA	certificate	generated,	you	can	use	that	to	generate	additional	SSL	certificates	for	other	JDBC	or	ODBC
and	for	other	services.

1-WAY	SSL

For	1-WAY	SSL,	we	would	need	to	extract	rootCA’s	trust	certificate	(public	key)	and	create	a	keystore	with	it.

JDBC/ODBC	SSL	connection	using	self-signed	SSL	certificates

835

openssl	x509	-trustout	-in	rootCA.crt	>	rootCA_trust.crt

keytool	-importcert	-v	-trustcacerts	-alias	rootCA	-file	rootCA_trust.crt	-keystore	

teiid.keystore

openssl	x509	-in	rootCA_trust.crt	-out	rootCA_trust.cer	-outform	der

Here	we	created	keystore	(teiid.keystore)	that	can	be	used	with	java	based	applications	like	JDBC	driver,	and	also	created
certificate	(rootCA_trust.cer)	that	can	be	used	in	Windows	platform.

2-WAY	SSL

for	2-WAY	SSL,	you	would	need	an	another	certificate	on	client	side.	To	create	an	SSL	certificate	you	can	use	for	one	of	your
services,	the	first	step	is	to	create	a	certificate	signing	request	(CSR).	To	do	that,	you	need	a	key	(separate	from	the	root	CA	key
you	generated	earlier).	Then	generate	a	CSR

openssl	genrsa	-out	teiid.key	2048

openssl	rsa	-passin	pass:changeme	-in	teiid.key	-out	teiid.key

Generate	the	self-signed	certificate,	and	generate	signed	certificate	using	the	root	CA	certificate	and	key	you	generated	previously.
Make	sure	the	Common	Name	(CN)	is	set	to	the	FQDN,	hostname	or	IP	address	of	the	machine	you’re	going	to	put	this	on.

openssl	req	-new	-key	teiid.key	-out	teiid.csr

openssl	x509	-req	-in	teiid.csr	-CA	rootCA.crt	-CAkey	rootCA.key	-CAcreateserial	-

out	teiid.crt	-days	365

Now	you	have	an	SSL	certificate	(in	PEM	format)	called	teiid.crt	This	is	the	certificate	you	want	your	JDBC	or	ODBC	to	use.
Import	this	certificate	into	a	existing	key	store	or	create	a	new	one	using

openssl	pkcs12	-export	-in	teiid.crt	-inkey	teiid.key	-out	teiid.p12	-noiter	-

nomaciter	-name	teiid

keytool	-importkeystore	-destkeystore	teiid.keystore	-srckeystore	teiid.p12	-

srcstoretype	pkcs12	-alias	teiid

keytool	-importcert	-file	rootCA_trust.crt	-keystore	teiid.keystore

Also,	import	the	client	certificate’s	public	key	into	rootCA	keystore

openssl	x509	-trustout	-in	teiid.crt	>	teiid_trust.crt

keytool	-importcert	-file	teiid_trust.crt	-keystore	rootCA.keystore

I	also	found	a	great	reference	here	[1]	&	[2]	for	certificate	generation.	Note	in	above	that,	I	had	issues	with	recognizing	the
PKCS12	formatted	keystore	in	Java	VM,	I	had	to	convert	into	a	JKS	format.

Configuring	the	Teiid	Server	with	Certificates

Install	Teiid	server	if	you	do	not	already	have	one.

Edit	the	standalone-teiid.xml	file,	and	find	"teiid"	subsystem	and	inside	find	JDBC	and	ODBC	transports	and	add	as
following.

<transport	name="jdbc"	socket-binding="teiid-jdbc"	protocol="teiid">

JDBC/ODBC	SSL	connection	using	self-signed	SSL	certificates

836

				<ssl	mode="enabled"	authentication-mode="1-way">

								<keystore	name="/path/to/rootCA.keystore"	password="changeme"	type="JKS"/>

						<!--	uncomment	and	configure	for	2-way	authentication

								<truststore	name="/path/to/rootCA.keystore"	password="changeme"/>

						-->

				</ssl>

</transport>

<transport	name="odbc"	socket-binding="teiid-odbc"	protocol="pg">

				<ssl	mode="enabled"	authentication-mode="1-way">

								<keystore	name="/path/to/rootCA.keystore"	password="changeme"	type="JKS"/>

						<!--	uncomment	and	configure	for	2-way	authentication

								<truststore	name="/path/to/rootCA.keystore"	password="changeme"/>

						-->

				</ssl>

</transport>

Then	restart	the	server	to	start	accepting	the	connections	using	SSL.	Now	server	set	up	is	complete.

Configuring	JDBC	client	to	use	SSL

When	using	a	JDBC	client	to	use	the	SSL,	copy	the	server.truststore	file	to	the	target	machine.	One	of	the	main	change	is
difference	in	JDBC	connection	URL	you	need	to	use.	For	example	if	your	JDBC	connection	string	is

jdbc:teiid:<vdb>:mm://<host>:31000

then	change	it	to

jdbc:teiid:<vdb>:mms://<host>:31000

note	"mm[s]"	to	represent	[s]	for	secure.	You	also	need	to	add	the	following	system	properties	to	your	client	for

1-WAY	SSL

-Djavax.net.ssl.trustStore=/path/to/teiid.keystore

-Djavax.net.ssl.trustStorePassword=changeme

-Djavax.net.ssl.keyStoreType=JKS

2-WAY	SSL

-Djavax.net.ssl.keyStore=/path/to/teiid.keystore

-Djavax.net.ssl.keyStorePassword=changeme

-Djavax.net.ssl.trustStore=/path/to/teiid.keystore

-Djavax.net.ssl.trustStorePassword=changeme

-Djavax.net.ssl.keyStoreType=JKS

The	start	your	client	application	normally,	that	should	make	sure	the	SSL	certificates	used	for	encryption.

JDBC/ODBC	SSL	connection	using	self-signed	SSL	certificates

837

Configuring	ODBC	client	to	use	SSL	(Windows)

Install	the	Postgresql	ODBC	driver	in	your	Windows	machine.

1-WAY	SSL

Copy	the	"rootCA.crt"	and	"rootCA_trust.cer"	files	into	your	Windows	machine	into	directory	c:\Users\
<yourname>\AppData\Roaming\postgresql.	Note	this	directory	may	be	hidden	or	non	existent,	if	non-existent	create	a	new
folder.	Note	that	if	you	are	dealing	with	CA	signed	certificate,	you	do	not	have	to	share	your	private	certificate	"rootCA.crt".
However	since	we	are	using	self	signed	this	will	become	the	root	certificate.

Rename	"rootCA.crt"	to	"root.crt"

Rename	"rootCA_trust.cer"	to	"postgresql.cer"

Now	open	the	"ODBC	Data	Manager"	application,	create	DSN	for	the	connection	you	are	ready	to	make	using	previously
installed	Postgres	ODBC	driver.	Provide	the	correct	host	name	and	port	(35432),	and	use	VDB	name	as	Database	name,	and
select	the	"ssl-model"	property	to	"verify-ca"	or	"verify-full"	and	save	the	configuration.

2-WAY	SSL

Copy	the	"rootCA.crt",	"teiid.crt",	"teiid.key"	files	into	your	Windows	machine	into	directory	c:\Users\
<yourname>\AppData\Roaming\postgresql.	Note	this	directory	may	be	hidden	or	non	existent,	if	non-existent	create	a	new
folder.	Note	that	if	you	are	dealing	with	CA	signed	certificate,	you	do	not	have	to	share	your	private	certificate	"rootCA.crt".
However	since	we	are	using	self	signed	this	will	become	the	root	certificate.

Rename	"rootCA.crt"	to	"root.crt"

Rename	"teiid.crt"	to	"postgresql.crt"

Rename	"teiid.key"	to	"postgresql.key"

Now	open	the	"ODBC	Data	Manager"	application,	create	DSN	for	the	connection	you	are	ready	to	make	using	previously
installed	Postgres	ODBC	driver.	Provide	the	correct	host	name	and	port	(35432),	and	use	VDB	name	as	Database	name,	and
select	the	"ssl-model"	property	to	"verify-ca"	or	"verify-full"	and	save	the	configuration.

Now	use	any	ODBC	client	application/tool	like	(QTODBC)	and	make	ODBC	connection	using	the	DSN	created	and	start
issuing	the	SQL	queries.

JDBC/ODBC	SSL	connection	using	self-signed	SSL	certificates

838

Security	at	the	Data	Source	Level

In	some	use	cases,	the	user	might	need	to	pass-in	different	credentials	to	their	data	sources	based	on	the	logged	in	user	rather	than
using	the	shared	credentials	for	all	the	logged	users.	To	support	this	feature,	WildFly	and	Teiid	provide	multiple	login	modules	to
be	used	in	conjunction	with	Teiid’s	main	security	domain.	See	this	document	for	details	on	configuration.	Note	that	these
directions	need	to	be	used	in	conjunction	with	the	container	document.

CallerIdentity

If	client	wants	to	pass	in	simple	text	password	or	a	certificate	or	a	custom	serialized	object	as	token	credential	to	the	data	source,
the	admin	can	configure	the	"CallerIdentity"	login	module.	Using	this	login	module	a	user	can	pass-in	their	Teiid	security	domain
login	credential	to	the	data	source.	Here	is	a	sample	configuration:

standalone-teiid.xml

<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="my-security-domain">

												<authentication>

																<login-module	code="RealmDirect"	flag="required">

																				<module-option	name="password-stacking"	value="useFirstPass"/>

																</login-module>

																<login-module	code="org.picketbox.datasource.security.CallerIdentityLoginModule"	flag="required"

>

																				<module-option	name="password-stacking"	value="useFirstPass"/>

																</login-module>

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

Note This	security	domain	should	only	be	used	to	secure	data	sources,	and	not	as	generic	purpose	security	domain.

Note

"applicability"	-	CallerIdentity	Login	module	is	only	applicable	when	the	logged	in	subject	contains	the	text
based	credentials.	The	login	module	retrieves	and	uses	the	username	and	password	for	the	data	source
authentication	purposes.	When	working	with	non-character	based	passwords	use	Passthough	Identity	defined
below.

In	the	datasource	configuration,	instead	of	supplying	the	username/password	you	need	to	add	the	following	element:

In	JDBC	Datasource

<datasource	jndi-name="java:/mysql-ds"	pool-name="mysql-ds"	enabled="true">

				<connection-url>jdbc:mysql://localhost:3306/txns</connection-url>

				<driver>mysql</driver>

					<pool>

										<allow-multiple-users>true</allow-multiple-users>

					</pool>

					<security>

										<security-domain>my-security-domain</security-domain>

					</security>

</datasource>

In	a	connection	factory	ex:ldap

								<resource-adapter>

Data	Source	Security

839

http://community.jboss.org/docs/DOC-9350

												<archive>teiid-connector-ldap.rar</archive>

												<transaction-support>NoTransaction</transaction-support>

												<connection-definitions>

																<connection-definition	class-name="org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory"

																								jndi-name="java:/ldapDS"

																								enabled="true"

																								use-java-context="true"

																								pool-name="ldap-ds">

																		<config-property	name="LdapUrl">ldap://ldapServer:389</config-property>

																		<config-property	name="LdapAdminUserDN">cn=???,ou=???,dc=???</config-property>

																		<config-property	name="LdapAdminUserPassword">pass</config-property>

																		<config-property	name="LdapTxnTimeoutInMillis">-1</config-property>

																		<security>

																					<security-domain>my-security-domain</security-domain>

																	</security>

																</connection-definition>

												</connection-definitions>

								</resource-adapter>

When	user	logs	in	with	a	password,	the	same	username	and	password	will	be	also	set	on	the	logged	in	Subject	after
authentication.	These	credentials	can	be	extracted	by	the	data	source	by	asking	for	Subject’s	private	credentials.

Please	note	that	encoding	and	decoding	of	this	credential	is	strictly	up	to	the	user	as	WildFly	and	Teiid	will	only	act	as	a	carrier	of
the	information	from	login	module	to	connection	factory.	Using	this	CallerIdentity	module,	the	connection	pool	for	data	source	is
segmented	by	Subject.

Pass	Through	Identity
This	is	similar	to	the	CallerIdentity	login	module,	where	the	calling	user’s	credentials	and	roles	are	passed	as	is.	This	is	especially
useful	when	dealing	with	non-text	based	credentials	where	you	want	to	pass	down	the	payload	as	is.

Note this	login	module	will	typically	only	be	used	in	OAuth	delegation	scenarios.

standalone-teiid.xml

<subsystem	xmlns="urn:jboss:domain:security:1.1">

				<security-domains>

								<security-domain	name="passthrough-security">

												<authentication>

																<login-module	code="org.teiid.jboss.PassthroughIdentityLoginModule"	flag="required"	module="org

.jboss.teiid">

																				<module-option	name="username"	value="guest"/>

																				<module-option	name="password"	value="guest"/>

																</login-module>

												</authentication>

								</security-domain>

				</security-domains>

</subsystem>

Note This	security	domain	should	only	be	used	to	secure	data	sources,	and	not	as	generic	purpose	security	domain.

In	the	datasource	configuration,	instead	of	supplying	the	username/password	you	need	to	add	the	following	element

In	JDBC	Datasource

<datasource	jndi-name="java:/mysql-ds"	pool-name="mysql-ds"	enabled="true">

				<connection-url>jdbc:mysql://localhost:3306/txns</connection-url>

				<driver>mysql</driver>

Data	Source	Security

840

				<pool>

										<allow-multiple-users>true</allow-multiple-users>

				</pool>

				<security>

										<security-domain>passthrough-security</security-domain>

				</security>

</datasource>

OAuth	Authentication
Secured	Rest	services	with	OAuth	authentication	can	be	used	in	Teiid,	however	the	data	sources	need	to	be	configured	with
OAuth	Refresh	Token	or	Json	Web	Token	(JWT)	based	security	domains.

Refresh	Token

A	connected	application	is	different	among	vendors	like	Google,	LinkedIn,	SalesForce	etc.	For	details	about	creating	a	connected
application	consult	the	vendor’s	documentation.	Once	you	have	created	a	connected	application,	then	run	teiid-oauth-util.sh	in	"
<eap>/bin"	directory,	use	client_id,	client_pass,	and	call	back	from	source	specific	connected	application.	This	script	will	provide
the	necessary	values	to	plug-in	below	CLI	script.

create	a	security-domain	by	executing	CLI

/subsystem=security/security-domain=oauth2-security:add(cache-type=default)

/subsystem=security/security-domain=oauth2-security/authentication=classic:add

/subsystem=security/security-domain=oauth2-security/authentication=classic/login-module=oauth:add(code=org.teii

d.jboss.oauth.OAuth20LoginModule,	flag=required,	module=org.jboss.teiid.security,

			module-options=[client-id=xxxx,	client-secret=xxxx,	refresh-token=xxxx,

			access-token-uri=https://login.salesforce.com/services/oauth2/token])

reload

this	will	generate	the	following	XML	in	the	standalone.xml	or	domain.xml	(this	can	also	be	directly	added	to	the	standalone.xml
or	domain.xml	files	instead	of	executing	the	CLI)

standalone.xml

<security-domain	name="oauth2-security">

				<authentication>

								<login-module	code="org.teiid.jboss.oauth.OAuth20LoginModule"	flag="required"	module="org.jboss.teiid.s

ecurity">

												<module-option	name="client-id"	value="xxxx"/>

												<module-option	name="client-secret"	value="xxxx"/>

												<module-option	name="refresh-token"	value="xxxx"/>

												<module-option	name="access-token-uri"	value="https://login.salesforce.com/services/oauth2/token"/>

								</login-module>

				</authentication>

</security-domain>

JSON	Web	Token	(JWT)

A	connected	application	is	different	among	vendors	like	Google,	LinkedIn,	SalesForce	etc.	For	details	about	creating	a	connected
application	consult	the	vendor’s	documentation.	Once	you	have	created	connected	application	that	uses	the	JWT,	gather	the	below
information	client-id,	client-secret,	access-token-uri,	jwt-audience,jwt-subject,keystore-type,keystore-password,	keystore-
url,certificate-alias,signature-algorithm-name	and	provide	in	the	below	CLI.	(only	tested	with	SalesForce)

/subsystem=security/security-domain=oauth2-jwt-security:add(cache-type=default)

/subsystem=security/security-domain=oauth2-jwt-security/authentication=classic:add

/subsystem=security/security-domain=oauth2-jwt-security/authentication=classic/login-module=oauth:add(code=org.

teiid.jboss.oauth.OAuth20LoginModule,	flag=required,	module=org.jboss.teiid.security,

Data	Source	Security

841

			module-options=[client-id=xxxx,	client-secret=xxxx,	access-token-uri=https://login.salesforce.com/services/o

auth2/token,	jwt-audience=https://login.salesforce.com,	jwt-subject=your@sf-login.com,

				keystore-type=JKS,	keystore-password=changeme,	keystore-url=${jboss.server.config.dir}/salesforce.jks,	cert

ificate-alias=teiidtest,	signature-algorithm-name=SHA256withRSA])

reload

this	will	generate	following	XML	in	the	standalone.xml	or	domain.xml	(this	can	also	be	directly	added	to	the	standalone.xml	or
domain.xml	files	instead	of	executing	the	CLI)

standalone.xml

<security-domain	name="oauth2-jwt-security">

				<authentication>

								<login-module	code="org.teiid.jboss.oauth.JWTBearerTokenLoginModule"	flag="required"	module="org.jboss.

teiid.security">

												<module-option	name="client-id"	value="xxxxx"/>

												<module-option	name="client-secret"	value="xxxx"/>

												<module-option	name="access-token-uri"	value="https://login.salesforce.com/services/oauth2/token"/>

												<module-option	name="jwt-audience"	value="https://login.salesforce.com"/>

												<module-option	name="jwt-subject"	value="your@sf-login.com"/>

												<module-option	name="keystore-type"	value="JKS"/>

												<module-option	name="keystore-password"	value="changeme"/>

												<module-option	name="keystore-url"	value="${jboss.server.config.dir}/salesforce.jks"/>

												<module-option	name="certificate-alias"	value="teiidtest"/>

												<module-option	name="signature-algorithm-name"	value="SHA256withRSA"/>

								</login-module>

				</authentication>

</security-domain>

Kerberos

Kerberos	can	also	used	as	data	source	security.	The	below	configuration	is	to	configure	a	static	Kerberos	ticket	at	data	source.
Please	note	that	Kerberos	can	be	used	with	RDBMS,	REST	web	services.

/subsystem=security/security-domain=host:add(cache-type=default)

/subsystem=security/security-domain=host/authentication=classic:add

/subsystem=security/security-domain=host/authentication=classic/login-module=Kerberos:add(code=Kerberos,	flag=r

equired,

			module-options=[storeKey=true,	refreshKrb5Config=true,	useKeyTab=true,

			principal=host/testserver@MY_REALM,	keyTab=/path/to/service.keytab,	doNotPrompt=true,	debug=false])

reload

The	above	command	will	generate	resulting	XML	in	the	standalone.xml	file	or	domain.xml	file.

standalone.xml

<security-domain	name="host">

			<authentication>

						<login-module	code="Kerberos"	flag="required">

									<module-option	name="storeKey"	value="true"/>

									<module-option	name="useKeyTab"	value="true"/>

									<module-option	name="principal"	value="host/testserver@MY_REALM"/>

									<module-option	name="keyTab"	value="/path/to/service.keytab"/>

									<module-option	name="doNotPrompt"	value="true"/>

									<module-option	name="debug"	value="false"/>

									<module-option	name="refreshKrb5Config"	value	=	"true"/>

									<module-option	name="addGSSCredential"	value	=	"true"/>

						</login-module>

			</authentication>

</security-domain>

Data	Source	Security

842

Kerberos	Delegation

For	using	the	same	kerberos	token	at	Teiid	and	as	well	as	at	the	data	source	level,	the	token	negotiated	at	the	Teiid	engine	can	be
passed	into	data	source.	The	data	source	must	be	configured	to	support	this.	Major	database	vendors	like	Oracle,	MS-SQLServer,
DB2,	HIVE,	Impala	support	kerberos.	Some	also	support	pass	through	mode.	To	make	delegation	work,	follow	the	directions	here
to	setup	the	Kerberos	at	Teiid	engine	level	[Kerberos	support	through	GSSAPI]	and	use	the	module	option	delegationCredential:

<module-option	name="delegationCredential"	value="USE"/>

Tip

When	working	with	Kerberos/GSS	security	token	(GssCredential),	some	JDBC	drivers	(MS-SQLServer)	upon
close	of	the	connection	they	invalidate	the	GssCredential	security	token,	to	avoid	accidental	invalidation,	add	an
option	to	above	security-domain’s	login-module	configuration	to	wrap	the	passed	in	security	token	by	adding
below	configuration

<module-option	name="wrapGSSCredential"	value="true"/>

Translator	Customization

Teiid’s	extensible	Translator	framework	also	provides	hooks	for	securing	access	at	the	DataSource	level.	The
	ExecutionFactory.getConnection		may	be	overridden	to	initialize	the	source	connection	in	any	number	of	ways,	such	as	re-
authentication,	based	upon	the	Teiid		Subject	,	execution	payload,	session	variables,	and	any	of	the	other	relevant	information
accessible	via	the		ExecutionContext		and	the		CommandContext	.	You	may	even	also	modify	the	generated	source	SQL	in	any
way	that	is	seen	fit	in	the	relevant		Execution	.

Data	Source	Security

843

Kerberos	support	through	GSSAPI
Teiid	supports	kerberos	authentication	using	GSSAPI	for	single	sign-on	applications.	This	service	ticket	negotiation	based
authentication	is	supported	through	remote	JDBC/ODBC	drivers	and	LocalConnections.	Client	configuration	is	different	for	each
client	type.

LocalConnection

Set	the	JDBC	URL	property	PassthroughAuthentication	as	true	and	use	JBoss	Negotiation	for	authentication	of	your	web-
application	with	kerberos.	When	the	web	application	authenticates	with	the	provided	kerberos	token,	the	same	subject
authenticated	will	be	used	in	Teiid.	For	details	about	configuration,	check	the	configuring	the	SSO	with	Kerberos	in	EAP

Server	configuration	for	Remote	JDBC/ODBC	Connections

To	support	kerberos	SSO	on	remote	JDBC	and	ODBC	connections,	both	client	side	and	server	side	configurations	need	to	be
modified.	On	the	server	side,	EAP	needs	to	be	configured	with	two	different	login	modules.	The	below	CLI	script	shows	examples
of	it.	Make	necessary	changes	related	to	your	configuration	in	terms	of	key	tab	locations,	service	principal	etc.

Configure	security	domain	to	represent	the	identity	of	the	server.

The	first	security	domain	authenticates	the	container	itself	to	the	directory	service.	It	needs	to	use	a	login	module	which	accepts
some	type	of	static	login	mechanism,	because	a	real	user	is	not	involved.	This	example	uses	a	static	principal	and	references	a
keytab	file	which	contains	the	credential.

/subsystem=security/security-domain=host:add(cache-type=default)

/subsystem=security/security-domain=host/authentication=classic:add

/subsystem=security/security-domain=host/authentication=classic/login-module=Kerberos:add(code=Kerberos,	flag=r

equired,

module-options=[storeKey=true,	refreshKrb5Config=true,	useKeyTab=true,

principal=host/testserver@MY_REALM,	keyTab=/path/to/service.keytab,	doNotPrompt=true,	debug=false])

reload

The	above	command	will	generate	resulting	XML	in	the	standalone.xml	file	or	domain.xml	file.

standalone-teiid.xml

<security-domain	name="host">

			<authentication>

						<login-module	code="Kerberos"	flag="required">

									<module-option	name="storeKey"	value="true"/>

									<module-option	name="useKeyTab"	value="true"/>

									<module-option	name="principal"	value="host/testserver@MY_REALM"/>	<!--	service	principal	-->

									<module-option	name="keyTab"	value="/path/to/service.keytab"/>

									<module-option	name="doNotPrompt"	value="true"/>

									<module-option	name="debug"	value="false"/>

									<module-option	name="refreshKrb5Config"	value	=	"true"/>

						</login-module>

			</authentication>

</security-domain>

Configure	security	domain	to	secure	the	Teiid	application.

Kerberos	support	through	GSSAPI

844

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/how-to-set-up-sso-with-kerberos/how-to-set-up-sso-with-kerberos

The	second	security	domain	is	used	to	authenticate	the	individual	user	to	the	Kerberos	server.	You	need	at	least	one	login	module
to	authenticate	the	user,	and	another	to	search	for	the	roles	to	apply	to	the	user.	The	following	XML	code	shows	an	example
SPNEGO	security	domain.	It	includes	an	authorization	module	to	map	roles	to	individual	users.	You	can	also	use	a	module	which
searches	for	the	roles	on	the	authentication	server	itself.	Note	the	name	of	security-domain	MUST	match	realm.	The	following
CLI	script	shows	example	of	creating	the	login	module

/subsystem=security/security-domain=MY_REALM:add(cache-type=default)

/subsystem=security/security-domain=MY_REALM/authentication=classic:add

/subsystem=security/security-domain=MY_REALM/authentication=classic/login-module=SPNEGO:add(code=SPNEGO,	flag=r

equisite,

module-options=[serverSecurityDomain=host,password-stacking=useFirstPass])

/subsystem=security/security-domain=MY_REALM/authentication=classic/login-module=UserRoles:add(code=SPNEGO,	fla

g=requisite,

module-options=[usersProperties=spnego-users.properties,rolesProperties=spnego-roles.properties])

reload

The	above	CLI	will	result	in	following	result	XML	in	standalone.xml	or	domain.xml	depending	upon	configuration

standalone-teiid.xml

<security-domain	name="MY_REALM">

			<authentication>

						<!--	Check	the	username	and	password	-->

						<login-module	code="SPNEGO"		flag="requisite">

									<module-option	name="password-stacking"	value="useFirstPass"/>

									<module-option	name="serverSecurityDomain"	value="host"/>

						</login-module>

						<!--	Search	for	roles	-->

						<login-module	code="UserRoles"	flag="requisite">

									<module-option	name="password-stacking"	value="useFirstPass"	/>

									<module-option	name="usersProperties"	value="spnego-users.properties"	/>

									<module-option	name="rolesProperties"	value="spnego-roles.properties"	/>

						</login-module>

			</authentication>

</security-domain>

Note

"User	Roles/Groups	associations"	Kerberos	does	not	assign	any	user	roles	to	the	authenticated	subject,	that	is
reason	you	need	to	configure	a	separate	role	mapping	module	to	assign	roles.	As	an	example	in	the	above,
"UserRoles"	login-module	is	added.	User	need	to	edit		"spnego-roles.properties"	file	and	add	groups	in	the
format	of	`user@MY_REALM=my-group	.	Check	JBoss	EAP	documentation,	as	to	all	the	available	mapping	modules
that	are	available.

SPENGO	security-domain	delegates	the	calls	relating	to	Kerberos	to	Kerberos	server	based	on	"serverSecurityDomain"	property.
If	you	would	like	configure	the	choice	of	authenticating	using	Kerberos	or	some	other	additional	security	domain	on	the	same
JDBC/ODBC	transport,	then	you	need	to	supply	an	additional	module	option	(this	can	also	be	viewed	as	fallback	authentication
model)

<module-option	name="usernamePasswordDomain"	value="{user-name-based-auth}"/>

the	resulting	xml	will	look	like	below	where	{user-name-based-auth}	replaced	with	a	JAAS	based	simple	username/password
login	module	"app-fallback"

standalone-teiid.xml

<security-domain	name="MY_REALM">

	 <authentication>

	 	 <!--	Check	the	username	and	password	-->

	 	 <login-module	code="SPNEGO"	flag="requisite">

	 	 	 <module-option	name="password-stacking"	value="useFirstPass"/>

	 	 	 <module-option	name="serverSecurityDomain"	value="host"/>

	 	 	 <module-option	name="usernamePasswordDomain"	value="app-fallback"/>

Kerberos	support	through	GSSAPI

845

	 	 </login-module>

	 	 <!--	Search	for	roles	-->

	 	 <login-module	code="UserRoles"	flag="requisite">

	 	 	 <module-option	name="password-stacking"	value="useFirstPass"	/>

	 	 	 <module-option	name="usersProperties"	value="spnego-users.properties"	/>

	 	 	 <module-option	name="rolesProperties"	value="spnego-roles.properties"	/>

	 	 </login-module>

	 </authentication>

</security-domain>

<security-domain	name="app-fallback"	cache-type="default">

	 <authentication>

	 	 <login-module	code="UsersRoles"	flag="required">

	 	 	 <module-option	name="usersProperties"	value="file:${jboss.server.config.dir}/fallback-u

sers.properties"/>

	 	 	 <module-option	name="rolesProperties"	value="file:${jboss.server.config.dir}/fallback-r

oles.properties"/>

	 	 </login-module>

	 </authentication>

</security-domain>

Server	Transport	Configuration

The	above	configuration	defined	security-domains,	before	you	can	use	these	domains	for	login	into	Teiid,	they	need	to	be
associated	with	Teiid’s	transport	configuration	or	VDB	configuration.	Paragraphs	below	offer	both	solutions.

Defining	a	"default"	authentication

User	can	define	a	"default"	authentication	as	below	that	can	be	used	for	all	the	VDBs	system	wide.

Use	below	CLI	commands	to	edit	the	configuration

/subsystem=teiid:write-attribute(name=authentication-security-domain,	value=MY_REALM)

/subsystem=teiid:write-attribute(name=authentication-type,	value=GSS)

Will	result	in	following	changes	(or	you	can	edit	the	standalone-teiid.xml	file	directly)

<authentication	security-domain="MY_REALM"	type="GSS"/>

<transport	name="jdbc"	protocol="teiid"	socket-binding="teiid-jdbc"/>

"What	is	the	value	of	Type"

The	"type"	attribute	above	defines	the	type	of	authentication	that	needs	to	be	enforced	on	the	transport/vdb.	The	allowed	values
for	type	are

USERPASSWORD	-	only	allow	user	name/password	based	authentications

GSS	-	only	allow	GSS	API	based	authentication	(Kerberos5).

Defining	VDB	based	authentication

You	can	add	following	combination	VDB	properties	in	the	vdb.xml	file	to	select	or	force	the	security-domain	and	authentication
type.

<property	name="security-domain"	value="MY_REALM"	/>

<property	name="gss-pattern"	value="{regex}"	/>

<property	name="password-pattern"	value="{regex}"	/>

<property	name="authentication-type"	value="GSS	or	SSL	or	USERPASSWORD"	/>

Kerberos	support	through	GSSAPI

846

All	the	properties	above	are	optional	on	a	VDB.	If	you	want	to	define	VDB	based	security	configuration	"security-domain"
property	is	required.	If	you	want	to	enforce	single	authentication	type	use	"authentication-type"	property	is	required.	If	your
security	domain	can	support	multiple	types,	then	you	can	define	"gss-pattern",	"password-pattern",	or	"ssl-pattern"	properties,	and
define	a	regular	expression	as	the	value.	During	the	connection,	these	regular	expressions	are	matched	against	the	connecting
user’s	name	provided	to	select	which	authentication	method	user	prefers.	For	example,	if	the	configuration	is	defined	as	below

<property	name="security-domain"	value="MY_REALM"	/>

<property	name="gss-pattern"	value="logasgss"	/>

and	if	you	passed	the	"user=logasgss"	in	the	connection	string,	then	GSS	authentication	is	selected	as	login	authentication
mechanism.	If	the	user	name	does	not	match,	then	default	transport’s	authentication	method	is	selected.	Alternatively,	if	you	want
choose	USERPASSWORD

<property	name="security-domain"	value="MY_REALM"	/>

<property	name="password-pattern"	value="*-simple"	/>

and	if	the	user	name	is	like	"mike-simple",	then	that	user	will	be	subjected	to	authenticate	against	USERPASSWORD	based
authentication	domain.	You	can	configure	different	security-domains	for	different	VDBS.	VDB	authentication	will	no	longer	be
dependent	upon	underlying	transport.	If	you	like	force	"GSS"	all	the	time	then	use	configuration	like	below

<property	name="security-domain"	value="MY_REALM"	/>

<property	name="authentication-type"	value="GSS"	/>

Required	System	Properties	on	Server

JBoss	EAP	offers	the	ability	to	configure	system	properties	related	to	connecting	to	Kerberos	servers.	Depending	on	the	KDC,
Kerberos	Domain,	and	network	configuration,	the	below	system	properties	may	or	may	not	be	required.

Edit	the	"standalone.conf"	or	domain.conf	file	in	the	"${jboss-as}/bin"	directory	and	add	the	following	JVM	options	\(changing
the	realm	and	KDC	settings	according	to	your	environment)

JAVA_OPTS	=	"$JAVA_OPTS	-Djava.security.krb5.realm=EXAMPLE.COM	-

Djava.security.krb5.kdc=kerberos.example.com	-

Djavax.security.auth.useSubjectCredsOnly=false"

or

JAVA_OPTS	=	"$JAVA_OPTS	-Djava.security.krb5.conf=/path/to/krb5.conf	-

Djava.security.krb5.debug=false	-Djavax.security.auth.useSubjectCredsOnly=false"

or	you	can	add	these	properties	inside	the	standalone-teiid.xml	file	right	after	the	<extensions>	segment	as

<system-properties>

				<property	name="java.security.krb5.conf"	value="/pth/to/krb5.conf"/>

				<property	name="java.security.krb5.debug"	value="false"/>

				<property	name="javax.security.auth.useSubjectCredsOnly"	value="false"/>

</system-properties>

This	finishes	the	configuration	on	the	server	side,	restart	the	server	and	make	sure	there	are	no	errors	during	start	up.

JDBC	Client	Configuration

Kerberos	support	through	GSSAPI

847

Your	workstation	where	the	JDBC	Client	exists	must	have	been	authenticated	using	GSS	API	against	Active	Directory	or
Enterprise	directory	server.	See	this	website	http://spnego.sourceforge.net	on	instructions	as	to	how	to	verify	your	system	is
authenticated	into	enterprise	directory	server.	Contact	your	company’s	operations	team	if	you	have	any	questions.

In	your	client	VM	the	JAAS	configuration	for	Kerberos	authentication	needs	to	be	written.	A	sample	configuration	file
(client.conf)	is	show	below

"client.conf"

Teiid	{

				com.sun.security.auth.module.Krb5LoginModule	required

				useTicketCache=true

				storeKey=true

				useKeyTab=true

				keyTab="/path/to/krb5.keytab"

				doNotPrompt=true

				debug=false

				principal="user@EXAMPLE.COM";

};

Make	sure	you	have	configured	the	"keytab"	properly,	you	can	check	this	website	for	utilities	and	instructions	to	check	your
access	to	KDC	server	and	to	create	keytab	especially	on	windows	environments	http://spnego.sourceforge.net.	For	Redhat	Linux
see	https://access.redhat.com/site/solutions/208173

Add	the	following	JVM	options	to	your	client’s	startup	script	-	change	Realm	and	KDC	settings	according	to	your	environment

"Based	on	krb5.conf	file"

-Djava.security.krb5.conf=/path/to/krb5.conf	(default	on	Linux	/etc/krb5.conf)

-Djava.security.auth.login.config=/path/to/client.conf

-Djavax.security.auth.useSubjectCredsOnly=false

-Dsun.security.krb5.debug=false

or

"Based	on	KDC	and	Realm	file"

-Djava.security.krb5.realm=EXAMPLE.COM

-Djava.security.krb5.kdc=kerberos.example.com

-Djavax.security.auth.useSubjectCredsOnly=false

-Dsun.security.krb5.debug=false

-Djava.security.auth.login.config=/path/to/client.conf

Add	the	following	additional	URL	connection	properties	to	Teiid	JDBC	connection	string	along	with	URL	property.	Note	that
when	configured	with	Kerberos,	in	order	to	participate	in	Kerberos	based	authentication	you	need	to	configure	"user"	property	as
required	by	"gss-pattern"	or	define	the	"authentication-type"	property	on	the	VDB	or	transport.	However,	after	successful	login
into	security-domain,	the	user	name	from	GSS	login	context	will	be	used	for	representing	the	session	in	the	Teiid.

jaasName=Teiid;user={pattern};kerberosServicePrincipleName=host/testserver@MY_REALM

jassName	defines	the	JAAS	configuration	name	in	login.config	file.	This	property	is	optional,	if	omitted	the	"Teiid"	is	used	as	the
default	configuration	name.

Kerberos	support	through	GSSAPI

848

http://spnego.sourceforge.net
http://spnego.sourceforge.net
https://access.redhat.com/site/solutions/208173

kerberosServicePrincipleName	defines	service	principle	that	needs	to	be	requested	on	behalf	of	the	service	that	is	being	connected
to	using	the	Kerberos	principle	configured.	If	this	property	is	omitted	the	default	service	principle	would	be	"TEIID/hostname"
and	hostname	is	derived	from	the	JDBC	connection	URL.

Note

In	order	to	avoid	adding	the	service	principle	name	to	all	your	JDBC	and	ODBC	clients,	Teiid	can	use	the	default
service	principle	name	as	"TEIID/hostname".	Create	this	service	ticket	in	KDC.	This	also	helps	if	you	move	your
Teiid	server	one	host	to	another	by	simply	creating	a	new	principle	in	KDC	with	new	host	name.	Then	you	would
only	required	to	update	hostname	in	the	URL.

ODBC	Client	Configuration

Create	a	DSN	for	the	VDB	on	the	client	machine	to	the	VDB	that	you	would	like	to	connect	using	PostgreSQL	ODBC	driver.	In
order	to	participate	in	Kerberos	based	authentication	you	need	to	configure	"user"	property	as	required	by	"gss-pattern"	or	define
the	"authentication-type"	property	on	the	VDB	or	transport.

No	additional	configuration	is	needed	as	part	of	this,	except	that	your	workstation	where	the	ODBC	DSN	exists	must	have	been
authenticated	using	GSS	API	against	Active	Directory	or	other	Enterprise	directory	server.	See	this	website
http://spnego.sourceforge.net	on	instructions	as	to	how	to	verify	your	system	is	authenticated	into	enterprise	directory	server.
Contact	your	company’s	operations	team	if	you	have	any	questions.

OData	Client

The	default	OData	client	is	configured	with	HTTP	Basic	authentication,	to	convert	this	authentication	method	into	kerberos,	clone
or	copy	the	maven	project	from	https://github.com/teiid/teiid-web-security	and	then	edit	the	web.xml	and	jboss-web.xml	files	and
then	replace	MY_RELAM	property	with	the	property	of	security	domain	created	above.	Once	the	properties	are	updated,	create	a
WAR	file	by	running

mvn	clean	install

This	will	generate	a	new	WAR	file	in	"odata-kerberos/target"	directory.	Follow	the	below	deployment	direction	based	on	your
server.

Note To	use	Kerberos	or	any	web	layer	authentication,	the	OData	war	must	use	PassthroughAuthentication=true
(which	is	the	default).

Community	Teiid	Server	based	on	WildFly

Replace	the	<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-olingo-odata4.war"	file	with	new	WAR
file,	by	executing	a	command	similar	to

{code}	cp	teiid-web-security/odata-kerberos/target/teiid-odata-kerberos-{version}.war
<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-olingo-odata4.war	{code}

JDV	Server

If	you	are	working	with	JDV	6.3	server	or	greater,	then	run	the	following	CLI	script,	you	may	have	change	the	below	script	to
adopt	to	the	correct	version	of	the	WAR	and	directory	names	where	the	content	is	located.

undeploy	teiid-olingo-odata4.war

deploy	teiid-web-security/odata-kerberos/target/teiid-odata-kerberos-{version}.war

or	overlay	the	new	one	using	CLI	script	like

Kerberos	support	through	GSSAPI

849

http://spnego.sourceforge.net
https://github.com/teiid/teiid-web-security

deployment-overlay	add	--name=myOverlay	--content=/WEB-INF/web.xml=teiid-web-

security/odata-kerberos/src/main/webapp/WEB-INF/web.xml,/WEB-INF/jboss-

web.xml=teiid-web-security/odata-kerberos/src/main/webapp/WEB-INF/jboss-

web.xml,/META-INF/MANIFEST.MF=teiid-web-security/odata-

kerberos/src/main/webapp/META-INF/MANIFEST.MF	--deployments=teiid-olingo-odata4.war	

--redeploy-affected

Kerberos	support	through	GSSAPI

850

Custom	Authorization	Validator
In	situations	where	Teiid’s	built-in	Data	Roles	mechanism	is	not	sufficient,	a	custom		org.teiid.PolicyDecider		can	be	installed
via	a	JBoss	module.	Note	that	a	PolicyDecider	only	makes	high-level	authorization	decisions	based	upon	the	access	context
(INSERT,	UPDATE,	DELETE,	etc.),	the	caller,	and	the	resource	(column,	table/view,	procedure,	function,	etc.).	Data-level
column	masking	and	row	based	security	policy	information	due	to	its	interaction	with	the	Teiid	planner	cannot	be	injected	via	a
custom		org.teiid.PolicyDecider	.	You	may	add	column	masking	and	row	based	security	permissions	via	the
	org.teiid.MetadataFactory		in	custom	a		org.teiid.MetadataRepository		or	custom	translator.

To	provide	a	custom	authorization	validator,	you	must	extend	the		org.teiid.PolicyDecider		interface	and	build	a	custom	java
class.	If	you	are	using	maven	as	your	build	process,	you	can	use	following	dependencies:

<dependencies>

						<dependency>

									<groupId>org.teiid</groupId>

									<artifactId>teiid-api</artifactId>

									<scope>provided</scope>

						</dependency>

						<dependency>

									<groupId>org.teiid</groupId>

									<artifactId>teiid-common-core</artifactId>

									<scope>provided</scope>

						</dependency>

			</dependencies>

The	PoilcyDecider	interface	is	loaded	by	the	Teiid	using	the	Java’s	standard	service	loader	mechanism.	For	this	to	work,	add	the
following	named	file	META-INF/services/org.teiid.PolicyDecider	with	full	name	of	your	PolicyDecider	implementation	class	as
its	contents.	for	example:

META-INF/services/org.teiid.PolicyDecider

org.example.auth.MyCustomPolicyDecider

Now	package	all	these	files	into	a	JAR	archive	file	and	build	JBoss	module	in	jboss-as/modules	directory.	If	your	PolicyDecider
has	any	third	party	dependencies	those	jar	files	can	also	be	added	as	dependencies	to	the	same	module.	Make	sure	you	list	all	the
files	in	the	module.xml	file.	Below	is	sample	module.xml	file	along	with	Teiid	specific	dependencies

module.xml

<?xml	version="1.0"	encoding="UTF-8"?>

<module	xmlns="urn:jboss:module:1.0"	name="org.example.auth">

				<resources>

								<resource-root	path="my_custom_policy.jar"	/>

								<!--add	any	other	dependent	jars	here,	if	they	are	not	defined	as	modules	-->

				</resources>

<dependencies>

				<module	name="org.teiid.common-core"/>

				<module	name="org.teiid.api"/>

				<module	name="javax.api"/>

</dependencies>

</module>

create	folder	in	the	"<jboss-as>/modules/org/example/auth/main",	copy	the	above	module.xml	file	along	with	all	the	jar	files.	This
directory	can	be	different	if	you	choose,	just	make	sure	the	name	of	the	module	and	the	directory	name	match.

Custom	Authorization	Validator

851

After	the	module	has	been	added,	change	the	configuration.	Edit	either	the	standalone-teiid.xml	or	te	domain-teiid.xml	file,	and	in
the	"teiid"	subsystem	xml	fragment	add	the	following	xml	with	the	module	name	created.

<policy-decider-module>name</policy-decider-module>

then	restart	the	system.	A		PolicyDecider		may	be	consulted	many	times	for	a	single	user	command,	but	it	is	only	called	to	make
decisions	based	upon	resources	that	appear	in	user	queries.	Any	further	access	of	resources	through	views	or	stored	procedures,
just	as	with	data	roles,	is	not	checked	against	a		PolicyDecider	.

Custom	Authorization	Validator

852

SAML	Based	Security	For	OData
By	default	the	OData	access	to	a	Virtual	Database	(VDB)	in	WildFly	is	restricted	to	authentication	using	the	HTTP	Basic.
However,	it	possible	with	below	instructions	one	can	configure	OData	access	to	participate	in	a	Single-Sign-On	(SSO)	based
security	using	SAML2.	The	below	instructions	are	based	on	JBoss	EAP	platform	using	Picketlink	security	framework.

In	SAML	based	authentication	there	are	Identity	Providers	(IDP)	who	provide	authentication	services	and	Service	Providers	(SP),
a	end	user	service	like	odata	and	user	(you).	It	is	expected	that	you	already	have	IDP,	configured	and	working	with	security
domain	of	your	choice	like	LDAP	or	Kerberoes	etc.	The	SP	in	this	case	is	the	OData	WAR	file	that	is	supplied	with	Teiid
distribution	along	with	Picketlink	based	framework.	Picketlink	framework	does	not	explicitly	mention	the	interoperability	with
other	third	party	external	vendors	supplied	IDP,	but	Teiid	team	has	tested	successfully	with

Shibboleth

Picketlink	IDP

Salesforce	IDP	(this	is	documented	on	Picketlink,	not	verified)

Social	Logins	with	Picketlink	IDP	(like,	google,	facebook	etc.	This	has	been	mentioned	in	Picketlink	documentation	but	not
verified)

Note Since	SAML2	is	standard,	we	believe	any	standards	complaint	IDP	vendor	will	work	with	Picketlink	SP.

requisites

Collect	the	certificate	for	authentication	that	is	used	by	IDP	to	sign	the	SAML	messages.

Gather	the	SSO	POST	based	URL	for	your	IDP,	that	your	SP	can	use	to	redirect	for	authentication	call.

Note "DNS	Names"	-	Do	not	try	to	use	IP	address	or	localhost	except	for	the	testing	scenarios.	Configure	proper	DNS
names	for	both	IDP	and	SP	servers	and	make	sure	both	can	access	each	other	using	the	URLs	configured.

Configure	for	SAML	based	authentication	the	OData

In	security-domains	add	following	login	module	using	the	following	CLI

/subsystem=security/security-domain=teiid-security/authentication=classic/login-

module=RealmDirect:write-attribute(name=flag,	value=sufficient)

/subsystem=security/security-domain=teiid-security/authentication=classic/login-

module=saml2:add(code=org.picketlink.identity.federation.bindings.jboss.auth.SAML2L

oginModule,	flag=sufficient)

reload

the	above	commands	will	result	in	XML	in	standalone.xml	or	domain.xml	file	similar	to:

"Security-Domain	for	SAML	Authentication"

	 <security-domain	name="teiid-security">

								<authentication>

												<login-module	code="org.picketlink.identity.federation.bindings.jboss.auth.SAML2LoginModule"	flag="

sufficient"/>

												<login-module	code="RealmDirect"	flag="sufficient">

															<module-option	name="password-stacking"	value="useFirstPass"/>

SAML	Based	Security	For	OData

853

												</login-module>

								</authentication>

				</security-domain>

Modify	the	OData	WAR	File	to	use	SAML	based	authentication
Extract	the	"teiid-olingo-odata4.war"	file	from	"modules/system/base/dv/org/jboss/teiid/main/deployments"	to	another
location.	The	WAR	file	is	simple	ZIP	file	so	you	can	"jar	-x	teiid-olingo-odata4.war	/modified"

Edit	"WEB-INF/jboss-web.xml"	file,	and	it	should	look	like

"jboss-web.xml"

<?xml	version="1.0"	encoding="UTF-8"?>

<jboss-web>

				<context-root>odata4</context-root>

				<security-domain>teiid-security</security-domain>

				<valve>

							<class-name>org.picketlink.identity.federation.bindings.tomcat.sp.ServiceProviderAuthenticator</class-na

me>

							<param>

						<param-name>configProvider</param-name>

						<param-value>org.picketlink.identity.federation.web.config.SPPostMetadataConfigurationProvider</param-val

ue>

				</param>

				</valve>

</jboss-web>

Edit	"web.xml"	file	and	remove	the	section	below

"web.xml"

<login-config>

				<auth-method>BASIC</auth-method>

				<realm-name>yourdomain.com</realm-name>

</login-config>

Add	the	certificate	keystore	from	your	IDP	to	the	classes	directory.	This	is	{KEYSTORE-FILE}	in	below	configuration.	or
you	can	add	to	a	existing	keystore	using	following	command

keytool	-import	-file	idp_cert.cer	-keystore	{KEYSTORE-FILE}	-alias	{CERTIFICATE-

ALIAS}

Add	"picketlink.xml"	file	to	WEB-INF	directory	with	following	content

"picketlink.xml"

<PicketLink	xmlns="urn:picketlink:identity-federation:config:2.1">

				<PicketLinkSP	xmlns="urn:picketlink:identity-federation:config:2.1"

								ServerEnvironment="tomcat"	BindingType="POST"	SupportsSignatures="true">

								<KeyProvider

												ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager">

												<Auth	Key="KeyStoreURL"	Value="{KEYSTORE-FILE}"	/>

												<Auth	Key="KeyStorePass"	Value="{KEYSTORE-PASSWORD}"	/>

												<Auth	Key="SigningKeyAlias"	Value="{CERTIFICATE-ALIAS}"	/>

																								<Auth	Key="SigningKeyPass"	Value="{CERTIFICATE-PASSWORD}"	/>

												<ValidatingAlias	Key="localhost"	Value="{CERTIFICATE-ALIAS}"	/>

												<ValidatingAlias	Key="127.0.0.1"	Value="{CERTIFICATE-ALIAS}"	/>

								</KeyProvider>

				</PicketLinkSP>

				<Handlers	xmlns="urn:picketlink:identity-federation:handler:config:2.1">

SAML	Based	Security	For	OData

854

								<Handler	class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHandler"	/>

								<Handler	class="org.picketlink.identity.federation.web.handlers.saml2.SAML2AuthenticationHandler"	/>

								<Handler	class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerationHandler"	/>

								<Handler	class="org.picketlink.identity.federation.web.handlers.saml2.SAML2SignatureGenerationHandler"	

/>

								<Handler	class="org.picketlink.identity.federation.web.handlers.saml2.SAML2SignatureValidationHandler"	

/>

				</Handlers>

</PicketLink>

Note {CERTIFICATE-ALIAS}	is	typically	something	like	"idp.example.com"	for	which	the	certificate	is	created	for

Add	the	certificate	received	from	IDP	vendor	to	"WEB-INF/classes"	directory.	Note	this	must	be	same	name	as
{CERTIFICATE-FILE-NAME}	used	in	"Configuring	the	Picketlink	Subsystem"

Add	"sp-metadata.xml"	to	the	classes	directory.	Note	that	your	"sp-metadata.xml"	contents	will	entirely	dependent	upon	your
Identity	Provider	settings.	The	below	sample	ONLY	provided	as	an	example

"sp-metadata.xml"

<?xml	version="1.0"	encoding="UTF-8"?>

<EntitiesDescriptor	Name="urn:mace:shibboleth:testshib:two"

				xmlns:shibmd="urn:mace:shibboleth:metadata:1.0"	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

				xmlns:ds="http://www.w3.org/2000/09/xmldsig#"	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

				<EntityDescriptor	entityID="http://localhost:8080/idp-metadata/">

								<IDPSSODescriptor

												protocolSupportEnumeration="urn:oasis:names:tc:SAML:1.1:protocol	urn:oasis:names:tc:SAML:2.0:protoc

ol">

												<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient

												</NameIDFormat>

												<SingleSignOnService	Binding="urn:mace:shibboleth:1.0:profiles:AuthnRequest"

																Location="http://localhost:8080/idp-metadata/"	/>

												<SingleSignOnService	Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

																Location="http://localhost:8080/idp-metadata/"	/>

												<SingleSignOnService

																Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

																Location="http://localhost:8080/idp-metadata/"	/>

												<SingleLogoutService

																Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

																Location="http://localhost:8080/idp-metadata/?GLO=true"	/>

												<SingleLogoutService

																Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

																Location="http://localhost:8080/idp-metadata/SLO"	/>

								</IDPSSODescriptor>

								<Organization>

												<OrganizationName	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">JBoss</OrganizationName>

												<OrganizationDisplayName	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">JBoss	by	Red	Hat</OrganizationDisplayName>

												<OrganizationURL	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">http://www.jboss.org</OrganizationURL>

								</Organization>

								<ContactPerson	contactType="technical">

												<GivenName>The</GivenName>

												<SurName>Admin</SurName>

												<EmailAddress>admin@mycompany.com</EmailAddress>

								</ContactPerson>

				</EntityDescriptor>

				<EntityDescriptor	entityID="http://localhost:8080/odata4/">

								<SPSSODescriptor

												protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol	urn:oasis:names:tc:SAML:1.1:protoc

ol	http://schemas.xmlsoap.org/ws/2003/07/secext">

												<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient

												</NameIDFormat>

												<AssertionConsumerService

																Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"	Location="http://localhost:8080/odata4

/"

SAML	Based	Security	For	OData

855

																index="1"	isDefault="true"	/>

								</SPSSODescriptor>

								<Organization>

												<OrganizationName	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">JBoss</OrganizationName>

												<OrganizationDisplayName	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">JBoss	by	Red	Hat</OrganizationDisplayName>

												<OrganizationURL	xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

																xml:lang="en">http://localhost:8080/odata4/</OrganizationURL>

								</Organization>

								<ContactPerson	contactType="technical">

												<GivenName>The</GivenName>

												<SurName>Admin</SurName>

												<EmailAddress>admin@mycompany.com</EmailAddress>

								</ContactPerson>

				</EntityDescriptor>

</EntitiesDescriptor>

Create	a	deployment-overlay	using	the	cli	with	the	modified	contents:

deployment-overlay	add	--name=myOverlay	--content=/WEB-INF/web.xml=/modified/web.xml,/WEB-INF/jboss-web.xml=/mo

dified/jboss-web.xml	--deployments=teiid-odata-odata4.war	--redeploy-affected

SAML	Based	Security	For	OData

856

https://docs.wildfly.org/19/Admin_Guide.html#Deployment_Overlays

OAuth2	Based	Security	For	OData	Using	KeyCloak
This	document	will	provide	detailed	instructions	to	enable	OAuth	V2	authentication	on	Teiid’s	OData	interface	using	the
Keycloak	as	authentication	server	(IDP).	Please	note	that	use	a	different	IDP	server	will	not	work	with	this	implementation	as
OAuth2	implementations	are	not	interoperable.	To	work	with	separate	IDP	than	Keycloak	consult	their	documentation,	replace	the
web	layer	semantics,	like	the	"login-config"	in	web.xml	file	etc.	Providing	the	details	of	other	IDP	is	beyond	the	scope	of	this
document.

This	examples	will	show	case	an	example,	where	Teiid’s	OData	rest	interface	is	secured	using	OAuth	using	Keycloak	using
OpenID	Connect.	The	VDB	accessed	by	the	OData	interface	also	depends	on	another	web	service	which	is	used	as	a	data	source,
that	is	also	secured	with	OAuth	using	the	same	Keycloak	IDP.	The	central	idea	behind	this	example	is	to	pass	the	same	"access-
token"	used	at	OData	interface	layer	to	passthrough	the	Teiid	layer	to	bottom	data	source	layer	and	gain	access	to	the	source.

Download	and	install	Keycloak	as	a	separate	web	server.

Login	using	the	default	"admin/admin"	credentials	into	the	Keycloak	"master"	realm.

Add	a	new	realm	called	"oauth-demo"

Add	a	new	user	called	"user"	and	add	credentials.

OAuth2	Based	Security	For	OData	Using	KeyCloak

857

Add	two	roles	"odata"	and	"user".	These	are	enterprise	roles,	that	will	be	used	by	the	web	services	to	grant	the	access	to	user.	Also
these	roles	are	used	as	"scopes"	in	the	OAuth	protocol.

Add	a	new	client	called	"odata4-oauth",	this	client	represents	the	Teiid’s	OData	client	that	we	are	going	to	create

OAuth2	Based	Security	For	OData	Using	KeyCloak

858

and	choose	scopes	"odata"	and	"user"	for	this	client.	Note	that	the	redirect	URI	needs	to	be	where	the	actual	service	is	going	to	be
available.

Note

The	client	web-service	typically	defines	what	roles	that	logged	in	user	must	have	in	order	for	to	grant	the	access.
In	the	Keycloak	OAuth	implementation,	these	roles	are	used	as	"scopes".	Note	that	the	"odata4-oauth"	client
MUST	have	ALL	the	scopes	that	it	is	going	to	delegate	the	access-token	for	gaining	access	to	bottom	data
services.	In	this	example	Teiid’s	OData	web	services	requires	"odata"	role,	the	bottom	web-service	requires	the
"user"	role.	Since	the	OData	accesses	the	bottom	web-service	it	requires	both	the	roles.

OAuth2	Based	Security	For	OData	Using	KeyCloak

859

Add	another	client	called	"database-service"	and	choose	scope	"user".	Choose	type	as	"Bearer".

Install	and	configure	Teiid	server

Download	and	install	Teiid	server

Download	Keycloak	adapter	for	the	EAP,	and	unzip	over	the	Teiid	server	installation	or	follow	Keycloak	installtion
directions.

Run	the	following	to	add	Keycloak	specific	modules	to	the	server

$	cd	$WILDFLY_HOME

$	unzip	keycloak-wildfly-adapter-dist-${version}.zip

Now,	start	the	Teiid	Server	and	using	the	jboss-cli.sh	file	run	the	following	to	install	the	KeyCloak	configuration	into	the	Teiid
Server.

./bin/jboss-cli.sh	--file=adapter-install.cli

Then	we	need	to	change	the	OData	transport’s	"security-domain"	to	"keycloak".

./bin/jboss-cli.sh	--connect

/subsystem=teiid:write-attribute(name=authentication-security-domain,	value=keycloak)

reload

above	commands	will	result	in	XML	in	standalone.xml	or	domain.xml	file	like	(you	can	also	edit	standalone.xml	directly)

				<authentication	security-domain="keycloak"/>

				<transport	name="odata"/>

OAuth2	Based	Security	For	OData	Using	KeyCloak

860

The	Keycloak	is	installed	and	the	OData	transport	is	modified,	now	we	need	to	install	security-domain	called	"passthrough".	Note
that	the	web	layer	is	using	OAuth2,	but	at	the	VDB	layer,	this	logged	in	user	need	to	be	passed	through	and	this	security	domain
will	help	with	that.

./bin/jboss-cli.sh	--connect

/subsystem=security/security-domain=passthrough:add(cache-type=default)

/subsystem=security/security-domain=passthrough/authentication=classic:add

/subsystem=security/security-domain=passthrough/authentication=classic/login-module=passthrough:add(code=org.te

iid.jboss.PassthroughIdentityLoginModule,	flag=required,	module=org.jboss.teiid)

reload

above	commands	will	result	in	XML	in	standalone.xml	or	domain.xml	file	like	(you	can	also	edit	standalone.xml	directly)

				<security-domain	name="passthrough">

								<authentication>

												<login-module	code="org.teiid.jboss.PassthroughIdentityLoginModule"	flag="required"	module="org.jbo

ss.teiid"/>

								</authentication>

				</security-domain>

This	finishes	all	the	server	side	changes	that	are	required	to	make	OAuth	authentication	using	Keycloak.

OData	Application	WAR

In	order	to	use	OAuth2	authentication,	the	OData	WAR	needs	to	be	updated	to	make	use	of	the	OAuth2	based	security	domain.
By	default	Teiid	installation	comes	with	OData	web	service	WAR	file	configured	with	"HTTP	Basic"	authentication.	This	WAR
needs	to	either	replaced	or	updated.

Build	the	new	OData	WAR	file	that	supports	OAuth.

To	build	OAuth	based	OData	WAR	file,	Teiid	provides	a	template	maven	project,	either	download	or	clone	the	project	from
https://github.com/teiid/teiid-web-security

The	above	link	provides	templates	for	creating	two	WAR	files,	one	WAR	file	is	to	create	Teiid’s	OData	service	with	OAuth,	the
next	is	a	sample	"database-service"	for	this	demo.	Please	note	that	"database-service"	is	to	mimic	the	database	service,	that	will	be
different	in	a	real	use-case,	however	the	steps	defined	for	the	access	will	be	same.

Replace	the	"teiid-web-security/teiid-odata-oauth-keycloak/src/main/webapp/WEB-INF/keyclock.json"	file	contents	with
"installation"	script	in	"keycloak.json"	format	from	Keycloak	admin	console’s	"odata4-client"	client	application.

Similarly	replace	the	"teiid-web-security/examples/database-service/src/main/webapp/WEB-INF/keyclock.json"	file	contents	with
"installation"	script	in	"keycloak.json"	format	from	Keycloak	admin	console’s	"database-client"	client	application.

Edit	the	"teiid-web-security/odata-oauth-keycloak/src/main/webapp/WEB-INF/web.xml"	file	to	enable	Passthrough
Authentication

				<init-param>

								<param-name>PassthroughAuthentication</param-name>

								<param-value>true</param-value>

				</init-param>

Build	the	WAR	files	running	the	maven	command

mvn	clean	package

OAuth2	Based	Security	For	OData	Using	KeyCloak

861

https://github.com/teiid/teiid-web-security

Note You	may	have	to	update	Teiid	and	Keycloak	versions	in	the	pom.xml	file

The	above	command	will	generate	a	new	WAR	file	for	deployment.	Follow	the	below	directions	to	deploy	this	new	WAR	file.

Teiid	Server	on	WildFly

Replace	the	<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-olingo-odata4.war"	file	with	new	WAR
file,	by	executing	a	command	similar	to

cp	teiid-web-security/odata-oauth-keycloak/target/teiid-odata-oauth-keycloak-

{version}.war	\

			<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-

olingo-odata4.war

JDV	Server

If	you	are	working	with	JDV	6.3	server	or	greater,	then	run	the	following	CLI	script,	you	may	have	change	the	below	script	to
adopt	to	the	correct	version	of	the	WAR	and	directory	names	where	the	content	is	located.

undeploy	teiid-olingo-odata4.war

deploy	teiid-web-security/odata-oauth-keycloak/target/teiid-odata-oauth-keycloak-

{version}.war

or	overlay	the	new	one	using	CLI	script	like

deployment-overlay	add	--name=myOverlay	--content=/WEB-INF/web.xml=teiid-web-

security/odata-oauth-keycloak/src/main/webapp/WEB-INF/web.xml,/WEB-INF/jboss-

web.xml=teiid-web-security/odata-oauth-keycloak/src/main/webapp/WEB-INF/jboss-

web.xml,/META-INF/MANIFEST.MF=teiid-web-security/odata-oauth-

keycloak/src/main/webapp/META-INF/MANIFEST.MF,/WEB-INF/keycloak.json=teiid-web-

security/odata-oauth-keycloak/src/main/webapp/WEB-INF/keycloak.json	/WEB-

INF/lib/teiid-odata-oauth-keycloak-{version}.jar=teiid-web-security/odata-oauth-

keycloak/src/main/webapp/WEB-INF/lib/teiid-odata-oauth-keycloak-{version}.jar	--

deployments=teiid-olingo-odata4.war	--redeploy-affected

Working	with	example	VDB

<vdb	name="oauthdemo"	version="1">

				<model	visible="true"	name="PM1">

								<source	name="any"	translator-name="loopback"/>

								<metadata	type	=	"DDL"><![CDATA[

												CREATE	FOREIGN	TABLE	G1	(e1	integer	PRIMARY	KEY,	e2	varchar(25),	e3	double);

]]>

								</metadata>

				</model>

</vdb>

Start	both	Keycloak	and	Teiid	Servers.	If	both	of	these	servers	are	in	the	same	machine,	then	we	need	to	offset	the	ports	of	Teiid
server	such	that	they	will	not	conflict	with	that	of	the	Keycloak	server.	For	this	example,	I	started	the	Teiid	server	as

./standalone.sh	-c	standalone-teiid.xml	-Djboss.socket.binding.port-offset=100

OAuth2	Based	Security	For	OData	Using	KeyCloak

862

where	all	ports	are	offset	by	100.	So	the	management	port	is	10090	and	default	JDBC	port	will	be	31100.	The	Keycloak	server	is
started	on	default	ports.

Testing	the	example

There	are	two	different	mechanisms	for	testing	this	example.	One	is	purely	for	testing	the	using	the	browser,	then	other	is
programatically.	Typically	using	the	browser	is	NOT	correct	for	accessing	the	Teiid’s	OData	service,	but	it	is	shown	below	for
testing	purposes.

Using	the	Web	Browser

Using	the	browser	issue	a	query	(the	use	of	browser	is	needed	because,	this	process	does	few	redirects	only	browsers	can
automatically	follow)

http://localhost:8180/odata4/oauthdemo/PM1/G1

The	user	will	be	presented	with	Keycloak	based	login	page,	once	the	credentials	are	presented	the	results	of	the	above	request	are
shown.

Calling	programatically

This	process	of	calling	does	not	need	to	involve	a	web-browser,	this	is	typical	of	scenario	where	another	web-application	or
mobile	application	is	calling	the	Teiid’s	OData	web-service	to	retrieve	the	data.	However	in	this	process,	the	process	of
negotiating	the	"access-token"	is	externalized	and	is	defined	by	the	IDP,	which	in	this	case	is	Keycloak.

For	demonstration	purposes	we	can	use	CURL	to	negotiate	this	token	as	shown	below	(client_secret	can	found	the	Keycloak
admin	console	under	client	credentials	tab)

curl	-v	POST	http://localhost:8080/auth/realms/oauth-demo/protocol/openid-connect/token		-H	"Content-Type:	appl

ication/x-www-form-urlencoded"	-d	'username=user'	-d	'password=user'	-d	'grant_type=password'	-d	'client_id=oda

ta4-oauth'	-d	'client_secret=36fdc2b9-d2d3-48df-8eea-99c0e729f525'

this	should	return	a	JSON	payload	similar	to

{		"access_token":"eyJhbGciOiJSUzI1NiJ9.eyJqdGkiOiI0YjI4NDMzYS1..",

			"expires_in":300,

			"refresh_expires_in":1800,

			"refresh_token":"eyJhbGciOiJSUzI1NiJ9.eyJqdGkiOiJmY2JmNjY2ZC0xNzIwLTQwODQtOTBiMi0wMjg4ODdhNDkyZWYiLCJl..",

			"token_type":"bearer",

			"id_token":"eyJhbGciOiJSUzI1NiJ9.eyJqdGkiOiIwZjYyNDQ1MS1iNTE0LTQ5YjUtODZlNy1jNTI5MDU2OTI3ZDIiLCJleH..",

			"not-before-policy":0,

			"session-state":"6c8884e8-c5aa-4f7a-a3fe-9a7f6c32658c"

}

from	the	above	you	can	take	the	"access_token"	and	issue	the	query	to	fetch	results	like

curl	-k	-H	"Authorization:	Bearer	eyJhbGciOiJSUzI1NiJ9.eyJqdGkiOiI0YjI4NDMzYS1.."	http://localhost:8180/odata4/

oauthdemo/PM1/G1

You	should	see	same	XML	response	as	above.	Please	note	that	to	programatically	achieve	the	access_token	in	your	own	program
(not	using	curl)	you	can	see	some	suggestions	in	this	document
[https://keycloak.gitbooks.io/documentation/server_development/topics/admin-rest-api.html]

OAuth2	Based	Security	For	OData	Using	KeyCloak

863

https://keycloak.gitbooks.io/documentation/server_development/topics/admin-rest-api.html

OAuth2	Based	Security	For	OData	Using	KeyCloak

864

SAML	Based	Security	For	OData	Using	KeyCloak
This	document	will	provide	detailed	instructions	to	enable	SAML	authentication	on	Teiid’s	OData	interface	using	the	Keycloak	as
authentication	server	(IDP).	SAML	is	standard,	so	the	modified	OData	WAR	should	work	fine	with	any	other	compatible	SAML
Authorization	server,	however	the	configuration	may	be	little	different.	Please	consult	their	documentation	for	any	such	specifics
of	different	authorization	server	other	then	KeyCloak.

This	examples	will	show	case	an	example,	where	Teiid’s	OData	rest	interface	is	secured	using	SAML	using	Keycloak	as	IDP.	The
VDB	accessed	by	the	OData	interface,	the	pass-through	of	SAML	Assertion	for	OAuth	token	(SAML	Bearer)	is	not	yet	available
in	KeyCloak,	when	the	feature	is	available	then	Teiid	will	support	it.	However,	if	you	are	working	with	a	IDP	that	supports	the
SAML	Bearer,	Teiid	does	support	the	mechanism	where	one	can	pass	the	"access-token"	from	web	layer	to	the	data	source	layer.
See	the	OAuth	example	as	template	and	possible	configuration	needed.	(note	it	is	not	exactly	same,	but	very	similar)

Tested	with	Keycloak	3.1.0.Final	version.

Download	and	install	Keycloak	as	a	separate	web	server.
Login	using	the	default	"admin/admin"	credentials	into	the	Keycloak	"master"	realm.

Add	a	new	realm	called	"oauth-demo"

Add	a	new	user	called	"user"	and	add	credentials.

SAML	Based	Security	For	OData	Using	KeyCloak

865

Add	two	roles	"odata"	and	"user".	These	are	enterprise	roles,	that	will	be	used	by	the	web	services	to	grant	the	access	to	user.	Also
these	roles	are	used	as	"scopes"	in	the	OAuth	protocol.

Add	a	new	client	called	"odata4-saml",	this	client	represents	the	Teiid’s	SAML	client	that	we	are	going	to	create

SAML	Based	Security	For	OData	Using	KeyCloak

866

Click	on	SAML	Keys,	either	import	your	certificate	or	generate	a	new	one.	Then	click	export,	and	keep	the	exported
certificate	for	later	use.

Install	and	configure	Teiid	server

SAML	Based	Security	For	OData	Using	KeyCloak

867

Download	and	install	Teiid	server

Download	Keycloak	SAML	adapter	for	EAP,	and	unzip	over	the	Teiid	server	installation.

Run	the	following	to	add	Keycloak	specific	modules	to	the	server

$	cd	$WILDFLY_HOME

$	unzip	keycloak-saml-wildfly-adapter-dist-${version}.zip

Now,	start	the	Teiid	Server	and	using	the	jboss-cli.sh	file	run	the	following	to	install	the	KeyCloak	confiuration	into	the	Teiid
Server.

./bin/jboss-cli.sh	--file=adapter-install-saml.cli

In	security-domains	add	following	login	module	using	the	following	CLI

subsystem=security/security-domain=saml-security/authentication=classic/login-

module=RealmDirect:write-attribute(name=flag,	value=sufficient)

/subsystem=security/security-domain=saml-security/authentication=classic/login-

module=keycloak:add(code=org.keycloak.adapters.jboss.KeycloakLoginModule,	

flag=sufficient)

reload

the	above	commands	will	result	in	XML	in	standalone.xml	or	domain.xml	file	like	similar	to:

				<security-domain	name="saml-security">

								<authentication>

												<login-module	code="org.keycloak.adapters.jboss.KeycloakLoginModule"	flag="sufficient"/>

												<login-module	code="RealmDirect"	flag="sufficient">

															<module-option	name="password-stacking"	value="useFirstPass"/>

												</login-module>

								</authentication>

				</security-domain>

This	finishes	all	the	server	side	changes	that	are	required	to	make	SAML	authentication	using	Keycloak.

OData	Application	WAR

In	order	to	use	SAML	authentication,	the	OData	WAR	needs	to	be	updated	to	make	use	of	the	OAuth	based	security	domain.	By
default	Teiid	installation	comes	with	OData	web	service	WAR	file	configured	with	"HTTP	Basic"	authentication.	This	WAR	needs
to	either	replaced	or	updated.

Build	the	new	OData	WAR	file	that	supports	SAML.

To	build	SAML	based	OData	WAR	file,	Teiid	provides	a	template	maven	project,	either	download	or	clone	the	project	from
https://github.com/teiid/teiid-web-security

The	above	link	provides	templates	for	creating	two	WAR	files,	one	WAR	file	is	to	create	Teiid’s	OData	service	with	OAuth,
the	next	is	for	SAML.	Choose	the	SAML	one.

Replace	the	"teiid-web-security/teiid-odata-saml-keycloak/src/main/webapp/WEB-INF/keyclock.json"	file	contents	with
"installation"	script	in	"keycloak.json"	format	from	Keycloak	admin	console’s	"odata4-saml"	client	application.

SAML	Based	Security	For	OData	Using	KeyCloak

868

https://github.com/teiid/teiid-web-security

Similarly	replace	the	"teiid-web-security/teiid-odata-saml-keycloak/src/main/webapp/WEB-INF/keystore.jks"	file	with	the
exported	keystore	from	earlier	steps.

build	the	"keycloak-saml.xml"	file,	and	add	all	the	sections	of	"metadata"	specific	to	your	service.	This	is	where	service
knows	where	IDP	located	and	which	service	this	represents	etc.

The	build	the	WAR	files	running	the	maven	command

mvn	clean	package

Note You	may	have	to	update	Teiid	and	Keycloak	versions	in	the	pom.xml	file

The	above	command	will	generate	a	new	WAR	file	for	deployment.	Follow	the	below	directions	to	deploy	this	new	WAR	file	to
the	server

Community	Teiid	Server	on	Wildfly

Replace	the	<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-olingo-odata4.war"	file	with	new	WAR
file,	by	executing	a	command	similar	to

cp	teiid-web-security/teiid-odata-saml-keycloak/target/teiid-odata-saml-keycloak-

{version}.war	

<wildfly>/modules/system/layers/dv/org/jboss/teiid/main/deployments/teiid-olingo-

odata4.war

JDV	Server

If	you	are	working	with	JDV	6.3	server	or	greater,	then	run	the	following	CLI	script,	you	may	have	change	the	below	script	to
adopt	to	the	correct	version	of	the	WAR	and	directory	names	where	the	content	is	located.

undeploy	teiid-olingo-odata4.war

deploy	teiid-web-security/teiid-odata-saml-keycloak/target/teiid-odata-saml-

keycloak-{version}.war

or	overlay	the	new	one	using	CLI	script	like

deployment-overlay	add	--name=myOverlay	--content=/WEB-INF/web.xml=teiid-web-

security/teiid-odata-saml-keycloak/src/main/webapp/WEB-INF/web.xml,/WEB-INF/jboss-

web.xml=teiid-web-security/teiid-odata-saml-keycloak/src/main/webapp/WEB-INF/jboss-

web.xml,/META-INF/MANIFEST.MF=teiid-web-security/teiid-odata-saml-

keycloak/src/main/webapp/META-INF/MANIFEST.MF,/WEB-INF/keycloak-saml.xml=teiid-web-

security/teiid-odata-saml-keycloak/src/main/webapp/WEB-INF/keycloak-saml.xml,/WEB-

INF/keycloak.jks=teiid-web-security/teiid-odata-saml-keycloak/src/main/webapp/WEB-

INF/keycloak.jks	--deployments=teiid-olingo-odata4.war	--redeploy-affected

In	the	VDB,	define	the	security	layer	for	the	VDB	as	"saml-security",	for	example

<vdb	name="samldemo"	version="1">

				<property	name="security-domain"	value="saml-security"/>

				<model	visible="true"	name="PM1">

SAML	Based	Security	For	OData	Using	KeyCloak

869

								<source	name="any"	translator-name="loopback"/>

								<metadata	type	=	"DDL"><![CDATA[

												CREATE	FOREIGN	TABLE	G1	(e1	integer	PRIMARY	KEY,	e2	varchar(25),	e3	

double);

]]>

							</metadata>

				</model>

</vdb>

Testing	the	example	using	Web	Browser

To	test	any	SAML	based	application	you	must	use	a	Web	browser.	Using	a	browser	issue	any	OData	specific	query,	and	you	will
be	redirected	to	do	SAML	authentication.

http://localhost:8180/odata4/<vdb>.<version>/<model>/<view>

SAML	Based	Security	For	OData	Using	KeyCloak

870

	Introduction
	Legal Notice
	Administrator’s Guide
	Installation Guide
	Dockerize Teiid

	Deploying VDBs
	Deploying VDB Dependencies
	VDB Versioning

	Logging
	Clustering in Teiid
	Monitoring
	Performance Tuning
	Memory Management
	Threading
	Cache Tuning
	Socket Transports
	LOBs
	Other Considerations

	Teiid Console
	System Properties
	Teiid Management CLI
	Diagnosing Issues
	Migration Guide From Teiid 14.x
	Migration Guide From Teiid 13.x
	Migration Guide From Teiid 12.x
	Migration Guide From Teiid 11.x
	Migration Guide From Teiid 10.x
	Migration Guide From Teiid 9.x
	Migration Guide From Teiid 8.x

	Caching Guide
	Results Caching
	Materialized Views
	External Materialization
	Internal Materialization

	Code Table Caching
	Translator Results Caching
	Hints and Options
	Programmatic Control

	Client Developer’s Guide
	JDBC Support
	Connecting to a Teiid Server
	Prepared Statements
	ResultSet Limitations
	JDBC Extensions
	Unsupported JDBC Methods

	ODBC Support
	Installing the ODBC Driver Client
	Configuring the Data Source Name (DSN)
	DSN Less Connection
	ODBC Connection Properties

	OData Support
	OData Version 4.0 Support

	Using Teiid with Hibernate
	Using Teiid with EclipseLink
	GeoServer Integration
	QGIS Integration
	SQLAlchemy Integration
	Node.js Integration
	ADO.NET Integration
	Reauthentication
	Execution Properties
	SET Statement
	SHOW Statement
	Transactions
	Local Transactions
	Request Level Transactions
	Using Global Transactions
	Restrictions

	Developer’s Guide
	Developing JEE Connectors
	Archetype Template Connector Project
	Implementing the Teiid Framework
	Packaging the Adapter
	Deploying the Adapter

	Translator Development
	Environment Setup
	Implementing the Framework
	Extending The JDBC Translator
	Delegating Translator
	Packaging
	Deployment

	User Defined Functions
	Source Supported Functions
	Support for User-Defined Functions(Non-Pushdown)

	AdminAPI
	Custom Logging
	Runtime Updates
	Custom Metadata Repository
	PreParser
	Archetype Template PreParser Project

	Embedded Guide
	Logging in Teiid Embedded
	Secure Embedded with PicketBox

	Reference Guide
	Release Notes
	Data Sources
	Virtual databases
	Developing a Virtual Database
	DDL VDB
	Using XML & DDL
	VDB Properties
	Schema object DDL
	Domain DDL
	MultiSource Models
	Metadata Repositories
	REST Service Through VDB
	VDB Reuse

	SQL Support
	Identifiers
	Operator Precedence
	Expressions
	Criteria
	Scalar functions
	DML commands
	DDL commands
	Procedures
	Comments
	Explain statement

	Datatypes
	Supported types
	Type conversions
	Special conversion cases
	Escaped literal syntax

	Updatable views
	Key-preserved tables

	Transaction Support
	AutoCommitTxn execution property
	Updating model count
	JDBC and transactions
	Transactional behavior with JBoss data source types
	Limitations and workarounds

	Data roles
	Permissions
	Role mapping
	XML definition
	Customizing

	System schema
	SYS schema
	SYSADMIN schema

	Translators
	Amazon S3 translator
	Amazon SimpleDB translator
	Apache Accumulo translator
	Apache SOLR translator
	Cassandra translator
	Couchbase translator
	Delegator translators
	File translator
	Google spreadsheet translator
	Infinispan translator
	JDBC translators
	JPA translator
	LDAP translator
	Loopback translator
	Microsoft Excel translator
	MongoDB translator
	OData translator
	OData V4 translator
	Swagger translator
	OpenAPI translator
	OLAP translator
	Salesforce translators
	SAP Gateway translator
	Web Services translator

	Federated planning
	Planning overview
	Query planner
	Query plans
	Federated optimizations
	Subquery optimization
	XQuery optimization
	Federated failure modes
	Conformed tables

	Architecture
	Terminology
	Data management
	Query termination
	Processing

	BNF for SQL grammar

	Security Guide
	LoginModules
	Teiid Server Transport Security
	JDBC/ODBC SSL connection using self-signed SSL certificates
	Data Source Security
	Kerberos support through GSSAPI
	Custom Authorization Validator
	SAML Based Security For OData
	OAuth2 Based Security For OData Using KeyCloak
	SAML Based Security For OData Using KeyCloak

